
Pacific
Journal of
Mathematics

ON THE STRUCTURE OF THE VALUE SEMIGROUP OF
A VALUATION

C. Galindo

Volume 205 No. 2 August 2002



PACIFIC JOURNAL OF MATHEMATICS
Vol. 205, No. 2, 2002

ON THE STRUCTURE OF THE VALUE SEMIGROUP OF
A VALUATION

C. Galindo

Let v be a valuation of the quotient field of a noetherian
local domain R. Assume that v is centered at R. This paper
studies the structure of the value semigroup of v, S. Ideals
defining toric varieties can be defined from the graded alge-
bra K[T ] of cancellative commutative finitely generated semi-
groups such that T ∩ (−T ) = {0}. The value semigroup of a
valuation S need not be finitely generated but we prove that
S ∩ (−S) = {0} and so, the study in this paper can also be
seen as a generalization to infinite dimension of that of toric
varieties.

In this paper, we prove that K[S] can be regarded as a
module over an infinitely dimensional polynomial ring Av. We
show a minimal graded resolution of K[S] as Av-module and
we give an explicit method to obtain the syzygies of K[S] as
Av-module. Finally, it is shown that free resolutions of K[S]
as Av-module can be obtained from certain cell complexes
related to the lattice associated to the kernel of the map Av →
K[S].

1. Introduction.

Let (R,m) be a noetherian local domain. Denote by F its quotient field and
by K its residue field. A valuation of F centered at R (a valuation in the
sequel) is a mapping v of the multiplicative group of F onto a totally ordered
commutative group G, such that the following conditions are satisfied:

1. v(xy) = v(x) + v(y);
2. v(x+ y) ≥ min{v(x), v(y)};
3. v is nonnegative on R and strictly positive on m.

G is called to be the value group of the valuation v. The set S := {v(f)|f ∈
R \ {0}} is a commutative semigroup called the value semigroup of the
valuation v. Note that when dimR = 2, the most known case, S contains a
lot of information about v. Our aim, in this paper, is to study the structure
of S by extending methods of the toric geometry.

Section 2 of the paper provides some basic properties of the semigroup
S. S need not be finitely generated. However, it satisfies an interesting
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property: S is combinatorially finite, i.e., the number of decompositions of
any element in S as a finite sum of others in S is finite. When S is finitely
generated, this property is equivalent to S ∩ (−S) = {0}. There exists
an extensive literature [5, 2, 1, 4], which studies the graded algebra K[S]
of cancellative commutative finitely generated semigroups S such that S ∩
(−S) = {0} (this study includes ideals defining toric varieties). Therefore,
we devote Section 3 to extend to the S-graded algebra K[S], now S being
the value semigroup of a valuation, the ideas of the toric case. Essentially
we use the fact that S is combinatorially finite, so our study can also be
seen as a generalization to infinite dimension of that of toric varieties.

Subsection 3.1 deals with K[S] regarded as a module over an infinitely di-
mensional, in general, polynomial ring Av. Both K[S] and Av are S-graded.
We construct a minimal graded resolution of K[S] as Av-module and prove
that an explicit isomorphism can be given between the (finitely dimensional)
vector space of degree α syzygies (α ∈ S) and the vector space of augmented
homology of a simplicial complex 4α introduced in [3]. Furthermore, we
give a combinatoric method, adapting the one in [4], that allows us to ob-
tain H̃i(4α) explicitly from vector space complexes associated to directed
graphs. These directed graphs are associated to partitions of certain finite
subsets of a generating set of S. The most interesting situation arises when
the partitions are induced by the value subsemigroup of S defined by a
subring T of R such that v is also centered at T .

Subsection 3.2 is divided in two parts, their nexus being the fact that
the kernel I0 of the mapping Av → K[S], which gives to K[S] structure of
Av-module, is spanned by binomials. In 3.2.1, we characterize, by means
of a graphic condition, when a set of binomials constitutes a minimal ho-
mogeneous generating set of I0. On the other hand, I0 is spanned by a set
of binomials satisfying that the difference between their exponents is in a
lattice L. L is intimately related to the value group G of the valuation (see
the beginning of Section 3). In 3.2.2, we associate to L an Av-module ML

and we show how suitable cell complexes on minimal generating sets of the
Av-module ML give rise to free resolutions of ML, called cellular ones, and
how some of these resolutions allow us to get free resolutions of K[S] as
Av-module.

2. The value semigroup of a valuation.

Let S be a commutative semigroup with a zero element. S is said to be a
cancellative semigroup if it satisfies a cancellative law, i.e., if α, β, γ ∈ S and
α + β = α + γ then β = γ. Associated to S, we can consider an abelian
group G(S) and a semigroup homomorphism i : S → G(S) satisfying the
following universal property: If H is a commutative group and j : S → H a
semigroup homomorphism, then there exists a unique group homomorphism
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h : G(S) → H with h ◦ i = j. Moreover, i is injective if, and only if, S is
cancellative.

Consider the functions l : S → N ∪ {∞} and t : S → N ∪ {∞} given by

l(α) := sup

{
n ∈ N|α =

n∑
i=1

αi, where αi ∈ S \ {0}

}
and

t(α) := card

{
{αi}i=1,2,...,n finite subset of S \ {0} | α =

n∑
i=1

αi

}
.

It is clear that if α, β ∈ S then, l(α + β) ≥ l(α) + l(β), and also that
t(α+ β) ≥ t(α) + t(β).

Definition 1. A commutative semigroup with a zero element S is said to
be combinatorially finite (C.F.) if t(α) <∞ for each α in S.

Proposition 1. Let S be a C.F. semigroup. Then the following statements
hold.

i) For each α ∈ S, there is no infinite sequence {αi}∞i=1 of elements in
S \ {0} such that α−

∑n
i=1 αi ∈ S whenever n ≥ 1.

ii) S ∩ (−S) = {0}, where −S = {−x ∈ G(S)|x ∈ S}.

Proof.
i) If we had a sequence {αi}∞i=1 as above, then S would not be a C.F.

semigroup since t(α) would equal ∞.
ii) Assume that there exists α ∈ S ∩ (−S), α 6= 0. Write αi = α if i is

an even number and αi = −α whenever α is an odd number. Then, the
sequence {αi}∞i=1 contradicts i).

Corollary 1. Assume that S is a C.F. semigroup, then:
i) t(α) = 0 if, and only if, α = 0.
ii) l(α) = 0 if, and only if, α = 0.

Proof. It is clear that t(α) and l(α) are not equal to 0 whenever α 6= 0.
Conversely, t(0) 6= 0 (or l(0) 6= 0) implies 0 =

∑n
i=1 αi, αi ∈ S \ {0}, n ≥ 2

and therefore S ∩ (−S) 6= {0} which contradicts Proposition 1.

Remark. Statement ii) in Proposition 1 allows us to prove the existence
of a function h : S → N satisfying h(α + β) = h(α) + h(β) for α, β ∈ S
and h(α) = 0 if, and only if, α = 0. When S is finitely generated, the
above condition implies S combinatorially finite. As a consequence, both
the existence of h and statements i) and ii) in Proposition 1 can be taken
as a definition of C.F. finitely generated semigroup.

On the other hand, we can not interchange the functions t and l in Def-
inition 1, since although l(α) < ∞ for all α ∈ S holds whenever S be a
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C.F. semigroup, the converse is not true. To see it, consider the additive
semigroup S = Z1

⊕
Z, where Z1 = {x ∈ Z|x ≥ 1}. Pick α = (x, y) ∈ S,

it is clear that the number of sums in a decomposition of α as a sum of
elements in S is x or less. Therefore l(α) < ∞. However, S is not a C.F.
semigroup, because, for instance, (2, 0) = (1,m) + (1,−m) for all m ∈ Z.

Now, consider the value semigroup S of a valuation. Next theorem gives
some interesting properties of S.

Theorem 1. Let v be a valuation of F centered at R and denote by S (G)
the value semigroup (group) of v. Then:

i) The groups G(S) and G are equal. Therefore G(S) is ordered.
ii) S is a cancellative ordered commutative semigroup which is torsion

free.
iii) S is a C.F. semigroup.

Proof.
i) G contains S and, since F is the quotient field of R, we have G ⊆ G(S).

Therefore G = G(S).
ii) Denote by Rv = {f ∈ F \ {0}|v(f) ≥ 0} the valuation ring of v. Rv

is a local ring and mv := {f ∈ F \ {0}|v(f) > 0} is its maximal ideal.
Let f ∈ F \ {0} be such that v(f) 6= 0. Then v(f) (or v(1/f)) > 0, so f
(or 1/f) ∈ mv and thus fp (or 1/fp) ∈ mv whenever p ∈ N \ {0}. As a
consequence, v(f) 6= 0 implies v(fp) 6= 0. This proves that G is a torsion-
free group. Finally, all the properties of S given in ii) are clear since S is a
subsemigroup of G.

iii) Recall that the Krull dimension of Rv is usually called the rank of v
(rk(v)) and that a v-ideal of R is the intersection of R with an ideal of Rv. R
is a noetherian ring, therefore rk(v) <∞ (see [6, App. 2]) and each v-ideal
a is spanned by finitely many elements in R, i.e., a = 〈h1, h2, . . . , hr〉, hi ∈ R
(1 ≤ i ≤ r). If α = min{v(hi)|i = 1, 2, . . . , r}, then it is straightforward that
a = Pα := {f ∈ R|v(f) ≥ α}. So, the family F = {Pα}α∈S consists of all
v-ideals of R.

To prove that S is C.F., we first assume that rk(v) = 1. Then F forms a
simple infinite descending chain under inclusion [6, Lemma 3, App. 3] and
therefore, the elements in S form a simple infinite ascending chain under
the ordering in S. So S is C.F. Now, apply induction on the rank of v and
assume that S is not C.F. Then, we can express α = α1i+α2i, α, α1i, α2i ∈ S
and the sets {α1i}∞i=1 and {α2i}∞i=1 are infinite. S is well-ordered since the set
of v-ideals so is [6, App.3]. Consequently, rearranging the sets {α1i}∞i=1 and
{α2i}∞i=1, we obtain that one of them constitutes a simple infinite descending
chain. To show that this fact is not possible, we only need to observe that
v can be written v = u ◦ w, where u is of rank rk(v) − 1 and w is a rank
one valuation of the residue field of u and then, apply induction and the
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corollary of [6, App. 3], which asserts that if b2 ⊂ b1 are two consecutive
u-ideals, then the v-ideals a such that b2 ⊂ a ⊂ b1 are either finite in number
or form a simple descending infinite sequence.

In the sequel, S will denote the value semigroup of a valuation. An
element α ∈ S is said to be irreducible if l(α) = 1. Then, we can state the
following:

Corollary 2. The semigroup S is generated by its irreducible elements.
This set need not be finite.

Proof. The first statement is clear since S is C.F. Now consider a valuation
v centered at a regular 2-dimensional noetherian local ring. Assume that the
rank and the rational rank of v equal 1 and that the transcendence degree
of v is 0. Finally, suppose that the value group of v is not isomorphic to Z,
then, S has an infinite minimal system of generators. These generators are
exactly the irreducible elements of S which concludes the proof.

3. The semigroup algebra of a valuation.

Let v be a valuation. Denote by S its value semigroup. The semigroup
algebra of v is the semigroupK-algebra associated to S and it will be denoted
byK[S]. K[S] is the S-gradedK-algebraK[S] =

⊕
α∈S(K[S])α, (K[S])α :=

Kα.
Denote by Λ a minimal set of generators of S as semigroup. For instance,

we can think of Λ as the set of irreducible elements in S. Λ is, in general, an
infinite set. For a set T, write T(Λ) =

⊕
λ∈Λ Tλ where Tλ = T. Consider

the mapping ψ : Z(Λ) → G(S) given by ψ(eλ) = λ, {eλ}λ∈Λ being the
standard basis of the Z-module Z(Λ). The ordering in G(S) gives to Z(Λ)

an structure of lattice. The kernel of ψ, L, is a sublattice of Z(Λ) whose
intersection with N(Λ) is the origin 0. This can be easily deduced from
the fact that S ∩ (−S) = {0}. The morphism ψ induces a surjective K-
algebra homomorphism φ0 : K[N(Λ)] → K[S] which allows to regard K[S]
as a K[N(Λ)]-module. We shall use two approaches to study the semigroup
algebra of v. Firstly, we shall construct a minimal free resolution of the
K[N(Λ)]-module K[S] and we shall study its syzygy modules by means of
a concrete simplicial complex and secondly, we shall obtain minimal free
resolutions of the former module from certain type of cell complexes on the
lattice module ML = K[N(Λ) + L] ⊆ K[Z(Λ)]. In particular, we shall get a
more explicit free resolution of K[S].

3.1. Syzygies of the semigroup algebra.

3.1.1. . For a start, we state a basic result for the development of this
subsection. It holds for semigroups S satisfying l(α) < ∞ for all nonzero
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element α ∈ S. Thus, we can use it in our case: S is the value semigroup of
a valuation. Let A be an S-graded ring A =

⊕
α∈S Aα and M =

⊕
α∈S Mα

an S-graded A-module.

Proposition 2 (Graded Nakayama’s Lemma). Let A and M be as above.
Denote by m =

⊕
α∈S,α 6=0Aα the irrelevant ideal of A. If mM = M , then

M = 0.

Proof. If M 6= 0, then there exists an element β ∈ S such that the degree
β homogeneous component of M , Mβ, does not vanish. Now Mβ = (mM)β

proves that β can be written β = δ + γ; δ, γ ∈ S and Mγ 6= 0. Iterating, we
conclude that l(β) is not finite, which is a contradiction.

Now consider the K-algebra K[N(Λ)] which, for the sake of simplicity,
will be expressed as a polynomial ring K[{Xλ}λ∈Λ] with, possibly, infin-
itely many indeterminates and it will be denoted by Av. Av is S-graded
if we give degree λ ∈ S to the indeterminate Xλ and so, we can express
Av =

⊕
α∈S(Av)α, where (Av)α denotes the homogeneous component of de-

gree α of Av. (Av)α is a K-vector space. Note that, for any semigroup S,
we have that S is C.F. if, and only if, dimK(Av)α < ∞ and l(α) < ∞ for
all α ∈ S. Denote by Mv the irrelevant ideal of Av and by I0 the kernel
of φ0. I0 is a homogeneous ideal of Av. Let B be a minimal homogeneous
generating set of I0 and denote by Bα the set of elements in B of degree
α. Applying Proposition 2, it is straightforward to deduce that the set of
classes in I0/MvI0 of the elements of Bα is a basis of the vector space of
the homogeneous component of degree α of I0/MvI0. Bα is a finite set since
(Av)α is a finite-dimensional vector space. Set Bα = {Q1, Q2, . . . , Qd(α)}
and L1 :=

⊕
α∈S(Av)d(α). If φ1,α : (Av)d(α) → Av is the Av-module homo-

morphism given by φ1,α(a1, a2, . . . , ad(α)) =
∑d(α)

i=1 aiQi, then we have the
Av-module homomorphism φ1 : L1 → Av, φ1 =

∑
α∈S φ1,α. We give degree

α to the generators of (Av)d(α), thus L1 is an S-graded free Av-module and
φ1 a homogeneous homomorphism of degree 0. Repeating this procedure
for each syzygy module Ii := Kerφi, we get a minimal free resolution of the
S-graded Av-module K[S]:

· · · → Li
φi→ Li−1 → · · · → L1

φ1→ Av → K[S] → 0.

Tensoring by K, we note that there exists a homogeneous degree 0 isomor-
phism of S-graded Av-modules between the i-th Tor module TorAv

i (K[S],K)
and Li

⊗
Av
K, i ≥ 0.

On the other hand, we can consider a generalized Koszul complex as
follows:

· · · →
p∧
A(Λ)

v

dp→
p−1∧

A(Λ)
v → · · · → A(Λ)

v
d1→ Av

d0→ K → 0,(1)
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d0 is the natural obvious epimorphism and if {eλ}λ∈Λ is the standard basis
of the Av-module A(Λ)

v , then we have

dp(eJ) =
p∑

r=1

(−1)rXλreJ\{λr},

where eJ = eλ1 ∧ eλ2 ∧ · · · ∧ eλp whenever J = {λ1, λ2, . . . , λp} ⊆ Λ.
∧pA

(Λ)
v

can be regarded as an S-graded Av-module by giving to eJ the degree∑p
r=1 λr. Thus (1) is an S-graded free resolution where all the homomor-

phisms are homogeneous of degree 0.
We shall writeK[S].(Λ) for the complex obtained by tensoring (1) through

with K[S]:

· · · →
p∧

(K[S])(Λ) ep→
p−1∧

(K[S])(Λ) → · · · → K[S] e0→ K
⊗
Av

K[S] → 0.

The formula for ep is the same one as dp but replacing Xλr by λr. Further-
more the homomorphisms ep are homogeneous of degree 0 under the induced
gradings. As a consequence, taking into account the commutative property
of the Tor functor, there exists a homogeneous degree 0 isomorphism of S-
graded Av-modules between the i-th Tor module TorAv

i (K,K[S]) and the
i-th homology module Hi(K[S].(Λ)).

Finally, for each α ∈ S, we give a K-vector space complex isomorphic to
that of homogeneous components of degree α in K[S].(Λ). Denote by P (Λ)
the power set of Λ, P (Λ) is an abstract simplicial complex. Set

4α :=

{
J ⊆ Λ|J is a finite subset of Λ and α−

∑
J

∈ S

}
,

where
∑

J =
∑

λ∈J λ. 4α is a simplicial subcomplex of P (Λ). Associate to
4α, we consider the complex of vector spaces C.(4α) such that its vector
spaces are Ci(4α) =

⊕
J∈4α,card(J)=i+1KJ , i ≥ −1 and its boundaries

∂ : Ci(4α) → Ci−1(4α) are given by ∂(J) =
∑

β∈J(−1)ηJ (β)J \ {β}, where
ηJ(β) denotes the number of place that β has among the elements in J .
The homology of this complex will be called the augmented homology of
4α. This subsection can be summarized in the following:

Theorem 2. For each α ∈ S, there exists an explicit isomorphism of K-
vector spaces between the vector space (Ii)α/(MvIi)α of i-th syzygies of degree
α of K[S] as Av-module and the i-th augmented homology vector space of
the simplicial complex 4α, H̃i(4α).

3.1.2. . We devote this subsection to show how bases for the homology
H̃i(4α) can be explicitly computed from bases of the homology of vector
space complexes associated to directed graphs which depend on the set Λ.



332 C. GALINDO

This will be done adapting the results by Campillo and Gimenez in the case
of toric affine varieties [4].

To start with, we describe the type of vector space complexes which we
shall use to compute H̃i(4α). Assume that Γ is a subset of Λ, which is a
finite set of generators of a semigroup T , and B a subset of T . We shall
call the directed graph of T associated to the pair (Γ, B) to the directed
graph GΓB(T ) (denoted GΓB if it does not cause confusion) whose vertex
set is {m ∈ T |m −

∑
L ∈ B for some subset L ⊆ Γ} and such that (m,m′)

is an edge iff m′ = m + γ for some γ ∈ Γ. A K-vector space complex
C.(GΓB(T,m)) can be associated to the pair (GΓB,m), m being a vertex of
GΓB, if the following condition holds: Whenever b ∈ B and λ, λ′ ∈ Γ satisfy
b+ λ+ λ′ ∈ B, then b+ λ ∈ B and b+ λ′ ∈ B. In such a case GΓB is called
to be a chain graph. Each vector space Ci(GΓB(T,m)), i ≥ −1, is equal
to

⊕
KL where the sum is over all subsets L of Γ of cardinality i+ 1 such

that m −
∑

L ∈ B. The boundaries are induced by those of the simplicial
complex P (Λ).

Next, we state the main result of this subsection.

Theorem 3. The homology H̃i(4α) can be explicitly reached from finitely
many homologies of K-vector space complexes of the type C.(GΓB(T,m)) for
suitable T,Γ, B and m.

To reach a homology from others means to obtain bases of the homology
from bases of the others by means of exact sequences. Let’s see how to reach
H̃i(4α). Let Sα = {α′ ∈ S|α− α′ ∈ S}. Sα is finite since S is C.F. Denote
by Sα the subsemigroup of S spanned by Sα. It is not difficult to prove that
4α = {J ⊆ Sα|α−

∑
J ∈ Sα}. Now, pick a partition of Sα, Sα = Ωα ∪Πα,

consider the Apery set of Sα relative to Πα:

A(α) = A = {a ∈ Sα|a− e 6∈ Sα for all e ∈ Πα}
and the related set

Kα :=

{
L ⊆ Sα|L ∩Πα 6= ∅ and α−

∑
L

∈ Sα

}

∪

{
L ⊆ Ωα|α−

∑
L

∈ Sα \A

}
.

There is no loss of generality in assuming that α is a vertex of GΩαA(Sα)
and then, it is clear that the complex associate to (GΩαA, α) makes sense.
It will be denoted C.(A(α)) and it is exactly the augmented relative simpli-
cial complex C̃.(4α,Kα). Therefore, we can state the following long exact
sequence, which allows to reach the homology H̃i(4α) from others.

· · · → Hi+1(Aα) → H̃i(Kα) → H̃i(4α) → Hi(Aα) → H̃i−1(Kα) → . . .(2)
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Hi+1(Aα) andHi(Aα) are as we desire. Let us see that H̃i(Kα) and H̃i−1(Kα)
so are. Firstly, define the simplicial complex

Kα := Kα ∪
{
L = I ∪ J

∣∣∣ I ⊆ Ωα, J ⊆ Πα, card (J) ≥ 2, α−
∑
I∪J

6∈ Sα

but α−
∑

I

−e ∈ Sα for each e ∈ J
}

and the subcomplexes of Kα,

Kα(j) := Kα ∪ {L = I ∪ J ∈ Kα \Kα | card (J) ≤ j},

1 ≤ j ≤ card (Πα). Kα is acyclic and so H̃i+1(Kα,Kα) ∼= H̃i(Kα).
Also H̃i(Kα,Kα) ∼= H̃i(Kα(card (Πα)),Kα(1)). This last homology can be
reached from H̃i(Kα(j),Kα(j − 1)), 2 ≤ j ≤ card (Πα), since the following
exact sequence of vector space complexes

0 → C.(Kα(j),Kα(i)) → C.(Kα(k),Kα(i)) → C.(Kα(k),Kα(j)) → 0

holds for sequences (i, j, k) equal to (1, 2, 3), (1, 3, 4), . . . , (1, card (Πα) − 1,
card (Πα)). As a consequence, we only need to show that the homology
H̃i(Kα(j),Kα(j−1)) can be computed from finitely many homologies of com-
plexes associated to chain graphs. Indeed, a subset J ⊆ Πα with card (J) ≥ 2
is said to be associated to d ∈ Sα, if d −

∑
J 6∈ Sα but d − e ∈ Sα for each

e ∈ J . If we denote by DJ
α the set of elements d in Sα such that J is

associated to d, then

H̃i(Kα(j),Kα(j − 1)) ∼=
⊕

J⊆Πα,card (J)=j

Hi−j

(
GΩαDJ

α
(Sα, α)

)
.

A further study leads us to obtain finite subsets of Sα, such that H̃i(4α)
vanishes when α does not belong to them. In fact, for −1 ≤ l ≤ card (Ωα)
write

Mα(l) := Kα ∪ {L = I ∪ J ∈ Kα \Kα | card (I) ≤ l}.

As above,

H̃i(Kα,Kα) ∼= H̃i(Mα(card (Ωα)),Mα(−1)).(3)

This last homology can be reached from H̃i(Mα(l),Mα(l − 1)) and

H̃i(Mα(l),Mα(l − 1)) ∼=
⊕

H̃i−l(Θα−
P

I
),

where the sum is over all subsets I ⊆ Ωα such that card (I) = l and α−
∑

I ∈
Sα, and where Θd = {J ⊆ Πα | d −

∑
J ∈ Sα}. Consequently, (2) and (3)
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prove that if we consider

Ci(α) :=

{
m ∈ Sα

∣∣∣ m = a+
∑

I

; a ∈ A(α), I ⊆ Ωα and card (I) = i+ 1

}
∪

{
m ∈ Sα

∣∣ ∃I ⊆ Ωα, card (I) = l ≤ i with H̃i−l

(
Θm−

P
I

)
6= 0

}
,

then H̃i(4α) = 0 if α 6∈ Ci(α). The simplicity of the set Θd has an important
consequence:

Proposition 3 (See [4, Pr. 6.2]). The set Ci(α) is finite when we choose a
suitable partition of the set Sα.

A crucial fact in the above proposition is that Sα is finitely generated.
A suitable partition of Sα would be a convex partition, that is, a partition
Sα = Ωα ∪ Πα where the cone generated by Sα (in VSα := G(Sα)

⊗
Z Q)

is equal to the cone generated by Ωα (in VSα) and card (Ωα) equals to the
number of extremal rays of the cone spanned by Sα.

3.2. The defining ideal of the semigroup. The K-algebra K[S] is iso-
morphic to Av/I0. The ideal I0, usually called the defining ideal of S, is
spanned by a set of binomials which are difference of two monomials of
the same degree. This set need not be finite. In the first part of this
subsection, we shall use [2] to give a method to compute a minimal homo-
geneous generating set of I0, B, formed by binomials of the type described
above. This method uses the structure of graph of the simplicial complex
4α. On the other hand, denote by Lv = K[{X±1

λ }λ∈Λ] the Laurent poly-
nomial ring associate to the set Λ and write Xa =

∏
λ∈Λ′ X

aλ
λ ∈ Lv when-

ever a =
∑

λ∈Λ′ aλeλ ∈ Z(Λ), Λ′ being a finite subset of Λ. Obviously,
Av ⊂ Lv = K[Z(Λ)]. Recalling the notation at the beginning of Section 3,
we observe that

I0 = 〈Xa −Xb | a− b ∈ L〉 ⊂ Av.(4)

Following the ideas of [1], this fact will serve us, in the second part of this
subsection, to obtain minimal free resolutions of K[S] as Av-module from
suitable cell complexes on ML.
3.2.1. Minimal generating sets of the defining ideal. A minimal ho-
mogeneous generating set of I0, B, can be expressed B = ∪α∈SBα, where
Bα is the set of elements in B of degree α. As a consequence of 3.1.1,
we have that Bα is a finite set and cardBα = dimK H̃0(4α). Moreover,
4α is a graph which has dimK H̃0(4α) + 1 connected components. If
a =

∑
λ∈Λ′ aλeλ ∈ N(Λ) (aλ 6= 0), then Xa ∈ Av, the support of Xa,

Supp (Xa), is the set Λ′ and the degree of Xa, deg(Xa), is
∑

λ∈Λ′ aλλ ∈ S.
It is clear that I0 is an ideal generated by the set of binomials B =

{Xa −Xb | deg(Xa) = deg(Xb)}. Let C be a subset of B whose binomials
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have a fixed degree α. We shall call graph associated to C to a graph
whose vertex set is the set of connected components of 4α which contain
the support of a monomial belonging to a binomial in C. Two connected
components, those associated to the monomials Xa and Xb, are adjacent by
an edge whenever Xa −Xb ∈ C. C will be a generating tree for 4α if the
graph associated to C is, in fact, a tree.

Theorem 4. A subset B = ∪α∈SBα ⊆ B is a minimal homogeneous gen-
erating set of I0 if, and only if, Bα is a generating tree for 4α whenever
dimK H̃0(4α) 6= 0 and Bα = ∅, otherwise.

This theorem is analogous to the stated in [2] for finitely generated semi-
groups and the proof runs similarly. It is based on the fact that two mono-
mials M and M ′ of degree α ∈ S satisfy M −M ′ ∈ (MvI0)α if, and only
if, Supp (M) and Supp (M ′) are in the same connected component of 4α.
Furthermore, it is possible to decide whether dimK H̃0(4α) 6= 0 by a close
method to that given in [2, Th. 3.11].

3.2.2. Cellular resolutions of K[S]. For a start, we establish a relation
between the module ML = K[N(Λ) + L] and the semigroup algebra of v,
K[S]. Denote by Av[L] the group algebra of L over Av. Av[L] is the sub-
algebra of K[{Xλ}λ∈Λ, {Z±1

λ }λ∈Λ] generated by the monomials XaZ l where
a ∈ N(Λ) and l ∈ L. Thus, we can give a Z(Λ)-grading on Av[L] by writing
deg(XaZ l) = a + l. On the other hand, the morphism h : Av[L] → ML,
XaZ l → Xa+l gives toML an structure of Z(Λ)-graded Av[L]-module. More-
over, if J = Ker(h), then the following equality chain holds,

ML

⊗
Av [L]

Av = Av[L]/J
⊗
Av [L]

Av = Av/I0 = K[S].

Next, we shall consider two equivalent categories A and B. A contains
ML, and K[S], viewed as Av-module, is in B. This shall give the desired
relation between ML and K[S]. A will be the category of Z(Λ)-graded Av[L]-
modules, where the morphisms are Z(Λ)-graded Av[L]-module homomor-
phisms of degree 0, and B the category of G(S)-graded Av-modules, where
the morphisms are, also, of degree 0. Note that K[S] is S-graded and there-
fore G(S)-graded. The functor π : A → B which gives the equivalence is
π(M) = M

⊗
Av [L]Av. Notice that if M ∈ A, M =

⊕
a∈Z(Λ) Ma, then π

identifies as π(M)α, α ∈ G(S), all the vector spaces Ma such that ψ(a) = α,
where ψ is the mapping given at the beginning of Section 3. A complete
proof of this equivalence is similar to that of the case of finitely generated
semigroups [1, Th. 3.2] and we omit it.

Now, taking into account that the degrees of ML are in N(Λ) +L, we can
state:
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Theorem 5. Let π : A → B be the equivalence of categories above given.
Then π transforms Z(Λ)-graded (minimal) free resolutions of ML as Av[L]-
module into S-graded (minimal) free resolutions of K[S] as Av-module, and
conversely.

Finally, we shall see how to get free resolutions of ML from regular cell
complexes and, consequently, how to get free resolutions ofK[S]. First at all,
denote by≤ the ordering in Z(Λ) defined so: a ≤ b if, and only if, b−a ∈ N(Λ).
Also, set min(ML) := {Xa ∈ML |Xa/Xλ 6∈ML for all λ ∈ Λ}.

Proposition 4. The Z(Λ)-graded Av-module ML satisfies the following
properties:

i) The set of monomials in ML of degree ≤ a is finite for each a ∈ Z(Λ).
ii) ML is generated as Av-module by the set min(ML).

Proof.
i) Write a =

∑
λ∈Λ′⊂Λ aλeλ and set a+ =

∑
λ∈Λ′,aλ>0 aλeλ and a− =∑

λ∈Λ′,aλ<0 aλeλ. If d is the degree of a monomial in ML, then d = l + b+,
where l ∈ L and b+ ∈ N(Λ). It is clear that, as above, l = l+ + l− where
ψ(l+) = −ψ(l−) ∈ S. So, d ≤ a if, and only if, l+ + b+ + l− ≤ a+ +a−. As a
consequence the set {l+ | d ≤ a} is finite and so is the set {ψ(l+) | d ≤ a} ⊆ S.
Finally, {l− | d ≤ a} is also a finite set, since S is a C.F. semigroup.

ii) This is a straightforward consequence of the fact that, there is no
infinite decreasing sequence under divisibility of monomials in ML, which
follows from i).

Put min(ML) = {Xa | a ∈ I ⊂ Z(Λ)}. I is, generally, an infinite set.
Consider a regular cell complex X such that I is its set of vertices and ε
an incidence function on pairs of faces. A typical example of a regular cell
complex is the set of faces of a convex polytope.

Associated to X, a cellular complex of Av-modules M.(X) can be defined
in the following way: The modules are Mi(X) =

⊕
J∈X,dim J=iAvJ , i ≥ 0,

(we have identified the face J inX with its set of vertices) and the boundaries
are given by

∂J =
∑

J ′∈X,J ′ 6=∅

ε(J, J ′)(mJ/mJ ′)J ′,

where mJ is the least common multiple of the set {Xa | a ∈ J}. M.(X) is
Z(Λ)-graded, the degree of a face J being the exponent vector of mJ . When
M.(X) is a free resolution of ML, it is called to be a cellular resolution of
ML. Set 4 = {J ∈ P (I) |J is a finite set} and associate to 4 an incidence
function as in the definition of 4α (see 3.1.1). 4 is a cell complex and
its associated cellular complex M.(4) is a cellular resolution of ML called
the Taylor resolution of ML. This is an easy consequence of the fact that
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the subcomplex 4≤a of 4 on the vertices of degree ≤ a is acyclic for all
a ∈ N(Λ).

We desire to apply Theorem 5 to get free resolutions of K[S]. In order to
do it, we observe that the mapping

⊕
J∈RAv[L]J → Mi(X), Z lJ → J + l

is an isomorphism of Z(Λ)-graded Av-modules if X satisfies that

J + l ∈ X whenever J ∈ X and l ∈ L,(5)

R being a set of representatives of the set of i-dimensional orbits defined by
the action of L over X. Thus, we shall call to X equivariant if it satisfies
(5) and ε(J, J ′) = ε(J + l, J ′ + l) for all l ∈ L. If X is equivariant, it is
straightforward that M.(X) is a Z(Λ)-graded complex of Av[L]-modules and
that M.(X) is exact over Av if, and only if, it is exact over Av[L]. In this
case, M.(X) is called an equivariant cellular resolution of ML. Applying
Theorem 5, we have proved the following:

Theorem 6. Let S be the value semigroup of a valuation. If M.(X)
is a (minimal ) equivariant cellular resolution of ML, then π(M.(X)) is a
(minimal ) free resolution of K[S] as Av-module.

4 is an equivariant cell complex. Its simplicity allows us to give an explicit
resolution of K[S] as Av-module. For each α ∈ S, denote by mon(Av)α the
set of monomials in (Av)α and by Ei(α) the set of cardinality i subsets of
mon(Av)α whose greatest common divisor is 1. Now, if Fi(a) denotes the set
of cardinality i subsets of min(ML) whose least common multiple is a ∈ Z(Λ),
it is clear, from the definition of M.(4), that Mi(4) =

⊕
a∈N(Λ)+LAvFi(a).

Regarding Mi(4) as Av[L]-module and by Theorem 5, it is clear that π
takes Fi(a) bijectively to Ei(ψ(a)), π(J) = {Xa/Xc |Xc ∈ J}. As a conse-
quence π(M.(4)) can be expressed so: The Av-modules are

⊕
α∈S AvEi(α)

and the boundaries are given by

∂(I) =
∑

Xc∈I

(−1)ηI(Xc)gcd(I \ {Xc})[I \ {Xc}],

where I ∈ Ei(α), ηI is defined as in 3.1.1 and [I \ {Xc}] means to remove
the common factor gcd(I \ {Xc}) from I \ {Xc}.
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