Pacific Journal of Mathematics

ON THE STRUCTURE OF THE VALUE SEMIGROUP OF A VALUATION

C. Galindo

Volume 205 No. 2

August 2002

ON THE STRUCTURE OF THE VALUE SEMIGROUP OF A VALUATION

C. Galindo

Let v be a valuation of the quotient field of a noetherian local domain R. Assume that v is centered at R. This paper studies the structure of the value semigroup of v, S. Ideals defining toric varieties can be defined from the graded algebra K[T] of cancellative commutative finitely generated semigroups such that $T \cap (-T) = \{0\}$. The value semigroup of a valuation S need not be finitely generated but we prove that $S \cap (-S) = \{0\}$ and so, the study in this paper can also be seen as a generalization to infinite dimension of that of toric varieties.

In this paper, we prove that K[S] can be regarded as a module over an infinitely dimensional polynomial ring A_v . We show a minimal graded resolution of K[S] as A_v -module and we give an explicit method to obtain the syzygies of K[S] as A_v -module. Finally, it is shown that free resolutions of K[S]as A_v -module can be obtained from certain cell complexes related to the lattice associated to the kernel of the map $A_v \to K[S]$.

1. Introduction.

Let (R, m) be a noetherian local domain. Denote by F its quotient field and by K its residue field. A valuation of F centered at R (a valuation in the sequel) is a mapping v of the multiplicative group of F onto a totally ordered commutative group G, such that the following conditions are satisfied:

1.
$$v(xy) = v(x) + v(y);$$

2.
$$v(x+y) \ge \min\{v(x), v(y)\};$$

3. v is nonnegative on R and strictly positive on m.

G is called to be the value group of the valuation v. The set $S := \{v(f) | f \in R \setminus \{0\}\}$ is a commutative semigroup called the *value semigroup* of the valuation v. Note that when dim R = 2, the most known case, S contains a lot of information about v. Our aim, in this paper, is to study the structure of S by extending methods of the toric geometry.

Section 2 of the paper provides some basic properties of the semigroup S. S need not be finitely generated. However, it satisfies an interesting

property: S is combinatorially finite, i.e., the number of decompositions of any element in S as a finite sum of others in S is finite. When S is finitely generated, this property is equivalent to $S \cap (-S) = \{0\}$. There exists an extensive literature [5, 2, 1, 4], which studies the graded algebra K[S]of cancellative commutative finitely generated semigroups S such that $S \cap$ $(-S) = \{0\}$ (this study includes ideals defining toric varieties). Therefore, we devote Section 3 to extend to the S-graded algebra K[S], now S being the value semigroup of a valuation, the ideas of the toric case. Essentially we use the fact that S is combinatorially finite, so our study can also be seen as a generalization to infinite dimension of that of toric varieties.

Subsection 3.1 deals with K[S] regarded as a module over an infinitely dimensional, in general, polynomial ring A_v . Both K[S] and A_v are S-graded. We construct a minimal graded resolution of K[S] as A_v -module and prove that an explicit isomorphism can be given between the (finitely dimensional) vector space of degree α syzygies ($\alpha \in S$) and the vector space of augmented homology of a simplicial complex Δ_{α} introduced in [3]. Furthermore, we give a combinatoric method, adapting the one in [4], that allows us to obtain $\tilde{H}_i(\Delta_{\alpha})$ explicitly from vector space complexes associated to directed graphs. These directed graphs are associated to partitions of certain finite subsets of a generating set of S. The most interesting situation arises when the partitions are induced by the value subsemigroup of S defined by a subring T of R such that v is also centered at T.

Subsection 3.2 is divided in two parts, their nexus being the fact that the kernel I_0 of the mapping $A_v \to K[S]$, which gives to K[S] structure of A_v -module, is spanned by binomials. In 3.2.1, we characterize, by means of a graphic condition, when a set of binomials constitutes a minimal homogeneous generating set of I_0 . On the other hand, I_0 is spanned by a set of binomials satisfying that the difference between their exponents is in a lattice L. L is intimately related to the value group G of the valuation (see the beginning of Section 3). In 3.2.2, we associate to L an A_v -module M_L and we show how suitable cell complexes on minimal generating sets of the A_v -module M_L give rise to free resolutions of M_L , called cellular ones, and how some of these resolutions allow us to get free resolutions of K[S] as A_v -module.

2. The value semigroup of a valuation.

Let S be a commutative semigroup with a zero element. S is said to be a cancellative semigroup if it satisfies a cancellative law, i.e., if $\alpha, \beta, \gamma \in S$ and $\alpha + \beta = \alpha + \gamma$ then $\beta = \gamma$. Associated to S, we can consider an abelian group G(S) and a semigroup homomorphism $i : S \to G(S)$ satisfying the following universal property: If H is a commutative group and $j : S \to H$ a semigroup homomorphism, then there exists a unique group homomorphism

 $h:G(S)\to H$ with $h\circ i=j.$ Moreover, i is injective if, and only if, S is cancellative.

Consider the functions $l: S \to \mathbf{N} \cup \{\infty\}$ and $t: S \to \mathbf{N} \cup \{\infty\}$ given by

$$l(\alpha) := \sup\left\{ n \in \mathbf{N} | \alpha = \sum_{i=1}^{n} \alpha_i, \text{ where } \alpha_i \in S \setminus \{0\} \right\}$$

and

$$t(\alpha) := \operatorname{card} \left\{ \{\alpha_i\}_{i=1,2,\dots,n} \text{ finite subset of } S \setminus \{0\} \mid \alpha = \sum_{i=1}^n \alpha_i \right\}.$$

It is clear that if $\alpha, \beta \in S$ then, $l(\alpha + \beta) \geq l(\alpha) + l(\beta)$, and also that $t(\alpha + \beta) \geq t(\alpha) + t(\beta)$.

Definition 1. A commutative semigroup with a zero element S is said to be combinatorially finite (C.F.) if $t(\alpha) < \infty$ for each α in S.

Proposition 1. Let S be a C.F. semigroup. Then the following statements hold.

i) For each α ∈ S, there is no infinite sequence {α_i}[∞]_{i=1} of elements in S \ {0} such that α − ∑ⁿ_{i=1} α_i ∈ S whenever n ≥ 1.
ii) S ∩ (−S) = {0}, where −S = {−x ∈ G(S)|x ∈ S}.

Proof.

i) If we had a sequence $\{\alpha_i\}_{i=1}^{\infty}$ as above, then S would not be a C.F. semigroup since $t(\alpha)$ would equal ∞ .

ii) Assume that there exists $\alpha \in S \cap (-S)$, $\alpha \neq 0$. Write $\alpha_i = \alpha$ if *i* is an even number and $\alpha_i = -\alpha$ whenever α is an odd number. Then, the sequence $\{\alpha_i\}_{i=1}^{\infty}$ contradicts i).

Corollary 1. Assume that S is a C.F. semigroup, then:

- i) $t(\alpha) = 0$ if, and only if, $\alpha = 0$.
- ii) $l(\alpha) = 0$ if, and only if, $\alpha = 0$.

Proof. It is clear that $t(\alpha)$ and $l(\alpha)$ are not equal to 0 whenever $\alpha \neq 0$. Conversely, $t(0) \neq 0$ (or $l(0) \neq 0$) implies $0 = \sum_{i=1}^{n} \alpha_i, \alpha_i \in S \setminus \{0\}, n \geq 2$ and therefore $S \cap (-S) \neq \{0\}$ which contradicts Proposition 1.

Remark. Statement ii) in Proposition 1 allows us to prove the existence of a function $h: S \to \mathbf{N}$ satisfying $h(\alpha + \beta) = h(\alpha) + h(\beta)$ for $\alpha, \beta \in S$ and $h(\alpha) = 0$ if, and only if, $\alpha = 0$. When S is finitely generated, the above condition implies S combinatorially finite. As a consequence, both the existence of h and statements i) and ii) in Proposition 1 can be taken as a definition of C.F. finitely generated semigroup.

On the other hand, we can not interchange the functions t and l in Definition 1, since although $l(\alpha) < \infty$ for all $\alpha \in S$ holds whenever S be a C.F. semigroup, the converse is not true. To see it, consider the additive semigroup $S = \mathbf{Z}_1 \bigoplus \mathbf{Z}$, where $\mathbf{Z}_1 = \{x \in \mathbf{Z} | x \ge 1\}$. Pick $\alpha = (x, y) \in S$, it is clear that the number of sums in a decomposition of α as a sum of elements in S is x or less. Therefore $l(\alpha) < \infty$. However, S is not a C.F. semigroup, because, for instance, (2, 0) = (1, m) + (1, -m) for all $m \in \mathbf{Z}$.

Now, consider the value semigroup S of a valuation. Next theorem gives some interesting properties of S.

Theorem 1. Let v be a valuation of F centered at R and denote by S(G) the value semigroup (group) of v. Then:

- i) The groups G(S) and G are equal. Therefore G(S) is ordered.
- ii) S is a cancellative ordered commutative semigroup which is torsion free.
- iii) S is a C.F. semigroup.

Proof.

i) G contains S and, since F is the quotient field of R, we have $G \subseteq G(S)$. Therefore G = G(S).

ii) Denote by $R_v = \{f \in F \setminus \{0\} | v(f) \ge 0\}$ the valuation ring of v. R_v is a local ring and $m_v := \{f \in F \setminus \{0\} | v(f) > 0\}$ is its maximal ideal. Let $f \in F \setminus \{0\}$ be such that $v(f) \ne 0$. Then v(f) (or v(1/f)) > 0, so f(or $1/f) \in m_v$ and thus f^p (or $1/f^p$) $\in m_v$ whenever $p \in \mathbf{N} \setminus \{0\}$. As a consequence, $v(f) \ne 0$ implies $v(f^p) \ne 0$. This proves that G is a torsionfree group. Finally, all the properties of S given in ii) are clear since S is a subsemigroup of G.

iii) Recall that the Krull dimension of R_v is usually called the rank of v (rk(v)) and that a v-ideal of R is the intersection of R with an ideal of R_v . R is a noetherian ring, therefore $rk(v) < \infty$ (see [6, App. 2]) and each v-ideal a is spanned by finitely many elements in R, i.e., $a = \langle h_1, h_2, \ldots, h_r \rangle$, $h_i \in R$ $(1 \le i \le r)$. If $\alpha = \min\{v(h_i)|i = 1, 2, \ldots, r\}$, then it is straightforward that $a = P_\alpha := \{f \in R | v(f) \ge \alpha\}$. So, the family $F = \{P_\alpha\}_{\alpha \in S}$ consists of all v-ideals of R.

To prove that S is C.F., we first assume that rk(v) = 1. Then F forms a simple infinite descending chain under inclusion [6, Lemma 3, App. 3] and therefore, the elements in S form a simple infinite ascending chain under the ordering in S. So S is C.F. Now, apply induction on the rank of v and assume that S is not C.F. Then, we can express $\alpha = \alpha_{1i} + \alpha_{2i}$, $\alpha, \alpha_{1i}, \alpha_{2i} \in S$ and the sets $\{\alpha_{1i}\}_{i=1}^{\infty}$ and $\{\alpha_{2i}\}_{i=1}^{\infty}$ are infinite. S is well-ordered since the set of v-ideals so is [6, App.3]. Consequently, rearranging the sets $\{\alpha_{1i}\}_{i=1}^{\infty}$ and $\{\alpha_{2i}\}_{i=1}^{\infty}$, we obtain that one of them constitutes a simple infinite descending chain. To show that this fact is not possible, we only need to observe that v can be written $v = u \circ w$, where u is of rank rk(v) - 1 and w is a rank one valuation of the residue field of u and then, apply induction and the corollary of [6, App. 3], which asserts that if $b_2 \subset b_1$ are two consecutive *u*-ideals, then the *v*-ideals *a* such that $b_2 \subset a \subset b_1$ are either finite in number or form a simple descending infinite sequence.

In the sequel, S will denote the value semigroup of a valuation. An element $\alpha \in S$ is said to be irreducible if $l(\alpha) = 1$. Then, we can state the following:

Corollary 2. The semigroup S is generated by its irreducible elements. This set need not be finite.

Proof. The first statement is clear since S is C.F. Now consider a valuation v centered at a regular 2-dimensional noetherian local ring. Assume that the rank and the rational rank of v equal 1 and that the transcendence degree of v is 0. Finally, suppose that the value group of v is not isomorphic to \mathbf{Z} , then, S has an infinite minimal system of generators. These generators are exactly the irreducible elements of S which concludes the proof.

3. The semigroup algebra of a valuation.

Let v be a valuation. Denote by S its value semigroup. The semigroup algebra of v is the semigroup K-algebra associated to S and it will be denoted by K[S]. K[S] is the S-graded K-algebra $K[S] = \bigoplus_{\alpha \in S} (K[S])_{\alpha}, (K[S])_{\alpha} := K\alpha$.

Denote by Λ a minimal set of generators of S as semigroup. For instance, we can think of Λ as the set of irreducible elements in S. Λ is, in general, an infinite set. For a set **T**, write $\mathbf{T}^{(\Lambda)} = \bigoplus_{\lambda \in \Lambda} \mathbf{T}_{\lambda}$ where $\mathbf{T}_{\lambda} = \mathbf{T}$. Consider the mapping ψ : $\mathbf{Z}^{(\Lambda)} \to G(S)$ given by $\psi(e_{\lambda}) = \lambda$, $\{e_{\lambda}\}_{\lambda \in \Lambda}$ being the standard basis of the **Z**-module $\mathbf{Z}^{(\Lambda)}$. The ordering in G(S) gives to $\mathbf{Z}^{(\Lambda)}$ an structure of lattice. The kernel of ψ , L, is a sublattice of $\mathbf{Z}^{(\Lambda)}$ whose intersection with $\mathbf{N}^{(\Lambda)}$ is the origin 0. This can be easily deduced from the fact that $S \cap (-S) = \{0\}$. The morphism ψ induces a surjective Kalgebra homomorphism $\phi_0: K[\mathbf{N}^{(\Lambda)}] \to K[S]$ which allows to regard K[S]as a $K[\mathbf{N}^{(\Lambda)}]$ -module. We shall use two approaches to study the semigroup algebra of v. Firstly, we shall construct a minimal free resolution of the $K[\mathbf{N}^{(\Lambda)}]$ -module K[S] and we shall study its syzygy modules by means of a concrete simplicial complex and secondly, we shall obtain minimal free resolutions of the former module from certain type of cell complexes on the lattice module $M_L = K[\mathbf{N}^{(\Lambda)} + L] \subseteq K[\mathbf{Z}^{(\Lambda)}]$. In particular, we shall get a more explicit free resolution of K[S].

3.1. Syzygies of the semigroup algebra.

3.1.1. For a start, we state a basic result for the development of this subsection. It holds for semigroups S satisfying $l(\alpha) < \infty$ for all nonzero

element $\alpha \in S$. Thus, we can use it in our case: S is the value semigroup of a valuation. Let A be an S-graded ring $A = \bigoplus_{\alpha \in S} A_{\alpha}$ and $M = \bigoplus_{\alpha \in S} M_{\alpha}$ an S-graded A-module.

Proposition 2 (Graded Nakayama's Lemma). Let A and M be as above. Denote by $m = \bigoplus_{\alpha \in S, \alpha \neq 0} A_{\alpha}$ the irrelevant ideal of A. If mM = M, then M = 0.

Proof. If $M \neq 0$, then there exists an element $\beta \in S$ such that the degree β homogeneous component of M, M_{β} , does not vanish. Now $M_{\beta} = (mM)_{\beta}$ proves that β can be written $\beta = \delta + \gamma$; $\delta, \gamma \in S$ and $M_{\gamma} \neq 0$. Iterating, we conclude that $l(\beta)$ is not finite, which is a contradiction.

Now consider the K-algebra $K[\mathbf{N}^{(\Lambda)}]$ which, for the sake of simplicity, will be expressed as a polynomial ring $K[\{X_{\lambda}\}_{\lambda \in \Lambda}]$ with, possibly, infinitely many indeterminates and it will be denoted by A_v . A_v is S-graded if we give degree $\lambda \in S$ to the indeterminate X_{λ} and so, we can express $A_v = \bigoplus_{\alpha \in S} (A_v)_{\alpha}$, where $(A_v)_{\alpha}$ denotes the homogeneous component of degree α of A_v . $(A_v)_{\alpha}$ is a K-vector space. Note that, for any semigroup S, we have that S is C.F. if, and only if, $\dim_K(A_n)_{\alpha} < \infty$ and $l(\alpha) < \infty$ for all $\alpha \in S$. Denote by M_v the irrelevant ideal of A_v and by I_0 the kernel of ϕ_0 . I_0 is a homogeneous ideal of A_v . Let B be a minimal homogeneous generating set of I_0 and denote by B_{α} the set of elements in B of degree α . Applying Proposition 2, it is straightforward to deduce that the set of classes in $I_0/M_v I_0$ of the elements of B_α is a basis of the vector space of the homogeneous component of degree α of $I_0/M_v I_0$. B_α is a finite set since $(A_v)_{\alpha}$ is a finite-dimensional vector space. Set $B_{\alpha} = \{Q_1, Q_2, \dots, Q_{d(\alpha)}\}$ and $L_1 := \bigoplus_{\alpha \in S} (A_v)^{d(\alpha)}$. If $\phi_{1,\alpha} : (A_v)^{d(\alpha)} \to A_v$ is the A_v -module homomorphism given by $\phi_{1,\alpha}(a_1, a_2, \dots, a_{d(\alpha)}) = \sum_{i=1}^{d(\alpha)} a_i Q_i$, then we have the A_v -module homomorphism $\phi_1 : L_1 \to A_v$, $\phi_1 = \sum_{\alpha \in S} \phi_{1,\alpha}$. We give degree α to the generators of $(A_v)^{d(\alpha)}$, thus L_1 is an S-graded free A_v -module and ϕ_1 a homogeneous homomorphism of degree 0. Repeating this procedure for each syzygy module $I_i := \text{Ker}\phi_i$, we get a minimal free resolution of the S-graded A_v -module K[S]:

$$\cdots \to L_i \stackrel{\phi_i}{\to} L_{i-1} \to \cdots \to L_1 \stackrel{\phi_1}{\to} A_v \to K[S] \to 0.$$

Tensoring by K, we note that there exists a homogeneous degree 0 isomorphism of S-graded A_v -modules between the *i*-th Tor module $Tor_i^{A_v}(K[S], K)$ and $L_i \bigotimes_{A_v} K$, $i \geq 0$.

On the other hand, we can consider a generalized Koszul complex as follows:

(1)
$$\cdots \to \bigwedge^{p} A_{v}^{(\Lambda)} \xrightarrow{d_{p}} \bigwedge^{p-1} A_{v}^{(\Lambda)} \to \cdots \to A_{v}^{(\Lambda)} \xrightarrow{d_{1}} A_{v} \xrightarrow{d_{0}} K \to 0,$$

 d_0 is the natural obvious epimorphism and if $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is the standard basis of the A_v -module $A_v^{(\Lambda)}$, then we have

$$d_p(e_J) = \sum_{r=1}^p (-1)^r X_{\lambda_r} e_{J \setminus \{\lambda_r\}},$$

where $e_J = e_{\lambda_1} \wedge e_{\lambda_2} \wedge \cdots \wedge e_{\lambda_p}$ whenever $J = \{\lambda_1, \lambda_2, \dots, \lambda_p\} \subseteq \Lambda$. $\bigwedge^p A_v^{(\Lambda)}$ can be regarded as an S-graded A_v -module by giving to e_J the degree $\sum_{r=1}^p \lambda_r$. Thus (1) is an S-graded free resolution where all the homomorphisms are homogeneous of degree 0.

We shall write $K[S].(\Lambda)$ for the complex obtained by tensoring (1) through with K[S]:

$$\cdots \to \bigwedge^{p} (K[S])^{(\Lambda)} \xrightarrow{e_p} \bigwedge^{p-1} (K[S])^{(\Lambda)} \to \cdots \to K[S] \xrightarrow{e_0} K \bigotimes_{A_v} K[S] \to 0.$$

The formula for e_p is the same one as d_p but replacing X_{λ_r} by λ_r . Furthermore the homomorphisms e_p are homogeneous of degree 0 under the induced gradings. As a consequence, taking into account the commutative property of the *Tor* functor, there exists a homogeneous degree 0 isomorphism of *S*-graded A_v -modules between the *i*-th *Tor* module $Tor_i^{A_v}(K, K[S])$ and the *i*-th homology module $H_i(K[S].(\Lambda))$.

Finally, for each $\alpha \in S$, we give a K-vector space complex isomorphic to that of homogeneous components of degree α in $K[S].(\Lambda)$. Denote by $P(\Lambda)$ the power set of Λ , $P(\Lambda)$ is an abstract simplicial complex. Set

$$\triangle_{\alpha} := \left\{ J \subseteq \Lambda | J \text{ is a finite subset of } \Lambda \text{ and } \alpha - \sum_{J} \in S \right\},$$

where $\sum_{J} = \sum_{\lambda \in J} \lambda$. \triangle_{α} is a simplicial subcomplex of $P(\Lambda)$. Associate to \triangle_{α} , we consider the complex of vector spaces $C.(\triangle_{\alpha})$ such that its vector spaces are $C_{i}(\triangle_{\alpha}) = \bigoplus_{J \in \triangle_{\alpha}, \operatorname{card}(J)=i+1} KJ$, $i \geq -1$ and its boundaries $\partial : C_{i}(\triangle_{\alpha}) \to C_{i-1}(\triangle_{\alpha})$ are given by $\partial(J) = \sum_{\beta \in J} (-1)^{\eta_{J}(\beta)} J \setminus \{\beta\}$, where $\eta_{J}(\beta)$ denotes the number of place that β has among the elements in J. The homology of this complex will be called the augmented homology of \triangle_{α} . This subsection can be summarized in the following:

Theorem 2. For each $\alpha \in S$, there exists an explicit isomorphism of K-vector spaces between the vector space $(I_i)_{\alpha}/(M_v I_i)_{\alpha}$ of *i*-th syzygies of degree α of K[S] as A_v -module and the *i*-th augmented homology vector space of the simplicial complex Δ_{α} , $\widetilde{H}_i(\Delta_{\alpha})$.

3.1.2. We devote this subsection to show how bases for the homology $\widetilde{H}_i(\triangle_{\alpha})$ can be explicitly computed from bases of the homology of vector space complexes associated to directed graphs which depend on the set Λ .

This will be done adapting the results by Campillo and Gimenez in the case of toric affine varieties [4].

To start with, we describe the type of vector space complexes which we shall use to compute $\widetilde{H}_i(\Delta_{\alpha})$. Assume that Γ is a subset of Λ , which is a finite set of generators of a semigroup T, and B a subset of T. We shall call the directed graph of T associated to the pair (Γ, B) to the directed graph $G_{\Gamma B}(T)$ (denoted $G_{\Gamma B}$ if it does not cause confusion) whose vertex set is $\{m \in T | m - \sum_L \in B \text{ for some subset } L \subseteq \Gamma\}$ and such that (m, m')is an edge iff $m' = m + \gamma$ for some $\gamma \in \Gamma$. A K-vector space complex $C.(G_{\Gamma B}(T, m))$ can be associated to the pair $(G_{\Gamma B}, m)$, m being a vertex of $G_{\Gamma B}$, if the following condition holds: Whenever $b \in B$ and $\lambda, \lambda' \in \Gamma$ satisfy $b + \lambda + \lambda' \in B$, then $b + \lambda \in B$ and $b + \lambda' \in B$. In such a case $G_{\Gamma B}$ is called to be a chain graph. Each vector space $C_i(G_{\Gamma B}(T, m)), i \geq -1$, is equal to $\bigoplus KL$ where the sum is over all subsets L of Γ of cardinality i + 1 such that $m - \sum_L \in B$. The boundaries are induced by those of the simplicial complex $P(\Lambda)$.

Next, we state the main result of this subsection.

Theorem 3. The homology $\widetilde{H}_i(\triangle_{\alpha})$ can be explicitly reached from finitely many homologies of K-vector space complexes of the type $C.(G_{\Gamma B}(T,m))$ for suitable T, Γ, B and m.

To reach a homology from others means to obtain bases of the homology from bases of the others by means of exact sequences. Let's see how to reach $\widetilde{H}_i(\Delta_{\alpha})$. Let $\overline{S}_{\alpha} = \{\alpha' \in S | \alpha - \alpha' \in S\}$. \overline{S}_{α} is finite since S is C.F. Denote by S_{α} the subsemigroup of S spanned by \overline{S}_{α} . It is not difficult to prove that $\Delta_{\alpha} = \{J \subseteq \overline{S}_{\alpha} | \alpha - \sum_{J} \in S_{\alpha}\}$. Now, pick a partition of \overline{S}_{α} , $\overline{S}_{\alpha} = \Omega_{\alpha} \cup \Pi_{\alpha}$, consider the Apery set of \overline{S}_{α} relative to Π_{α} :

$$A(\alpha) = A = \{ a \in S_{\alpha} | a - e \notin S_{\alpha} \text{ for all } e \in \Pi_{\alpha} \}$$

and the related set

$$\begin{split} K_{\alpha} := \left\{ L \subseteq \bar{S}_{\alpha} | L \cap \Pi_{\alpha} \neq \emptyset \text{ and } \alpha - \sum_{L} \in S_{\alpha} \right\} \\ \cup \left\{ L \subseteq \Omega_{\alpha} | \alpha - \sum_{L} \in S_{\alpha} \setminus A \right\}. \end{split}$$

There is no loss of generality in assuming that α is a vertex of $G_{\Omega_{\alpha}A}(S_{\alpha})$ and then, it is clear that the complex associate to $(G_{\Omega_{\alpha}A}, \alpha)$ makes sense. It will be denoted $C.(A(\alpha))$ and it is exactly the augmented relative simplicial complex $\widetilde{C}.(\Delta_{\alpha}, K_{\alpha})$. Therefore, we can state the following long exact sequence, which allows to reach the homology $\widetilde{H}_i(\Delta_{\alpha})$ from others.

(2)
$$\cdots \to H_{i+1}(A_{\alpha}) \to \widetilde{H}_i(K_{\alpha}) \to \widetilde{H}_i(\Delta_{\alpha}) \to H_i(A_{\alpha}) \to \widetilde{H}_{i-1}(K_{\alpha}) \to \dots$$

 $H_{i+1}(A_{\alpha})$ and $H_i(A_{\alpha})$ are as we desire. Let us see that $\widetilde{H}_i(K_{\alpha})$ and $\widetilde{H}_{i-1}(K_{\alpha})$ so are. Firstly, define the simplicial complex

$$\overline{K}_{\alpha} := K_{\alpha} \cup \left\{ L = I \cup J \mid I \subseteq \Omega_{\alpha}, J \subseteq \Pi_{\alpha}, \operatorname{card}\left(J\right) \ge 2, \alpha - \sum_{I \cup J} \notin S_{\alpha} \right.$$

but $\alpha - \sum_{I} -e \in S_{\alpha}$ for each $e \in J \right\}$

and the subcomplexes of \overline{K}_{α} ,

$$K_{\alpha}(j) := K_{\alpha} \cup \{ L = I \cup J \in \overline{K}_{\alpha} \setminus K_{\alpha} \mid \operatorname{card} (J) \leq j \},\$$

 $1 \leq j \leq \operatorname{card}(\Pi_{\alpha})$. \overline{K}_{α} is acyclic and so $\widetilde{H}_{i+1}(\overline{K}_{\alpha}, K_{\alpha}) \cong \widetilde{H}_{i}(K_{\alpha})$. Also $\widetilde{H}_{i}(\overline{K}_{\alpha}, K_{\alpha}) \cong \widetilde{H}_{i}(K_{\alpha}(\operatorname{card}(\Pi_{\alpha})), K_{\alpha}(1))$. This last homology can be reached from $\widetilde{H}_{i}(K_{\alpha}(j), K_{\alpha}(j-1)), 2 \leq j \leq \operatorname{card}(\Pi_{\alpha})$, since the following exact sequence of vector space complexes

$$0 \to C.(K_{\alpha}(j), K_{\alpha}(i)) \to C.(K_{\alpha}(k), K_{\alpha}(i)) \to C.(K_{\alpha}(k), K_{\alpha}(j)) \to 0$$

holds for sequences (i, j, k) equal to $(1, 2, 3), (1, 3, 4), \ldots, (1, \operatorname{card}(\Pi_{\alpha}) - 1, \operatorname{card}(\Pi_{\alpha}))$. As a consequence, we only need to show that the homology $\widetilde{H}_i(K_{\alpha}(j), K_{\alpha}(j-1))$ can be computed from finitely many homologies of complexes associated to chain graphs. Indeed, a subset $J \subseteq \Pi_{\alpha}$ with $\operatorname{card}(J) \geq 2$ is said to be associated to $d \in S_{\alpha}$, if $d - \sum_J \notin S_{\alpha}$ but $d - e \in S_{\alpha}$ for each $e \in J$. If we denote by D^J_{α} the set of elements d in S_{α} such that J is associated to d, then

$$\widetilde{H}_{i}(K_{\alpha}(j), K_{\alpha}(j-1)) \cong \bigoplus_{J \subseteq \Pi_{\alpha}, \text{card} (J)=j} H_{i-j} \left(G_{\Omega_{\alpha} D_{\alpha}^{J}}(S_{\alpha}, \alpha) \right)$$

A further study leads us to obtain finite subsets of S_{α} , such that $H_i(\Delta_{\alpha})$ vanishes when α does not belong to them. In fact, for $-1 \leq l \leq \operatorname{card}(\Omega_{\alpha})$ write

$$M_{\alpha}(l) := K_{\alpha} \cup \{L = I \cup J \in \overline{K}_{\alpha} \setminus K_{\alpha} \mid \text{card} (I) \leq l\}.$$

As above,

(3)
$$\widetilde{H}_i(\overline{K}_\alpha, K_\alpha) \cong \widetilde{H}_i(M_\alpha(\operatorname{card}(\Omega_\alpha)), M_\alpha(-1)).$$

This last homology can be reached from $H_i(M_\alpha(l), M_\alpha(l-1))$ and

$$\widetilde{H}_i(M_\alpha(l), M_\alpha(l-1)) \cong \bigoplus \widetilde{H}_{i-l}(\Theta_{\alpha-\sum_I}),$$

where the sum is over all subsets $I \subseteq \Omega_{\alpha}$ such that card (I) = l and $\alpha - \sum_{I} \in S_{\alpha}$, and where $\Theta_{d} = \{J \subseteq \Pi_{\alpha} | d - \sum_{J} \in S_{\alpha}\}$. Consequently, (2) and (3)

prove that if we consider

$$C_{i}(\alpha) := \left\{ m \in S_{\alpha} \mid m = a + \sum_{I}; a \in A(\alpha), I \subseteq \Omega_{\alpha} \text{ and } \operatorname{card}(I) = i + 1 \right\}$$
$$\cup \left\{ m \in S_{\alpha} \mid \exists I \subseteq \Omega_{\alpha}, \operatorname{card}(I) = l \leq i \text{ with } \widetilde{H}_{i-l}\left(\Theta_{m-\sum_{I}}\right) \neq 0 \right\},$$

then $\widetilde{H}_i(\triangle_\alpha) = 0$ if $\alpha \notin C_i(\alpha)$. The simplicity of the set Θ_d has an important consequence:

Proposition 3 (See [4, Pr. 6.2]). The set $C_i(\alpha)$ is finite when we choose a suitable partition of the set \overline{S}_{α} .

A crucial fact in the above proposition is that S_{α} is finitely generated. A suitable partition of \overline{S}_{α} would be a convex partition, that is, a partition $\overline{S}_{\alpha} = \Omega_{\alpha} \cup \Pi_{\alpha}$ where the cone generated by S_{α} (in $V_{S\alpha} := G(S_{\alpha}) \bigotimes_{\mathbf{Z}} \mathbf{Q}$) is equal to the cone generated by Ω_{α} (in $V_{S\alpha}$) and card (Ω_{α}) equals to the number of extremal rays of the cone spanned by S_{α} .

3.2. The defining ideal of the semigroup. The K-algebra K[S] is isomorphic to A_v/I_0 . The ideal I_0 , usually called the defining ideal of S, is spanned by a set of binomials which are difference of two monomials of the same degree. This set need not be finite. In the first part of this subsection, we shall use [2] to give a method to compute a minimal homogeneous generating set of I_0 , B, formed by binomials of the type described above. This method uses the structure of graph of the simplicial complex Δ_{α} . On the other hand, denote by $L_v = K[\{X_{\lambda}^{\pm 1}\}_{\lambda \in \Lambda}]$ the Laurent polynomial ring associate to the set Λ and write $X^a = \prod_{\lambda \in \Lambda'} X_{\lambda}^{a_{\lambda}} \in L_v$ whenever $a = \sum_{\lambda \in \Lambda'} a_{\lambda} e_{\lambda} \in \mathbf{Z}^{(\Lambda)}$, Λ' being a finite subset of Λ . Obviously, $A_v \subset L_v = K[\mathbf{Z}^{(\Lambda)}]$. Recalling the notation at the beginning of Section 3, we observe that

(4)
$$I_0 = \langle X^a - X^b \, | \, a - b \in L \rangle \subset A_v$$

Following the ideas of [1], this fact will serve us, in the second part of this subsection, to obtain minimal free resolutions of K[S] as A_v -module from suitable cell complexes on M_L .

3.2.1. Minimal generating sets of the defining ideal. A minimal homogeneous generating set of I_0 , B, can be expressed $B = \bigcup_{\alpha \in S} B_\alpha$, where B_α is the set of elements in B of degree α . As a consequence of 3.1.1, we have that B_α is a finite set and card $B_\alpha = \dim_K \widetilde{H}_0(\Delta_\alpha)$. Moreover, Δ_α is a graph which has $\dim_K \widetilde{H}_0(\Delta_\alpha) + 1$ connected components. If $a = \sum_{\lambda \in \Lambda'} a_\lambda e_\lambda \in \mathbf{N}^{(\Lambda)}$ $(a_\lambda \neq 0)$, then $X^a \in A_v$, the support of X^a , Supp (X^a) , is the set Λ' and the degree of X^a , $\deg(X^a)$, is $\sum_{\lambda \in \Lambda'} a_\lambda \lambda \in S$.

It is clear that I_0 is an ideal generated by the set of binomials $\mathcal{B} = \{X^a - X^b \mid \deg(X^a) = \deg(X^b)\}$. Let C be a subset of \mathcal{B} whose binomials

have a fixed degree α . We shall call graph associated to C to a graph whose vertex set is the set of connected components of Δ_{α} which contain the support of a monomial belonging to a binomial in C. Two connected components, those associated to the monomials X^a and X^b , are adjacent by an edge whenever $X^a - X^b \in C$. C will be a generating tree for Δ_{α} if the graph associated to C is, in fact, a tree.

Theorem 4. A subset $B = \bigcup_{\alpha \in S} B_{\alpha} \subseteq \mathcal{B}$ is a minimal homogeneous generating set of I_0 if, and only if, B_{α} is a generating tree for Δ_{α} whenever $\dim_K \widetilde{H}_0(\Delta_{\alpha}) \neq 0$ and $B_{\alpha} = \emptyset$, otherwise.

This theorem is analogous to the stated in [2] for finitely generated semigroups and the proof runs similarly. It is based on the fact that two monomials M and M' of degree $\alpha \in S$ satisfy $M - M' \in (M_v I_0)_{\alpha}$ if, and only if, Supp (M) and Supp (M') are in the same connected component of Δ_{α} . Furthermore, it is possible to decide whether $\dim_K \widetilde{H}_0(\Delta_{\alpha}) \neq 0$ by a close method to that given in [2, Th. 3.11].

3.2.2. Cellular resolutions of K[S]. For a start, we establish a relation between the module $M_L = K[\mathbf{N}^{(\Lambda)} + L]$ and the semigroup algebra of v, K[S]. Denote by $A_v[L]$ the group algebra of L over A_v . $A_v[L]$ is the subalgebra of $K[\{X_\lambda\}_{\lambda \in \Lambda}, \{Z_\lambda^{\pm 1}\}_{\lambda \in \Lambda}]$ generated by the monomials $X^a Z^l$ where $a \in \mathbf{N}^{(\Lambda)}$ and $l \in L$. Thus, we can give a $\mathbf{Z}^{(\Lambda)}$ -grading on $A_v[L]$ by writing $\deg(X^a Z^l) = a + l$. On the other hand, the morphism $h : A_v[L] \to M_L$, $X^a Z^l \to X^{a+l}$ gives to M_L an structure of $\mathbf{Z}^{(\Lambda)}$ -graded $A_v[L]$ -module. Moreover, if $J = \operatorname{Ker}(h)$, then the following equality chain holds,

$$M_L \bigotimes_{A_v[L]} A_v = A_v[L] / J \bigotimes_{A_v[L]} A_v = A_v / I_0 = K[S].$$

Next, we shall consider two equivalent categories \mathcal{A} and \mathcal{B} . \mathcal{A} contains M_L , and K[S], viewed as A_v -module, is in \mathcal{B} . This shall give the desired relation between M_L and K[S]. \mathcal{A} will be the category of $\mathbf{Z}^{(\Lambda)}$ -graded $A_v[L]$ -modules, where the morphisms are $\mathbf{Z}^{(\Lambda)}$ -graded $A_v[L]$ -module homomorphisms of degree 0, and \mathcal{B} the category of G(S)-graded A_v -modules, where the morphisms are, also, of degree 0. Note that K[S] is S-graded and therefore G(S)-graded. The functor $\pi : \mathcal{A} \to \mathcal{B}$ which gives the equivalence is $\pi(M) = M \bigotimes_{A_v[L]} A_v$. Notice that if $M \in \mathcal{A}$, $M = \bigoplus_{a \in \mathbf{Z}^{(\Lambda)}} M_a$, then π identifies as $\pi(M)_{\alpha}$, $\alpha \in G(S)$, all the vector spaces M_a such that $\psi(a) = \alpha$, where ψ is the mapping given at the beginning of Section 3. A complete proof of this equivalence is similar to that of the case of finitely generated semigroups [1, Th. 3.2] and we omit it.

Now, taking into account that the degrees of M_L are in $\mathbf{N}^{(\Lambda)} + L$, we can state:

Theorem 5. Let $\pi : \mathcal{A} \to \mathcal{B}$ be the equivalence of categories above given. Then π transforms $\mathbf{Z}^{(\Lambda)}$ -graded (minimal) free resolutions of M_L as $A_v[L]$ -module into S-graded (minimal) free resolutions of K[S] as A_v -module, and conversely.

Finally, we shall see how to get free resolutions of M_L from regular cell complexes and, consequently, how to get free resolutions of K[S]. First at all, denote by \leq the ordering in $\mathbf{Z}^{(\Lambda)}$ defined so: $a \leq b$ if, and only if, $b-a \in \mathbf{N}^{(\Lambda)}$. Also, set $\min(M_L) := \{X^a \in M_L \mid X^a/X_\lambda \notin M_L \text{ for all } \lambda \in \Lambda\}.$

Proposition 4. The $\mathbf{Z}^{(\Lambda)}$ -graded A_v -module M_L satisfies the following properties:

- i) The set of monomials in M_L of degree $\leq a$ is finite for each $a \in \mathbf{Z}^{(\Lambda)}$.
- ii) M_L is generated as A_v -module by the set $\min(M_L)$.

Proof.

i) Write $a = \sum_{\lambda \in \Lambda' \subset \Lambda} a_{\lambda} e_{\lambda}$ and set $a^+ = \sum_{\lambda \in \Lambda', a_{\lambda} > 0} a_{\lambda} e_{\lambda}$ and $a^- = \sum_{\lambda \in \Lambda', a_{\lambda} < 0} a_{\lambda} e_{\lambda}$. If d is the degree of a monomial in M_L , then $d = l + b^+$, where $l \in L$ and $b^+ \in \mathbf{N}^{(\Lambda)}$. It is clear that, as above, $l = l^+ + l^-$ where $\psi(l^+) = -\psi(l^-) \in S$. So, $d \leq a$ if, and only if, $l^+ + b^+ + l^- \leq a^+ + a^-$. As a consequence the set $\{l^+ \mid d \leq a\}$ is finite and so is the set $\{\psi(l^+) \mid d \leq a\} \subseteq S$. Finally, $\{l^- \mid d \leq a\}$ is also a finite set, since S is a C.F. semigroup.

ii) This is a straightforward consequence of the fact that, there is no infinite decreasing sequence under divisibility of monomials in M_L , which follows from i).

Put $\min(M_L) = \{X^a \mid a \in I \subset \mathbf{Z}^{(\Lambda)}\}$. *I* is, generally, an infinite set. Consider a regular cell complex *X* such that *I* is its set of vertices and ϵ an incidence function on pairs of faces. A typical example of a regular cell complex is the set of faces of a convex polytope.

Associated to X, a cellular complex of A_v -modules M.(X) can be defined in the following way: The modules are $M_i(X) = \bigoplus_{J \in X, \dim J=i} A_v J$, $i \ge 0$, (we have identified the face J in X with its set of vertices) and the boundaries are given by

$$\partial J = \sum_{J' \in X, J' \neq \emptyset} \epsilon(J, J') (m_J / m_{J'}) J',$$

where m_J is the least common multiple of the set $\{X^a \mid a \in J\}$. M.(X) is $\mathbf{Z}^{(\Lambda)}$ -graded, the degree of a face J being the exponent vector of m_J . When M.(X) is a free resolution of M_L , it is called to be a *cellular resolution* of M_L . Set $\Delta = \{J \in P(I) \mid J \text{ is a finite set}\}$ and associate to Δ an incidence function as in the definition of Δ_{α} (see 3.1.1). Δ is a cell complex and its associated cellular complex $M.(\Delta)$ is a cellular resolution of M_L called the *Taylor resolution* of M_L . This is an easy consequence of the fact that

the subcomplex $\triangle_{\leq a}$ of \triangle on the vertices of degree $\leq a$ is acyclic for all $a \in \mathbf{N}^{(\Lambda)}$.

We desire to apply Theorem 5 to get free resolutions of K[S]. In order to do it, we observe that the mapping $\bigoplus_{J \in \mathcal{R}} A_v[L]J \to M_i(X), Z^lJ \to J+l$ is an isomorphism of $\mathbf{Z}^{(\Lambda)}$ -graded A_v -modules if X satisfies that

(5)
$$J+l \in X$$
 whenever $J \in X$ and $l \in L$,

 \mathcal{R} being a set of representatives of the set of *i*-dimensional orbits defined by the action of L over X. Thus, we shall call to X equivariant if it satisfies (5) and $\epsilon(J, J') = \epsilon(J + l, J' + l)$ for all $l \in L$. If X is equivariant, it is straightforward that M.(X) is a $\mathbf{Z}^{(\Lambda)}$ -graded complex of $A_v[L]$ -modules and that M.(X) is exact over A_v if, and only if, it is exact over $A_v[L]$. In this case, M.(X) is called an equivariant cellular resolution of M_L . Applying Theorem 5, we have proved the following:

Theorem 6. Let S be the value semigroup of a valuation. If $M_{\cdot}(X)$ is a (minimal) equivariant cellular resolution of M_L , then $\pi(M_{\cdot}(X))$ is a (minimal) free resolution of K[S] as A_v -module.

 \triangle is an equivariant cell complex. Its simplicity allows us to give an explicit resolution of K[S] as A_v -module. For each $\alpha \in S$, denote by $\operatorname{mon}(A_v)_{\alpha}$ the set of monomials in $(A_v)_{\alpha}$ and by $E_i(\alpha)$ the set of cardinality *i* subsets of $\operatorname{mon}(A_v)_{\alpha}$ whose greatest common divisor is 1. Now, if $F_i(\alpha)$ denotes the set of cardinality *i* subsets of $\operatorname{min}(M_L)$ whose least common multiple is $\alpha \in \mathbf{Z}^{(\Lambda)}$, it is clear, from the definition of $M.(\Delta)$, that $M_i(\Delta) = \bigoplus_{\alpha \in \mathbf{N}^{(\Lambda)} + L} A_v F_i(\alpha)$.

Regarding $M_i(\Delta)$ as $A_v[L]$ -module and by Theorem 5, it is clear that π takes $F_i(a)$ bijectively to $E_i(\psi(a)), \pi(J) = \{X^a/X^c \mid X^c \in J\}$. As a consequence $\pi(M.(\Delta))$ can be expressed so: The A_v -modules are $\bigoplus_{\alpha \in S} A_v E_i(\alpha)$ and the boundaries are given by

$$\partial(I) = \sum_{X^c \in I} (-1)^{\eta_I(X^c)} \operatorname{gcd}(I \setminus \{X^c\}) [I \setminus \{X^c\}],$$

where $I \in E_i(\alpha)$, η_I is defined as in 3.1.1 and $[I \setminus \{X^c\}]$ means to remove the common factor $gcd(I \setminus \{X^c\})$ from $I \setminus \{X^c\}$.

References

- D. Bayer and B. Sturmfels, Cellular resolutions of monomial modules, J. Reine Angew. Math., 502 (1998), 123-140, MR 99g:13018, Zbl 0909.13011.
- [2] E. Briales, A. Campillo, C. Marijuan and P. Pison, Minimal systems of generators for ideals semigroups, J. Pure Appl. Algebra, **124** (1998), 7-30, MR 98k:20105, Zbl 0913.20036.
- W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, Cambridge (1993), MR 95h:13020, Zbl 0788.13005.

- [4] A. Campillo and P. Gimenez, Syzygies of affine toric varieties, J. Algebra, 225(1) (2000), 142-165, MR 2001j:13014, Zbl 0973.14027.
- [5] A. Campillo and C. Marijuan, *Higher order relations for a numerical semigroup*, Sem. Theorie des Nombres, Bordeaux, 3 (1991), 249-260, MR 93d:13027, Zbl 0818.20078.
- [6] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Springer-Verlag (1960), MR 22 #11006, Zbl 0121.27801.

Received September 25, 2000. The author was supported by DGICYT BFM2001-2251 and by F. Bancaixa 11205.01/1.

D. MATEMÁTICAS (ESTCE) UJI, CAMPUS RIU SEC. 12071 CASTELLÓN. SPAIN *E-mail address*: galindo@nuvol.uji.es