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Let G be a simple algebraic group of exceptional type acting
transitively on an algebraic variety. We provide estimates for
the dimensions of the subvarieties of fixed points of elements
of G. These translate into estimates for the dimensions of
intersections of conjugacy classes of G with closed subgroups.

Introduction.

In this paper we consider actions of simple algebraic groups of exceptional
Lie type over algebraically closed fields. Let G be such a group, so that G is
of type G2, F4, E6, E7 or E8 over an algebraically closed field K of arbitrary
characteristic. Suppose that M is a closed subgroup of G, and denote by Ω
the coset variety G/M on which G acts transitively. For x ∈ G, the fixed
point space

fixΩ(x) = {ω ∈ Ω : ωx = ω}

is a subvariety of Ω, and we are interested in investigating its codimension,
which we denote by

f(x,Ω) = dim Ω− dim fixΩ(x).

Theorems 1 and 2 below provide lower bounds for f(x,Ω) for all x,Ω as
above.

There are a number of motivations for studying this problem. The value
of f(x,Ω) gives some measure of how much of the space Ω is fixed by x, and
of course if we know dim Ω then lower bounds for f(x,Ω) give corresponding
upper bounds for dim fixΩ(x). Moreover, in Proposition 1.14 below we prove
that if x ∈M and xG denotes the conjugacy class of x in G, then

f(x,G/M) = dimxG − dim(xG ∩M)

(note that xG∩M is open in xG∩M , hence is a variety and has a dimension
— see [16]). Hence our bounds for f(x,G/M) translate into bounds for
the dimensions of intersections of conjugacy classes of exceptional algebraic
groups with closed subgroups.
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Originally, though, our motivation came from a problem about finite
groups. If X is a finite group acting on a set ∆, then for x ∈ X the
quantity analogous to −f(x,Ω) is the fixed point ratio

fpr(x,∆) =
fix∆(x)
|∆|

,

the proportion of points fixed by x. Fixed point ratios of finite groups of
Lie type, particularly for classical groups, have been studied in a number
of papers, and have been applied to a variety of problems (see for example
[12, 15, 20]). A sequel [19] to this paper contains bounds for fixed point
ratios of elements of finite exceptional groups of Lie type in their transitive
actions. A crucial part of the proof in [19] is to use the dimension estimates
of Theorem 2 below, passing from algebraic to finite groups via a Frobenius
morphism.

Using Proposition 1.14 (already mentioned), it is clear that if M ≤ N ≤
G, then f(x,G/M) ≥ f(x,G/N). Thus for the purpose of obtaining lower
bounds for f(x,G/M) it suffices to consider the case where M is maximal
in G. Observe also that if x = su, where s is the semisimple part of x, and
u the unipotent part, then for g ∈ G we have x ∈ Mg if and only if both
s ∈ Mg and u ∈ Mg, and hence fixG/M (x) = fixG/M (s) ∩ fixG/M (u). Hence
it also suffices to consider only cases where x is a semisimple or unipotent
element of G.

Theorem 2 contains our strongest result on lower bounds for f(x,Ω), but
as its statement is rather involved and requires reference to some tables
at the end of the paper, we first state the following somewhat simplified
version.

Theorem 1. Let G be a simple adjoint exceptional algebraic group over an
algebraically closed field, let P be a maximal parabolic subgroup of G, and M
a maximal closed subgroup of G which is not parabolic. If u is a nonidentity
unipotent element of G, and s a nonidentity semisimple element of G, then

f(u,G/P ) ≥ cG, f(s,G/P ) ≥ dG,

f(u,G/M) ≥ eG, and f(s,G/M) ≥ fG,

where cG, dG, eG, fG are as in Table 1 below.
In particular, for any nonidentity element g ∈ G, and any closed subgroup

X of G,

f(g,G/X) ≥ cG.
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G cG dG eG fG e′G hG

E8 12 24 24 48 40 48
E7 6 11 12 22 20 22
E6 4 6 6 12 10 12
F4 4 4 4 8 6 6
G2 2 2 2 3 4 4

Table 1.

Remarks.
(1) The bounds in Theorem 1 are sharp, in the sense that there exist a

parabolic P and a unipotent element u such that f(u,G/P ) = cG, and so
on. Nevertheless it is possible to improve the bounds greatly by subdividing
the possibilities for u, s, P,M into a larger number of cases, and this we do
in Theorem 2 below.

(2) As observed above, Proposition 1.14 shows that for x ∈ M we have
f(x,G/M) = dimxG − dim(xG ∩ M), so the bounds in Theorem 1 (and
Theorem 2) also give information about how conjugacy classes of G intersect
with a maximal subgroup.

Now we state Theorem 2, our strongest result concerning upper bounds for
f(x,Ω) for exceptional algebraic groups, of which Theorem 1 is an immediate
consequence. The conclusion refers to a number of tables which can be found
in Section 7 at the end of the paper.

According to [22, 31], the maximal closed subgroups of positive dimension
in G can be classed as follows:

(1) parabolic subgroups,
(2) reductive subgroups of maximal rank (i.e., containing a maximal torus

of G),
(3) a few other isomorphism types (mostly of small dimension compared

to dimG).
The conclusion of Theorem 2 is accordingly divided into three parts.

We need a little standard notation for the statement. Let Pi denote the
standard parabolic subgroup of G which corresponds to deleting the ith node
from the Dynkin diagram. Let α be a long root in the root system of G,
and, when G = F4 or G2, let β be a short root. Let Uα, Uβ be corresponding
root subgroups of G, and uα, uβ nonidentity elements of Uα, Uβ respectively.
We call uα a long root element of G, and uβ a short root element. Observe
that when (G, p) = (F4, 2) or (G2, 3), the elements uα and uβ are conjugate
by a graph automorphism of G. This accounts for some of the parenthetical
exclusions in the statement of Theorem 2.
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A number of constants are referred to in the statement. The numbers
cG,i,α, cG,i,β and c′G,i are defined in Tables 7.1 and 7.2 at the end of the
paper, the numbers dG,i,D are defined in Table 7.3, and the numbers fG,M,D

are defined in Table 7.4. Finally, the numbers eG, e′G, hG are defined in
Table 1 above.

Theorem 2. Let G be a simple adjoint exceptional algebraic group over an
algebraically closed field, and let M be a maximal closed subgroup of G. Let
u be a nonidentity unipotent element of G, and s a nonidentity semisimple
element; write D = CG(s).

(I) Suppose M = Pi is a maximal parabolic subgroup. Then:
(a) We have

f(uα, G/Pi) = cG,i,α, f(uβ, G/Pi) = cG,i,β, and f(u,G/Pi) ≥ c′G,i

if u is not a long or short root element.
(b) For D as in column 2 of Table 7.3, we have f(s,G/Pi) ≥ dG,i,D.

(II) Suppose M is reductive of maximal rank. Then:
(a) f(u,G/M) ≥ eG, and moreover f(u,G/M) ≥ e′G, provided u is not

a long root element (or a short root element when (G, p) = (F4, 2)
or (G2, 3)).

(b) f(s,G/M) ≥ fG,M,D.
(III) Suppose M is neither parabolic nor reductive of maximal rank. Then

f(s,G/M) ≥ hG, f(u,G/M) ≥ eG, and moreover f(u,G/M) ≥ e′G
provided u is not a long root element (or a short root element when
(G, p) = (F4, 2) or (G2, 3)).

The layout of the paper is as follows. Section 1 consists of various pre-
liminary results taken from the literature, mostly concerning properties of
unipotent elements, semisimple elements and subgroups of exceptional alge-
braic groups. In Section 2 we start the proof of Theorem 2, proving Part
(I)(a), the case of unipotent elements in parabolic subgroups. Section 3
contains the proof of Part (I)(b), semisimple elements in parabolics. In Sec-
tions 4 and 5 we prove Part (II), the cases of unipotent and semisimple
elements in maximal rank subgroups. Finally, Section 6 contains the proof
of Part (III), and Section 7 has Tables 7.1-7.4 referred to in the statement
of Theorem 2.

1. Preliminaries.

In this section we present various results from the literature which we shall
need, most of which concern properties of unipotent and semisimple elements
in exceptional algebraic groups.

Throughout, G is a simple algebraic group over an algebraically closed
field K of characteristic p (allowing p = 0).
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A. Semisimple elements and subsystems.
A (not necessarily connected) reductive subgroup of G which contains a

maximal torus is called a subsystem subgroup. The root system of such a
subgroup is a subsystem of the root system of G.

Proposition 1.1. For G of exceptional type, the maximal subsystem sub-
groups M of G are as follows:

G M0 M/M0

E8 A1E7, D8, A8, A2E6, D4D4, 1, 1, Z2, Z2, S3 × Z2,
A4A4, A

4
2, A

8
1, T8 Z4, GL2(3), AGL3(2), 2.O+

8 (2)
E7 T1E6, A1D6, A7, A2A5, Z2, 1, Z2, Z2,

A3
1D4, A

7
1, T7 S3, L3(2), 2× Sp6(2)

E6 T1D5, T2D4, A1A5, A
3
2, T6 1, S3, 1, S3, O

−
6 (2)

F4 A1C3, B4, C4(p = 2), D4, A2A2 1, 1, 1, S3, Z2

G2 A1A1, A2 1, Z2

Proof. This is immediate from Tables A,B in [21, p. 302]. �

If s is a semisimple element of G then CG(s) is a subsystem subgroup.
Complete lists of the subsystems occurring are available (see for example
[9] for types E7, E8). In the next result we record the subsystem subgroups
which can occur as centralizers of semisimple elements of orders 2 and 3.
This result is well-known (see for example [14, Tables 4.3.1, 4.7.1]).

Proposition 1.2. Let G be adjoint and of exceptional type. The centralizers
in G of semisimple involutions and elements of order 3 are as follows (where
for G = E6 we only include elements of order 3 which lift to elements of
order 3 in the simply connected group Ê6):

G involution centralizers centralizers of elements of order 3
E8 A1E7, D8 A8, A2E6, E7T1, D7T1

E7 A1D6, (A7).2, (T1E6).2 A2A5, E6T1, D6T1, A6T1, A1D5T1

E6 A1A5, D5T1 A5T1, (D4T2).3, (A3
2).3

F4 A1C3, B4 A2A2, B3T1, C3T1

G2 A1A1 A2, A1T1

Further, the involutions in E7 with centralizers A1D6, (A7).2, (T1E6).2 lift
to elements of orders 2, 4, 4, respectively, in the simply connected group Ê7.

Next we record an elementary fact about conjugacy of semisimple ele-
ments. For M a reductive (not necessarily connected) subgroup of G, let
TM be a maximal torus of M0, and let T be a maximal torus of G contain-
ing TM . Define W (M) = NM (TM )/TM . From the Bruhat decomposition of
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elements of G we see that there is a subgroup of W (G) = NG(T )/T which
induces W (M) on TM . With abuse of notation, we refer to this subgroup
also as W (M).

Proposition 1.3. Let M be a reductive subgroup of G, and let P = QL be
a parabolic subgroup of G with unipotent radical Q and Levi subgroup L. If
s is a semisimple element of G, and D = CG(s)0, then:

(i) The number of M -conjugacy classes contained in sG ∩M0 is at most
|W (D)\W (G)/W (M)|, the number of (W (D),W (M))-double cosets
in W (G).

(ii) The number of P -conjugacy classes contained in sG ∩ P is at most
|W (D)\W (G)/W (L)|.

Proof. For (i) we may take s ∈ TM . Every element of sG∩M0 isM -conjugate
to an element of TM . Moreover, if two elements of T are G-conjugate then
they are W (G)-conjugate ([36, II, 3.1]), and if two elements of TM are M -
conjugate then they are W (M)-conjugate. Part (i) follows. Part (ii) follows
likewise, since every element of sG∩P is P -conjugate to an element of L. �

The next two results concern the dimensions of centralizers of certain
types of elements.

Proposition 1.4. Let τ be either an involutory graph automorphism of E6

or An, or a graph automorphism of D4 of order 3.
(i) There are 2 classes of involutions in the coset E6τ ; these have central-

izers F4, C4 in E6 if p 6= 2, and centralizers F4, CF4(t) if p = 2, where
t is a long root involution in F4.

(ii) There are (2, n+ 1) classes of involutions in the coset Anτ ; if n = 2m
is even the class has centralizer Bm, and if n = 2m − 1 is odd the
classes have centralizers Cm, Dm if p 6= 2, and centralizers Cm, CCm(t)
if p = 2, where t is a long root involution in Cm.

(iii) There are 2 classes of elements of order 3 in the coset D4τ ; these have
centralizers G2, A2 if p 6= 3, and centralizers G2, CG2(t) if p = 3, where
t is a long root element of G2.

Proof. See [14, Tables 4.3.1, 4.7.1] for the cases where |τ | 6= p, and [2, §19]
and [13, 9.1] for the cases where |τ | = p = 2 and |τ | = p = 3, respectively.

�

Proposition 1.5. Let D be a connected reductive algebraic group.
(i) If t is an automorphism of D (as algebraic group) of order 2, then

dimCD(t) ≥ |Σ+(D)|+ rank(D)− rank(D′),

where Σ+(D) denotes the set of positive roots in the root system Σ(D)
of D.
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(ii) If v ∈ D is a semisimple element of order 3, then

dimCD(v) ≥ 2
3
|Σ+(D)|+ rank(D)− rank(D′).

Proof. It suffices to prove this for D simple, in which case it follows easily
from the proofs of [26, 4.1, 4.3 and 4.4]. (A simple, uniform proof of the
bound for dimCD(t) with p 6= 2 and t ∈ D can be found in [32, 2.1].) �

B. Unipotent elements and parabolics.
The classes of unipotent elements in exceptional algebraic groups can be

found in [6, p. 401] over C, and in [7, 11, 27, 28, 33, 34] for arbitrary
characteristics. Convenient notation and tables of all unipotent classes can
be found in [17], where the Jordan canonical forms of all such elements on
various G-modules are given. We adopt the notation of [17].

The following result is taken from [6, 5.9.6]. It is stated there for large
primes, and was extended to all good primes in [29, 30].

Proposition 1.6. Let G be a simple algebraic group in characteristic p,
and suppose p is not a bad prime for G. Then the unipotent classes in G
are in bijective correspondence with G-classes of pairs (L,PL′), where L is a
Levi subgroup of G and PL′ is a distinguished parabolic subgroup of L′. An
element in the class corresponding to (L,PL′) is a distinguished unipotent
element of L′.

The distinguished parabolic subgroups of simple algebraic groups are de-
scribed in [6, p. 174], and this gives rise to the labelling of unipotent classes
in [6], [17], etc. In particular, for type Al only the Borel subgroups are
distinguished, and accordingly, the only distinguished unipotent elements of
Al are the regular unipotent elements. Thus in the (fairly common) case
that the Levi subgroup L has L′ a product of factors of type Al, there is
just one corresponding unipotent class in G, consisting of elements which
are regular in each factor.

When p is a bad prime, the labelling of unipotent classes of G given by
Proposition 1.6 remains valid, except that there are a few extra classes, as
summarised in [17] for G of exceptional type, and in [6, p. 180] for G of clas-
sical type. An interesting consequence of the unipotent class determination
is that, excluding the extra classes, dimCG(u) depends only on the label of
the unipotent element u, and not on the characteristic. These numbers are
tabulated in [6, pp. 401-407] for exceptional types.

The next result contains some consequences of the unipotent classification
for exceptional groups.

Proposition 1.7. Let G be an exceptional algebraic group, and let 1 6= u ∈
G be a unipotent element such that dimCG(u) > lG, where lG is as in Table 2
below.
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Then u belongs to one of the conjugacy classes listed in the table; also
given are the dimensions of R = Ru(C0) (where C = CG(u)), the type of
C0/R, the dimension of the variety Bu of Borel subgroups of G containing
u, and the order of C/C0. When p = 2, the involution classes in G are
those labelled kA1 for some k (also 3A′′1, 3A

′
1 in E7, and Ã1, Ã

(2)
1 in F4, G2).

G lG u with dim CG(u) > lG dim uG dim R C0/R dimBu |C/C0|
E8 80 A1, 2A1, 3A1, 58,92,112, 57,78,81, E7, B6, A1F4, 91,74,64, 1,1,1,

A2, 4A1, A2 + A1, 114,128,136, 56,84,77, E6, C4, A5, 63,56,52, 2,1,2,

A2 + 2A1, A3, A2 + 3A1, 146,148,154, 78,45,77, A1B3, B5, A1G2, 47,46,43, 1,1,1,

2A2, 2A2 + A1, 156,162, 64,69, G2
2, A1G2, 42,39, 2,1,

A3 + A1, D4(a1) 164,166 60,54 A1B3, D4 38,37 1,6

E7 41 A1, 2A1, 3A′′
1 , 34,52,54, 33,42,27, D6, A1B4, F4, 46,37,36, 1,1,1,

3A′
1, A2, 4A1, 64,66,70, 45,32,42, A1C3, A5, C3, 31,30,28, 1,2,1,

A2 + A1, A2 + 2A1, A3, 76,82,84, 41,42,25, A3T1, A
3
1, A1B3, 25,22,21, 2,1,1,

2A2, A2 + 3A1, 84,84, 32,35, A1G2, G2, 21,21, 1,1,

(A3 + A1)
′′, 2A2 + A1 86,90 26,37 B3, A

2
1 20,18 1,1

E6 26 A1, 2A1, 3A1, 22,32,40, 21,24,27, A5, B3T1, A1A2, 25,20,16, 1,1,1,

A2, A2 + A1, 42,46, 20,23, A2A2, A2T1, 15,13, 2,1,

2A2, A2 + 2A1 48,50 16,24 G2, A1T1 12,11 1,1

F4 18 A1, eA1(p = 2), eA1(p 6= 2), 16,16,22, 15,15,15, C3, B3, A3, 16,16,13, 1,1,2,eA(2)
1 (p = 2), A1

eA1, 22,28, 20,18, B2, A1A1, 13,10, 1,1,

A2, eA2(p 6= 2), eA2(p = 2) 30,30,30 14,8,14 A2, G2, A2 9,9,9 2,1,2

G2 4 A1, eA1(p = 3), 6,6, 5,5, A1, A1, 3,3, 1,1,eA1(p 6= 3), eA(3)
1 (p = 3) 8,8 3,6 A1, 1 2,2 1,1

Table 2.

Remark. In fact for G = F4, the groups C0/R are not explicitly given in
the references [33, 34], but the entries in Table 2 giving these groups are
easily verified.

The following is another consequence of the unipotent class classification.

Proposition 1.8. Upper bounds for the numbers u(G) of classes of unipo-
tent elements in exceptional algebraic groups G are as follows:

u(E8) ≤ 74, u(E7) ≤ 46, u(E6) ≤ 21, u(F4) ≤ 20, u(G2) ≤ 6.

Next we record a result of Spaltenstein [35]:
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Proposition 1.9. If u is a unipotent element of the simple algebraic group
G, and B is a Borel subgroup of G, then

dim(uG ∩B) =
1
2

dimuG.

Moreover, if P is a parabolic subgroup of G, and BP the variety of Borel
subgroups of P , then

dim(uG ∩ P ) ≤ 1
2

dimuG + dimBP .

Finally, if Bu is the variety of Borel subgroups of G containing u, then

dimBu =
1
2
(dimCG(u)− rank(G)).

Proof. The first and last statements are in [35, p. 54] (see also [6, 5.10.2]).
For the second statement, let B ≤ P and consider the surjective map (uG ∩
B) × P → uG ∩ P , sending (u1, x) → ux

1 . The preimage of ux
1 contains

{(ub−1

1 , bx) : b ∈ B}. So all fibres have dimension at least dimB. The result
follows. �

We shall also need information in the following proposition concerning
unipotent classes in classical groups.

Proposition 1.10. Let G be a classical group GLn(K), GSpn(K) or
GOn(K), where K is an algebraically closed field of characteristic p, and
let u be a nonidentity unipotent element in G. Suppose for each i, the Jor-
dan canonical form for u has ni Jordan blocks of size i.

(i) If G = GLn(K), then

dimCG(u) = 2
∑
i<j

ininj +
∑

i

in2
i .

(ii) If G = GSpn(K) with p 6= 2, then ni is even whenever i is odd, and

dimCG(u) =
∑
i<j

ininj +
1
2

∑
i

in2
i +

1
2

∑
i odd

ni.

(iii) If G = GOn(K) with p 6= 2, then ni is even whenever i is even, and

dimCG(u) =
∑
i<j

ininj +
1
2

∑
i

in2
i −

1
2

∑
i odd

ni.

(iv) Let G = GOn(K) with p = 2, and set m = [n/2]. Involutions in G
are represented by elements am−k, cm−k (0 ≤ k ≤ m and m− k even),
bm−k (0 ≤ k ≤ m and m − k odd), where each of am−k, bm−k, cm−k
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has m − k Jordan blocks of size 2 and the rest of size 1. Further, if
n = 2m+ 1, then

dimCG(am−k) = m2 +m+ k2,

dimCG(bm−k) = dimCG(cm−k) = m2 + k2 + k;

and if n = 2m then

dimCG(am−k) = m2 + k2 − k,

dimCG(bm−k) = dimCG(cm−k) = m2 −m+ k2,

and am−k, cm−k lie in G′ = SOn(K), while bm−k ∈ G−G′.

Proof. Parts (i)-(iii) follow from [37, pp. 34-39]. (For K = C the same
results can be found in [6, p. 398].) Part (iv) follows from [2, Sections 7,
8]. �

Next we give some information concerning parabolic subgroups of the
simple algebraic group G. Recall first that the highest root in the root
system Σ(G) of G is the root α0 =

∑
ciαi with

∑
ci maximal (where αi are

the fundamental roots). The highest roots of the simple root systems are as
follows, where we use the notation of [5, p. 250], and denote

∑l
1 ciαi by the

sequence c1c2 . . . cl:

G = Al : α0 = 111 . . . 1
G = Bl : α0 = 122 . . . 2
G = Cl : α0 = 22 . . . 21
G = Dl : α0 = 122 . . . 211
G = G2 : α0 = 23
G = F4 : α0 = 2342
G = E6 : α0 = 122321
G = E7 : α0 = 2234321
G = E8 : α0 = 23465432

As usual, denote by Pi,j,... the standard parabolic subgroup of G corre-
sponding to deletion of nodes i, j, . . . from the Dynkin diagram.

Proposition 1.11. Suppose the Dynkin diagram of G is simply laced, and
let α0 =

∑
ciαi be the highest root. Then the nilpotence class of the unipotent

radical Ru(Pi,j,...) is equal to ci + cj + · · · .

Proof. This is [3, Lemma 4]. �

Proposition 1.12. Denote by Uα0 the long root subgroup of G correspond-
ing to α0, and let 1 6= uα0 ∈ Uα0. Then P = NG(Uα0) is a parabolic
subgroup of G, as in Table 3; we also give dimRu(P ) (and also dimuG

α0
,

since dimuG
α0

= dimRu(P ) + 1).
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Proof. The appropriate parabolic is obtained by deleting those nodes adja-
cent to α0 in the extended Dynkin diagram of G (see [5, p. 250]). For the
last equality, observe that

dimuG
α0

= dim(G/CG(uα0)) = dim(G/P ) + 1 = dimRu(P ) + 1.

G P = NG(Uα0) dimRu(P )
Al P1l 2l − 1
Bl P2 4l − 5
Cl P1 2l − 1
Dl P2 4l − 7
G2 P1 5
F4 P1 15
E6 P2 21
E7 P1 33
E8 P8 57

Table 3.

We conclude this subsection with a few further properties of long root
elements.

Proposition 1.13. Let uα be a long root element of the simple algebraic
group G. Then:

(i) If P is a parabolic subgroup, then the number of P -classes in uG
α ∩ P

is finite, with representatives given by long root elements uα for α in
a fixed root system of P .

(ii) Let D be a connected semisimple subgroup of G containing uα. Then
uα lies in a simple factor D0 of D. Moreover, either uα is a long root
element of D0, or p = 2, D0 = Bn lying in a subsystem subgroup A2n

of G, and uα is a short root element of D0.
(iii) Let M be a connected reductive subgroup of G, and suppose that uα

normalizes M but does not induce an inner automorphism on M . Then
p = 2 and M = XY , a commuting product, where uα centralizes Y
and X = Dn or T1. Moreover, if X = Dn then CX(uα) = Bn−1.

Proof. (i) Set P0 = NG(Uα), a parabolic subgroup. We may assume that P
and P0 contain a common Borel subgroup and maximal torus T . Then the
double coset space P\G/P0 is finite, with double coset representatives lying
in NG(T ). Replacing P0 by P ′

0 = CG(uα), the number of double cosets does
not change since P0 = P ′

0T .

(ii) Say D = D1 × D2, where each Di is a product of simple factors.
Set u = uα, and suppose we can write u = u1u2, with 1 6= ui ∈ Di. By
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[1, 2.1], there exists d1 ∈ D1 such that u−1
1 ud1

1 is not a p-element. Then
u−1ud1 = u−1

1 ud1
1 is not a p-element. So J = 〈Uα, U

d1
α 〉 is a group of type A1

(see [23, 1.1]) and a = u−1ud1 can be computed in J . It follows that a is a
p′-element, not of order 2. Hence by [23, 1.2], CG(a)′ = CG(J). However,
D2 centralizes a, but does not centralize u ∈ J , a contradiction.

This shows that uα is contained in a simple factor of D. The last state-
ment follows from [23, 2.2, 3.2 and 3.3].

(iii) We first assert that if uα normalizes but does not centralize a torus T
in G, then p = 2 and uα centralizes a sub-torus of codimension 1 in T . To see
this, pick t ∈ T such that a = [uα, t] 6= 1. Then a ∈ T , so J = 〈Uα, U

t
α〉 is a

fundamental SL2 in G (see [23, 1.1]). Moreover, uα normalizes T1 = T ∩ J .
Since |NJ(T1)/T1| = 2, it follows that p = 2 and |a| > 2. By [23, 1.2],
CG(a) = CG(T1) = T1D, where D = CG(J). Since T ≤ CG(T1), it follows
that uα centralizes T ∩D, a torus of codimension 1 in T . The assertion is
proved.

Now M = M ′Z, where Z = Z(M)0 and M ′ is semisimple. Now M ′ is a
product of simple factors. Some may be permuted by uα in orbits of size p:
Let the product of these factors be H = H1 . . .Ha. Some may be fixed by
uα but have uα inducing an outer automorphism on them: Let the product
of these be L = L1 . . . Lb. The rest are fixed by uα and have uα inducing an
inner automorphism: Call the product of these S. Then M = HLSZ.

Suppose that H 6= 1, and say uα permutes the simple factors H1, . . . ,Hp

cyclically. If T0 is a maximal torus of H1, then uα normalizes the torus
T = T0T

uα
0 . . . T up−1

α
0 of H1 . . .Hp. By the earlier assertion, p = 2 and

uα centralizes a sub-torus of codimension 1 in T , whence dimT0 = 1 and
H = H1H2 with H1

∼= H2
∼= A1. Thus in this case p = 2 and H ∼= D2,

which is a configuration allowed for in the conclusion of the proposition.
Now consider a factor Li of L. If p 6= 2, then Li

∼= D4 and p = 3. By 1.4,
there are two classes of graph automorphisms of D4, represented by τ and
τt, where CD4(τ) = G2, and t is a long root element of this G2. Both these
automorphisms normalize a subgroup (A1)3 of D4, permuting the 3 factors
cyclically. Hence by the previous paragraph, neither can be induced by a
root element of G. Therefore p = 2, and now it follows from [23, 3.3] that
Li

∼= Dn and CLi(uα) ∼= Bn−1. Moreover, if Tn−1 is a maximal torus of this
Bn−1, then CDn(Tn−1) = Tn, a maximal torus of Dn normalized by uα.

Because of the assertion in the first paragraph, if H 6= 1 then L = 1; if
L 6= 1 then H = 1 and L = L1 is simple; and if H = L = 1 then Z 6= 1 and
uα does not centralize Z, in which case p = 2 and uα induces a reflection on
Z.

We have established that p = 2 and M = XY , where X = Dn or T1 and
uα induces an inner automorphism on Y . Now arguing as in the proof of
Part (ii), we deduce that uα centralizes Y , completing the proof. �
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C. Fixed point spaces and conjugacy classes.
We finish the section with a result relating fixed points to conjugacy

classes.

Proposition 1.14. Let G be an algebraic group, and let H be a closed sub-
group. Write Ω for the coset variety G/H. Then for x ∈ H,

f(x,Ω) = dimxG − dim(xG ∩H).

Proof. Define

V = {(g, ω) ∈ G× Ω : ωg = ω}.

If π, φ : G× Ω → Ω are the morphisms defined by

(g, ω)π = ω, (g, ω)φ = ωg,

then V = {(g, ω) ∈ G × Ω : (g, ω)π = (g, ω)φ}, and hence V is a closed
subvariety of G× Ω.

For x ∈ H, define

Vx = {(xg, ω) : g ∈ G,ω ∈ Ω, ωxg = ω}.

Then Vx is a variety, and the map Vx → xG given by (xg, ω) → xg has fibres
of dimension dim fixΩ(x), so

dimVx = dimxG + dim fixΩ(x).

On the other hand, the map Vx → Ω given by (xg, ω) → ω has fibres of
dimension dim(xG ∩H), so

dimVx = dim Ω + dim(xG ∩H).

The conclusion follows. �

2. Proof of Theorem 2, Part (I)(a): Unipotent elements in
parabolics.

In this section we prove Part (I)(a) of Theorem 2. Thus let G be a simple
algebraic group of exceptional type over an algebraically closed field K of
characteristic p (allowing p = 0), and let Pi be a maximal parabolic subgroup
of G. Write Pi = QiLi, where Qi is the unipotent radical and Li a Levi
subgroup. Let u be a nonidentity unipotent element of Pi, uα a long root
element, and uβ a short root element (in the cases where these exist). If
p > 0 we take u to be of order p (as we may, for the purpose of proving
Theorem 2).

We first establish:

Lemma 2.1. We have

dimuG
α − dim(uG

α ∩ Pi) = cG,i,α
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where cG,i,α is as in Table 7.1. Moreover, if (G, p) = (F4, 2) or (G2, 3), then
dimuG

β − dim(uG
β ∩ Pi) = cG,i,β, where cG,i,β is as in Table 7.2.

Proof. Observe that the last statement concerning (F4, 2) and (G2, 3) follows
from the first part of the proposition, as can be seen by applying a graph
automorphism of G. Hence we just need to prove the first statement.

Write u = uα. By 1.13(i), we can take dim(uG ∩ Pi) = dimuPi with u
lying in either Qi or Li.

Suppose first that u ∈ Li. LetQ−
i be the unipotent radical of the parabolic

opposite to Pi. Now QiLiQ
−
i is an open dense subset of G, hence QiLiQ

−
i ∩

CG(u) is open dense in the connected group CG(u), and it follows that

dimCG(u) = dimCQi(u) + dimCLi(u) + dimCQ−
i
(u).

Moreover, if w0 is the longest element of the Weyl group, then w0 (or,
for G = E6, w0τ with τ a graph automorphism) interchanges Qi with Q−

i
and normalizes an Li-conjugate of Uα (a root group containing u), whence
dimCQ−

i
(u) = dimCQi(u). Since dimuPi = dimuQi + dimuLi , it follows

that

dimuG = dimuPi + dimuQi .

Therefore

dimuQi =
1
2
(dimuG − dimuLi),

and hence

dimuG − dimuPi = dimuQi =
1
2
(dimuG − dimuLi).

The right hand side of this equation is easily calculated using 1.12, and is
equal to cG,i,α.

Finally, if u ∈ Qi then uPi ⊆ B for each Borel subgroup B of Pi, and
hence by 1.9, dimuPi ≤ 1

2 dimuG, whence

dimuG − dimuPi ≥ 1
2

dimuG,

which is larger than cG,i,α.
This completes the proof, except for those cases where Li contains no

conjugate of u. This occurs only when G = G2 and i = 1. In this case,
by 1.13(i) we may take u ∈ Q1\Z(Q1), and dimuG ∩ P1 = dimuP1 . When
p 6= 3, we have dimZ(Q1) = 1, and Q1/Z(Q1) has the structure of an
irreducible module for L′1 ∼= A1 of high weight 3λ1, with uZ(Q1) a maximal
vector. It follows that dimCQ1(u)+dimCL1(u) = 4+2, whence dimuP1 = 3
and dimuG − dimuP1 = 6 − 3 = cG,1,α. And when p = 3, we again have
dimCQ1(u) + dimCL1(u) = 4 + 2, giving the conclusion. �
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Define Bi to be the variety of all Borel subgroups of G lying in Pi, and
Pi,u the variety of all conjugates of Pi which contain u. For P ∈ Pi,u, let
BP,u be the variety of Borel subgroups in P which contain u, and define

Ni,u = min {dimBP,u : P ∈ Pi,u},

bi = dimBi.

Define also Bu to be the variety of Borel subgroups of G containing u.

Lemma 2.2. We have

dimuG − dim(uG ∩ Pi) = f(u,G/Pi) ≥ dim(G/Pi)− dimBu +Ni,u.

Proof. Let ψ : Bu → Pi,u be the surjective morphism sending a Borel sub-
group B to the unique conjugate of Pi containing B. The fibres of ψ have
dimension at least Ni,u, and hence

dimPi,u = dim Imψ ≤ dimBu −Ni,u.

Since

f(u,G/Pi) = dim(G/Pi)− dim fixG/Pi
(u) = dim(G/Pi)− dimPi,u,

the result follows. �

In view of the preceding lemma, it is desirable to obtain good lower bounds
on the numbers Ni,u. The following result will be useful in this respect.

Lemma 2.3. Let P = QL be a parabolic subgroup of G with unipotent
radical Q and Levi subgroup L, and let x ∈ P . If v ∈ L is such that
xQ = vQ, then dimCL(G)(x) ≤ dimCL(G)(v).

Proof. Consider a P -filtration of L(G) compatible with a direct sum decom-
position under the action of L (for weight spaces of the central torus Z(L)0).
The unipotent radical Q is trivial on successive factors, so the dimension of
the centralizer in L(G) of x is certainly bounded above by the sum of the
dimensions of its centralizers in each of the weight spaces. But this sum is
just the dimension of the centralizer in L(G) of v, giving the conclusion. �

Lemma 2.4. If dimuG ≥ 2(bi + c′G,i), then the conclusion of Theorem
2(I)(a) holds (i.e., f(u,G/Pi) ≥ c′G,i).

Proof. By 1.9, dim(uG ∩ Pi) ≤ 1
2 dimuG + bi, and hence

f(u,G/Pi) = dimuG − dim(uG ∩ Pi) ≥
1
2

dimuG − bi.

The conclusion follows. �

Lemma 2.5. The conclusion of Theorem 2(I)(a) holds if G = E8.
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Proof. Suppose G = E8. For convenience we record the values of dimQi, bi
and ci = c′E8,i below:

i = 1 2 3 4 5 6 7 8
L′i = D7 A7 A1A6 A1A2A4 A3A4 A2D5 A1E6 E7

dimQi = 78 92 98 106 104 97 83 57
bi = 42 28 22 14 16 23 37 63
ci = 28 34 36 40 39 36 30 20

By 2.1 and 2.4, we may suppose that dimuG < 2(bi + ci) and u is not a long
root element. Hence using 1.7 we see that u belongs to one of the following
classes of unipotent elements in G:

i u ∈ one of
1 2A1, 3A1, A2, 4A1, A2 +A1

2, 3, 6 2A1, 3A1, A2

4, 5 2A1

7 2A1, 3A1, A2, 4A1

8 2A1, 3A1, A2, 4A1, . . . , A3 +A1

(In the last row, the list is ordered as in 1.7.)
By 2.2 we have f(u,G/Pi) ≥ dim(G/Pi)− dimBu +Ni,u, where

Ni,u = min {dimBP,u : P ∈ Pi,u}.
The values of dimBu are given by 1.7. We now establish lower bounds for
Ni,u.

Let v ∈ Li be such that uQi = vQi. By 2.3, dimCL(G)(u) ≤ dimCL(G)(v),
so we see from 1.7 and the dimensions of CL(G)(u) which are given in [17],
that v is either in the same class as u, or in a class which occurs earlier
in the list of classes above (but including the classes A1 and {1}). For
example, if i = 1 and u lies in class A2, then v lies in one of the classes
1, A1, 2A1, 3A1, A2. Note also that as Li is a Levi subgroup, the label for v
as an element of Li is the same as its label as an element of G.

Suppose first that i = 1. Then u lies in one of the classes 2A1, 3A1, A2,
4A1, A2 +A1. Consider u ∈ 2A1. Then v lies in one of the classes 1, A1, 2A1.
The minimal value of dimBP,u will be attained when v lies in class 2A1.
There are two such classes in L′1 = D7: One corresponding to 2A1 acting as
SO4 on the usual 14-dimensional module V14, and the other corresponding
to 2A1 lying in an A6 subgroup. For v in the SO4-type class, with p 6= 2, v
acts as J3 ⊕ J11

1 on V14 (where Ji denotes a Jordan block of size i), and it
follows from 1.10 that dimCD7(v) = 67, whence by 1.9,

dimBP,u =
67− 7

2
= 30.

And for v in the SO4-type class with p = 2, we have v = c2 in the notation
of 1.10, and 1.10 gives dimCD7(v) = 67 again. For v in the other 2A1 class



EXCEPTIONAL ALGEBRAIC GROUPS 355

of D7, with p 6= 2, v acts on V14 as J4
2 ⊕J6

1 , and 1.10 gives dimCD7(u) = 55;
the same holds for p = 2, in which case v = a4 in the notation of 1.10. Hence
by 1.9,

dimBP,u = 24.

It follows that for u ∈ 2A1 we have N1,u = 24. Also dimBu = 74, so by 2.2,

f(u,G/P1) ≥ dimG/P1 − dimBu +N1,u = 78− 74 + 24 = 28 = c′G,1,

as required.
This handles the case where u ∈ 2A1. For the other possibilities for the

class of u we argue in the same way: Use 1.10 to calculate the possibilities
for dimCD7(v) - the minimum occurs when v is in the same class as u; for
each such possibility we calculate dimBP,u using 1.9; hence we work out
N1,u, and finally application of 2.2 gives the required bound. The numbers
which come out are given in the following table:

class of u, v dimCD7(v) dimBP,u N1,u

3A1 49 or 51 21 or 22 21
A2 49 21 21
4A1 43 18 18

A2 +A1 39 16 16

This completes the proof when i = 1.
For i = 2, 3 or 6 we argue in the same way, obtaining the following

information:

class of u, v dimCA7(v) (i = 2) dimCA1A6(v) ≥ dimCA2D5(v) ≥
(i = 3) (i = 6)

2A1 39 3 + 28 8 + 25
3A1 33 3 + 24 8 + 21
A2 37 3 + 26 8 + 19

Using 1.9 we deduce that Ni,2A1 = 16, 12, 13 according as i = 2, 3, 6 respec-
tively; likewise Ni,3A1 = 13, 10, 11 and Ni,A2 = 15, 11, 10. The conclusion
follows, using 2.2.

When i = 4 or 5, we have u ∈ 2A1 and the above arguments yield
N4,u = 8, N5,u = 9, again giving the result by 2.2.

Next consider i = 7, so L′7 = A1E6. Here u ∈ 2A1, 3A1, A2 or 4A1, and
in the first three cases the minimal value of dimBP,u is achieved when v lies
in E6, in the class of E6 with the same label as u. Hence in these cases
N7,u = 1 + dimBE6

v , where dimBE6
v is the value of dimBv regarding v as an

element of E6 (i.e., the dimension of the variety of Borels of E6 containing
u). And when u ∈ 4A1 the minimal value is achieved when v projects to an
element in the class 3A1 of E6, and N7,u = dimBE6

v . These values are given
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by 1.7, so we have

u ∈ N7,u

2A1 21
3A1 17
A2 16
4A1 16

The conclusion follows from 2.2.
Finally, the case where i = 8 is entirely similar: The minimal value of

dimBP,u is achieved when v lies in L′8 = E7, in the class of E7 with the
same label as u; so N8,u = dimBE7

v , which is given by 1.7. In all cases 2.2
gives the required bound. �

Lemma 2.6. The conclusion of Theorem 2(I)(a) holds if G = E7.

Proof. The argument is very similar to that of the previous proposition, and
we just give a sketch. The values of dimQi, bi and ci = c′E7,i are as follows:

i = 1 2 3 4 5 6 7
L′i = D6 A6 A1A5 A1A2A3 A2A4 A1D5 E6

dimQi = 33 42 47 53 50 42 27
bi = 30 21 16 10 13 21 36
ci = 12 16 18 21 20 16 10

Again we may suppose that dimuG < 2(bi + ci) and u is not a long root
element, so by 1.7 u belongs to one of the following classes:

i u ∈ one of
1 2A1, . . . , A2 + 2A1

2, 6 2A1, 3A′′1, 3A
′
1, A2, 4A1

3 2A1, 3A′′1, 3A
′
1, A2

4 2A1, 3A′′1
5 2A1, 3A′′1, 3A

′
1

7 2A1, . . . , 2A2 +A1

Let v ∈ Li with uQi = vQi. As in the previous proof, we find that the
minimal value of dimBP,u is realised when v is in the class of Li having the
same label as that of u (when such a class exists in Li).
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For i = 1, we use 1.10 to calculate dimCL′
1
(v) = dimCD6(v):

class of u, v dimCD6(v) N1,u

2A1 38 or 46 16
type 3A1 36 or 34 15 or 14

A2 32 13
4A1 30 12

A2 +A1 26 10
A2 + 2A1 24 9

The only slightly subtle point to note concerns the classes of type 3A1. There
are three such classes in D6. One, represented by v1 say, corresponds to a
3A1 subgroup of type SO4 ×A1, and hence acts on the usual module V12 as
J3 ⊕ J2

2 ⊕ J5
1 (when p 6= 2) and as c4 (when p = 2 - notation of 1.10). As

V56 ↓ D6 = V 2
12⊕VD6(λ5), it follows that v1 has J1 blocks on V56, and hence

by [17, Table 7], v1 lies in the class 3A′1 of E7. The other classes of type
3A1 in D6 correspond to 3A1 subgroups of D6 lying in an A5 Levi, and have
centralizer in D6 of dimension 36.

The conclusion now follows for i = 1, using 2.2.
For i = 2, we have L′2 = A6 and 1.10 gives:

v ∈ dimCA6(v) N2,u

2A1 28 11
3A1 24 9
A2 26 10

As above, the action of a 3A1 element of A6 on V56 shows that it is in the
class 3A′1 of G. Now the conclusion follows from 2.2.

The argument for i = 3, 4, 5, 6 is similar. And for i = 7, L′7 = E6, as at
the end of the previous proposition we have N7,u = dimBE6

u , which is given
by 1.7, and now 2.2 gives the required bound. �

Lemma 2.7. The conclusion of Theorem 2(I)(a) holds if G = E6.

Proof. The argument is entirely similar to that of the previous propositions,
and is left to the reader. �

Lemma 2.8. The conclusion of Theorem 2(I)(a) holds if G = F4 or G2.

Proof. Suppose first that G = F4 and p 6= 2. As usual choose v ∈ Li with
uQi = vQi. For i = 1 we may assume dimuG < 2(b1 +c′F4,1) = 34, so by 1.7,
u lies in one of the classes Ã1, A1Ã1, Ã2, A2. In the usual way, the minimal
value of Bu is realised when v is in the same class as u. When u, v ∈ Ã1, v
acts as J2

2 ⊕ J2
1 on the natural module V6 for L′1 = C3, so dimCC3(v) = 11

by 1.10. Therefore N1,u = 4, and 2.2 gives

f(u,G/P1) ≥ 15− 13 + 4 = 6 = cF4,1,β,
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as required. When u, v ∈ A1Ã1, v acts as J3
2 and 1.10 gives dimCC3(v) = 9,

whence N1,u = 3 and f(u,G/P1) ≥ 8 = c′F4,1, as required. If u, v ∈ Ã2 then
v acts as J2

3 , dimCC3(v) = 7 so N1,u = 2, giving the result by 2.2. And if
u ∈ A2 then no conjugate of u lies in C3, so v lies in one of the “earlier”
classes 1, A1, Ã1, A1Ã1, Ã2, and the result follows from previous calculations.

This completes the argument for i = 1. The remaining values of i (with
p 6= 2) are handled very similarly, and we leave this to the reader.

Now considerG = F4, p = 2. By 1.7 this group has 4 classes of involutions,
namely A1, Ã1, A

(2)
1 , A1Ã1. By 2.1 we may assume that u lies in one of the

latter two classes. Both are fixed by a graph automorphism of G, so we only
need to deal with i = 1 or 2. For i = 1, the class A(2)

1 is represented by
u = xα3(1)xα2+2α3(1) (see [17, Table A]). The roots α3, α2 + 2α3 span a C2

subsystem, and hence a conjugate v of u lies in C3 = L′1, and is in the class
of c2 (in the notation of 1.10). Then dimCC3(v) = 11, N1,u = 4, and 2.2
gives f(u,G/P1) ≥ 6 = c′F4,1, as required. The class A1Ã1 is represented
by b3 ∈ C3, and a similar argument gives the conclusion for this class when
i = 1.

Now suppose i = 2. The group L′2 = A1Ã2 has three involution classes,
with representatives in the classes A1, Ã1 and A1Ã1 of G. Hence for u ∈ A(2)

1

we must have v ∈ {1}, A1 or Ã1, whence N2,u ≥ 2, giving f(u,G/P2) ≥ 9
by 2.2. And for u ∈ A1Ã1, we have dimBu = 10, so 2.2 gives f(u,G/P2) ≥ 10
immediately.

Finally, the proof for G = G2 is carried out in similar fashion, and we
leave it to the reader. �

This completes the proof of Theorem 2(I)(a).

3. Proof of Theorem 2, Part (I)(b): Semisimple elements in
parabolics.

In this section we prove Part (I)(b) of Theorem 2. Continue to assume that
G is an exceptional algebraic group over the algebraically closed field K,
and that Pi = QiLi is a maximal parabolic subgroup of G with unipotent
radical Qi and Levi subgroup Li.

Let s be a nonidentity semisimple element of G lying in Pi, and write
D = CG(s). By [36, II, 4.1], D0 is reductive, and D/D0 is isomorphic to a
subgroup of the fundamental group of G, which has order 1, 2 or 3 (2 for
E7, 3 for E6, 1 otherwise).

By 1.3(ii), sG ∩Pi consists of finitely many Pi-classes. Hence, replacing s
by a suitable conjugate, we may assume that dim(sG ∩ Pi) = dim sPi .
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Lemma 3.1. The intersection D ∩ Pi is a parabolic subgroup of D. More-
over, Ru(D ∩ Pi) ≤ Qi, and

dim sG − dim sPi = dimQi − dimRu(D ∩ Pi) = dim sQi .

Proof. Observe that s lies in a maximal torus T of Pi. Clearly D = CG(s)
contains T , and hence T ≤ D ∩ Pi.

We now argue that D ∩ Pi is a parabolic subgroup of D. The T -root
groups in G all lie in Qi, Li or Q−

i (the unipotent radical of the parabolic
opposite to Pi). Note that if Uα ≤ CG(s) then also U−α ≤ CG(s). If
CQi(s) = 1 then CG(s)0 = CLi(s)

0 = CPi(s)
0, so (D ∩ Pi)0 = D0. And if

CQi(s) 6= 1, by [4] we can embed CPi(s) in a parabolic subgroup P of D
such that CQi(s) ≤ Ru(P ). Then D∩Pi = CPi(s) = P : For otherwise, there
is a T -root group Uα such that Uα ≤ P but Uα 6≤ CPi(s); then Uα ≤ Q−

i ,
which forces U−α ≤ CQi(s), whereas 〈Uα, U−α〉 ∼= SL2, a contradiction.

Thus D ∩ Pi is a parabolic subgroup of D. Moreover, D ∩ Pi = CPi(s) =
CQi(s)CLi(s) and CLi(s) is reductive, so Ru(D∩Pi) = CQi(s) ≤ Qi. Finally,

dim sG − dim sPi = dim(G/Pi)− dim(D/D ∩ Pi),

and the last part follows, as dim(G/Pi) = dimQi and dim(D/D ∩ Pi) =
dimRu(D ∩ Pi). �

The preceding lemma shows that, for a given Pi, in order to bound
f(s,G/Pi) below it suffices to bound dimRu(D ∩ Pi) above. We shall see
that it is possible to obtain the required bounds by using arguments in-
volving root systems, in particular exploiting the fact that the root system
of Ru(D ∩ Pi) must embed in that of Qi. Throughout the remainder of
this section, let G have simple roots α1, . . . , αn and highest root α0. Let D
have simple factors D1, D2, . . . in order of decreasing dimension, and assume
that the positive roots of D are a subset of those of G. Let D1 have simple
roots β1, . . . , βm and highest root β0, and D2 (if it exists) have simple roots
γ1, . . . , γ` and highest root γ0. If α =

∑
mjαj , the height of α with respect

to Pi will mean mi; similarly the height of
∑
njβj with respect to the par-

abolic Pi1i2...(D1) will mean ni1 + ni2 + . . . , and so on. If X is a product of
root groups, we write Φ(X) for the set of roots with root groups in X.

Lemma 3.2. The conclusion of Theorem 2(I)(b) holds if G = E8.

Proof. Suppose G = E8. Inspection of the lists given in [9] of subsystems
occurring in centralizers of semisimple elements shows that either D has
a factor E7 or D8, or D is contained in a group E6A2, D5A3, A8, A7A1,
A5A2A1, A4

2, D7T1 or D6A1T1. For the purposes of this proof we shall say
that D is ‘small’ if it has no E7 or D8 factor.
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For convenience we record the dimension and nilpotence class of Qi (the
latter being given by 1.11):

i
1 2 3 4 5 6 7 8

dimQi 78 92 98 106 104 97 83 57
class(Qi) 2 3 4 6 5 4 3 2

By 3.1, we may assume that dimRu(D ∩ Pi) > dimQi − dG,i,D, and in
particular that D has more than dimQi − dG,i,D positive roots; if D is
small, this number is 30, 34, 36, 39, 38, 36, 31 or 21 according as i = 1, 2,
3, 4, 5, 6, 7 or 8. Writing Xj for a subgroup of Aj containing a maximal
torus, we see that the possibilities for D small are as follows:

i D
4 D7T1

3, 5, 6 D7T1 or E6X2

2, 7 D7T1, E6X2 or A8

1 D7T1, E6X2, A8 or D6A1T1

8 D7T1, E6X2, A8, D6X1T1, D5X3, A7X1 or A6A1T1

First suppose i = 1. By 3.1, we have Ru(D ∩ P1) ≤ Q1, whence

class (Ru(D ∩ P1)) ≤ class (Q1) = 2.

If D = E7X1, then by 1.11, E7 ∩ P1 = Pj(E7) for j ∈ {1, 2, 6, 7}, and so
dimRu(E7 ∩ P1) ≤ 42, whence dimRu(D ∩ P1) ≤ 43; thus

f(s,G/P1) ≥ dimQ1 − 43 = 35 = dG,1,E7

as required. If D = D8 then D ∩ P1 6= P5(D8) or P6(D8) because the Levi
factor A4A3 of P5(D8) or A5A

2
1 of P6(D8) does not embed in L′1 = D7;

thus D ∩ P1 is Pj(D8) for j ∈ {1, 2, 3, 4, 7, 8} or Pjk(D8) for j, k ∈ {1, 7, 8},
giving dimRu(D ∩P1) ≤ 38. Likewise, if D = D7T1 then D7 ∩P1 is Pj(D7)
for 1 ≤ j ≤ 7 or Pjk(D7) for j, k ∈ {1, 6, 7}, giving dimRu(D ∩ P1) ≤
30; if D = E6X2 then E6 ∩ P1 is Pj(E6) for j 6= 4 or P16(E6), giving
dimRu(E6 ∩P1) ≤ 25, whence dimRu(D∩P1) ≤ 28; if D = A8 then D∩P1

is Pj(A8) or Pjk(A8) and dimRu(D ∩ P1) ≤ 27; and if D = D6A1T1 then
D6 ∩ P1 is Pj(D6) for 1 ≤ j ≤ 6 or Pjk(D6) for j, k ∈ {1, 5, 6}, giving
dim(Ru(D6 ∩ P1)) ≤ 22, whence dimRu(D ∩ P1) ≤ 23. In all cases, the
bounds required for Theorem 2(I)(b) follow.

The arguments for i = 2, 3, 4 and 5 are all similarly straightforward; the
only point to note is that if D = D8 then D ∩ P3 6= P36(D8), because the
Levi factor A2

2A
2
1 does not embed in L′3 = A6A1. Thus the conclusion of

Theorem 2(I)(b) holds in these cases.
Now let i = 6. The arguments for the cases where D is small are straight-

forward. Suppose D = E7X1; we must show that dimRu(D∩P6) is at most
dimQ6 − dG,6,E7 = 97 − 44 = 53. Since class(Ru(D ∩ P6)) ≤ 4, the only
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possibility requiring consideration is that of D ∩ P6 = P4(E7)P1(A1). As
both Ru(P4(E7)) and Q6 have precisely three roots of height 4 (with respect
to P4(E7) and P6 respectively), these roots must be equal; thus

β0 = α0, β0 − β1 = α0 − α8, β0 − β1 − β2 = α0 − α7 − α8,

whence β1 = α8 and β2 = α7 by subtraction. Now as γ1 is orthogonal to β0

it must be of the form
∑
mjαj with m8 = 0; as it is also orthogonal to β1

and β2 we must have m7 = 0 and m6 = 0—but then γ1 6∈ Φ(Q6). Thus the
case D ∩ P6 = P4(E7)P1(A1) cannot occur. Similarly suppose D = D8; we
require dimRu(D ∩ P6) ≤ 97− 50 = 47, and the only case to be considered
is that where D ∩ P6 = P36(D8). Again both Ru(P36(D8)) and Q6 have
precisely three roots of height 4, so we must have

β0 = α0, β0 − β2 = α0 − α8, β0 − β1 − β2 = α0 − α7 − α8,

whence β1 = α7 and β2 = α8. As the coefficients of β2 in β0 and α8 in α0

are equal, each βk for k > 2 must be of the form
∑
mjαj with m8 = 0, and

must be orthogonal to α7. However, β3 cannot then have m6 = 1; thus the
case D ∩ P6 = P36(D8) cannot occur. We have therefore shown that the
conclusion of Theorem 2(I)(b) holds if i = 6.

Next let i = 7; note that Φ(Q7) has just two roots of height 3 with respect
to P7, namely α0 and α0 − α8. In the case where D is small we require
dimRu(D ∩P7) ≤ 31. If D = A8 this bound is easily seen to be satisfied. If
D = D7T1, the result is clear provided class(Ru(D ∩ P7)) < class(P7) = 3,
so assume class(Ru(D∩P7)) = 3; since Φ(Ru(D∩P7)) can have at most two
roots of height 3, we must haveD∩P7 = P13(D7) or P2j(D7) for j ∈ {1, 6, 7},
and the bound follows. Similarly if D = E6X2 the result is clear unless
class(Ru(D ∩ P7)) = 3, when consideration of roots of height 3 rules out
E6∩P7 = P15(E6) or P36(E6), leaving just the case D∩P7 = P4(E6)P12(A2)
to be treated; here we must have

β0 = α0, β0 − β2 = α0 − α8,

giving β2 = α8. Since γ1 and γ2 are then orthogonal to α8 and must have
nonzero α7-coefficient, they must both be of the form

∑
mjαj with m7 = 2

and m8 = 1; but then γ0 = γ1 + γ2 is not a root, which contradiction shows
that D ∩ P7 = P4(E6)P12(A2) cannot occur.

Now assume D is not small. If D = D8 we must show that dimRu(D ∩
P7) ≤ 83− 43 = 40. The parabolic D ∩ P7 of D8 cannot have Levi factor of
type A3

2, D4A2 or A4A2, since these do not embed in L′7 = E6A1; we cannot
have D ∩ P7 = P16(D8) or P178(D8), since their unipotent radicals have too
many roots of height 3; all other possibilities for D ∩ P7 satisfy the bound.
If instead D = E7X1, we require dimRu(D ∩ P7) ≤ 83 − 36 = 47: Both
Ru(P5(E7)) and Ru(P27(E7)) have too many roots of height 3; if E7 ∩ P7 =
P3(E7), equating roots of height 3 shows that β0 = α0 and β1 = α8, and
then any root orthogonal to both β0 and β1 must be of the form

∑
mjαj
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with both m8 = 0 and m7 = 0, and so lies outside Φ(Q7)—so we cannot
have D∩P7 = P3(E7)P1(A1); again, all other possibilities for D∩P7 satisfy
the bound. Thus the conclusion of Theorem 2(I)(b) holds if i = 7.

Finally let i = 8; we have class(Q8) = 2, and α0 is the only root of height
2 with respect to P8. Thus if class(Ru(Dj ∩ P8)) = 2 for any simple factor
Dj of D, then α0 must be the unique root of Φ(Ru(Dj ∩ P8)) of height 2
with respect to Dj ∩ P8, and any root in Φ(Dk ∩ P8) for k 6= j must be
orthogonal to α0 and hence outside Φ(Q8). These considerations quickly
show that all possibilities for D ∩ P8 satisfy the relevant bound, namely
dimRu(D ∩ P8) ≤ 33, 28 or 21 according as D = E7X1, D = D8 or D
is small. This completes the proof that the conclusion of Theorem 2(I)(b)
holds if G = E8. �

Lemma 3.3. The conclusion of Theorem 2(I)(b) holds if G = E7.

Proof. Suppose G = E7. In this proof we say that D is small if it has no
factor E6, D6 or A7; inspection of the lists in [9] as in the previous lemma
shows that if D is small then D0 is contained in a group A5A2, A2

3A1,
D5A1T1, D4A

2
1T1, A6T1 or A5A1T1.

Using 1.11, we record the dimension and class of Qi:

i
1 2 3 4 5 6 7

dimQi 33 42 47 53 50 42 27
class(Qi) 2 2 3 4 3 2 1

By 3.1, we may again assume that D has more than dimQi−dG,i,D positive
roots; if D is small, this number is 13, 16, 17, 19, 18, 16 or 10 according
as i = 1, 2, 3, 4, 5, 6 or 7. Writing Xj for a subgroup of Aj containing a
maximal torus again, we see that the possibilities for D small are as follows:

i D0

4, 5 A6T1 or D5X1T1

2, 3, 6 A6T1, D5X1T1 or A5A2

1 A6T1, D5X1T1, A5X2 or D4A
2
1T1

7 A6T1, D5X1T1, A5X2, A4X2T1, D4X
2
1T1 or A2

3X1

First suppose i = 1. As with the case i = 8 for G = E8, we see that if
class(Ru(Dj ∩ P1)) = 2 for any simple factor Dj of D, then α0 must be the
unique root of Φ(Ru(Dj ∩P1)) of height 2 with respect to Dj ∩P1, and any
root in Φ(Dk ∩ P1) for k 6= j must be outside Φ(Q1). These considerations
quickly show that all possibilities for D ∩ P1 satisfy the relevant bound,
namely dimRu(D ∩ P1) ≤ 21, 17, 16 or 13 according as D . E6, D . D6,
D0 = A7 or D is small.

Next suppose i = 2. The arguments here are all straightforward; we
merely need note that if D . D6 then D6 ∩ P2 6= P4(D6), because the Levi
factor A3A

2
1 does not embed in L′2 = A6, and for the same reason if D0 = A7
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then A7 ∩P2 does not have Levi factor A3A
2
1 or A2

2A1. Thus the conclusion
of Theorem 2(I)(b) holds in this case.

Now let i = 3; note that Φ(Q3) has just two roots of height 3 with respect
to P3, namely α0 and α0 − α1. In the case where D is small, we require
dimRu(D∩P3) ≤ 17. If D0 = A5A2 this bound is easily seen to be satisfied.
If D0 = A6T1, the result is clear provided class(Ru(D∩P3)) < class(P3) = 3,
so assume class(Ru(D∩P3)) = 3; since Φ(Ru(D∩P3)) can have at most two
roots of height 3, the bound follows immediately unless A6 ∩P3 = P135(A6)
or P246(A6). As these cases are equivalent under a graph automorphism of
A6, it suffices to treat the former possibility; here we must have β0 = α0

and β0 − β6 = α0 − α1, so that β6 = α1—but then as β1 is orthogonal to
β6 it cannot be of the form

∑
mjαj with m3 = 1, and thus cannot be of

height 1 with respect to P3, a contradiction. Thus the bound is satisfied if
D0 = A6T1. If instead D0 = D5X1T1, we cannot have D5∩P3 = P145(D5) as
this would require more than two roots of height 3; the bound is then clear
unless D′ ∩ P3 = P13(D5)P1(A1). In this case we must have β0 = α0 and
β0−β2 = α0−α1, so that β2 = α1; but then γ1 must be orthogonal to both
α0 and α1, which forces it to be of the form

∑
mjαj with m1 = m3 = 0,

contrary to γ1 ∈ Φ(Q3). Thus the bound is satisfied in all cases where D is
small.

Now assume D is not small. If D . E6 the argument is straightforward;
we require dimRu(D ∩P3) ≤ 29, and as class(Ru(D ∩P3)) ≤ 3 the minimal
possibilities for the Levi factor of E6 ∩ P3 are A2

2A1, A3A1 and A4, each
of which means that the bound is satisfied. If instead D . D6, we require
dimRu(D∩P3) ≤ 24; here the condition that Φ(Ru(D6∩P3)) should contain
at most two roots of height 3 with respect to D6 ∩P3 means that we cannot
have D6 ∩ P3 = P14(D6), P35(D6), P36(D6) or P156(D6), and the required
bound follows. If D0 = A7, the requirement is dimRu(D∩P3) ≤ 22; arguing
as before with the nilpotence class and the number of roots of height 3, we
see that we need only consider the possibility that A7 ∩ P3 = P247(A7) or
P257(A7) (up to equivalence under the graph automorphism of A7). We
must then have β0 = α0 and β0 − β1 = α0 − α1, so that β1 = α1—but
then as β7 is orthogonal to β1 it cannot be of height 1 with respect to P3, a
contradiction. Thus the conclusion of Theorem 2(I)(b) holds if i = 3.

The arguments for i = 4 or 5 are all straightforward; the only point to
note is that if D0 = A7 we cannot have D∩P5 = P246(A7), because the Levi
factor A4

1 does not embed in L′5 = A4A2.
Now let i = 6; we have class(Q6) = 2. The arguments for D small are all

straightforward, and we obtain dimRu(D ∩ P6) ≤ 16 as required. If D . E6

we require dimRu(D ∩ P6) ≤ 25, and again this is immediate. If D0 = A7

we require dimRu(D∩P6) ≤ 20; here A7∩P6 cannot have Levi factor A2
2A1

as this does not embed in L′6 = D5A1, and the bound follows. Lastly if
D.D6 we require dimRu(D∩P6) ≤ 22, which is satisfied unless D = D6A1
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and D ∩ P6 = P4(D6)P1(A1). We shall show that this is impossible; this is
the most complicated of the cases to be treated.

Thus assume D ∩ P6 = P4(D6)P1(A1). Since both Q6 and Ru(D6 ∩ P6)
have nilpotence class 2, the root β4 must have α6-coefficient 1, while each
root βk for k 6= 6 must have α6-coefficient 0. As the coefficient of α7 in α0

is 1, the root β4 must have α7-coefficient 0. As D6 is not a subsystem of
E6, not all the βk can have α7-coefficient 0, so we must have βk = α7 for
some k; since α7 is not orthogonal to β4, and β3 appears with coefficient
2 in β0, we may assume (after interchanging β5 and β6 if necessary) that
β6 = α7. Now if we let Ξ be the set of roots of the form

∑
mjαj with

m6 = 2, then we must have γ1 ∈ Ξ as it is orthogonal to β6 and has nonzero
α6-coefficient. However, γ1 is orthogonal to both β0 and β0−β2, which also
lie in Ξ; but any root in Ξ is orthogonal to precisely one other root in Ξ.
This contradiction shows that we cannot have D ∩ P6 = P4(D6)P1(A1).

Finally let i = 7; we have class(Q7) = 1. Moreover Φ(Q7) consists of 27
roots; of these, given two which are orthogonal there is exactly one other
orthogonal to both. (This is easily seen by using the Weyl group to move
the first root of an orthogonal pair to α7; the 10 roots in Φ(Q7) orthogonal
to α7 are those of the form

∑
mjαj with m6 = 2 and m7 = 1, and these fall

into five orthogonal pairs.) For D small, we require dimRu(D∩P7) ≤ 10: If
D0 = A5A2 and A5∩P7 = P3(A5), then we already have the three mutually
orthogonal roots β3, β2 + β3 + β4 and β0 in Φ(Q7), so we cannot have
γj ∈ Φ(Q7) for j = 1 or 2; if D0 = A6T1 we cannot have A6∩P7 = P3(A6) or
P4(A6), as the Levi factor A3A2 does not embed in L′7 = E6; ifD0 = D5A1T1

we cannot have D5A1∩P7 = Pj(D5)P1(A1) for j ∈ {4, 5}, since then βj and
γ1 would be orthogonal to the three roots β0, β0 − β2 and β0 − β1 − β2 in
Φ(Q7); in all other cases the arguments are straightforward. If D . E6 we
require dimRu(D ∩ P7) ≤ 16, and this is immediate. If D . D6 we need
dimRu(D ∩ P7) ≤ 15; here we may use the argument just given for the
case D0 = D5A1T1 to see that we cannot have D′ ∩ P7 = Pj(D6)P1(A1)
for j ∈ {5, 6}, and the bound follows. Lastly if D0 = A7 we must show
that dimRu(D ∩ P7) ≤ 12; here we cannot have A7 ∩ P7 = Pj(A7) for
j ∈ {3, 4, 5}, as the Levi factor A2

3 or A4A2 does not embed in L′7 = E6,
and again the bound follows. This completes the proof that the conclusion
of Theorem 2(I)(b) holds if G = E7. �

Lemma 3.4. The conclusion of Theorem 2(I)(b) holds if G = E6, F4, G2.

Proof. The proof is carried out using the methods of the previous lemmas;
the only points which need mentioning are as follows. Firstly, let G = E6.
If i = 1 or 6, then Φ(Qi) does not contain three pairwise orthogonal roots.
Thus ifD = A5A1 we cannot have either A5∩Pi = P3(A5) (as then Φ(Ru(D∩
Pi)) would contain β3, β2 + β3 + β4 and β0) or D ∩ Pi = Pj(A5)P1(A1) for
j ∈ {2, 4} (as then Φ(Ru(D ∩ Pi)) would contain β2 + β3 + β4, β0 and γ1);
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and similarly if D = A4A1T1 we cannot have D′ ∩ Pi = Pj(A4)P1(A1) for
j ∈ {2, 3} (as then Φ(Ru(D ∩ Pi)) would contain β2 + β3, β0 and γ1). If
instead i = 3 or 5, then Qi has nilpotence class 2, and of the five roots
of height 2 with respect to Pi no two are orthogonal; thus if D = A5A1

we cannot have A5 ∩ Pi = P24(A5) (as then Φ(Ru(D ∩ Pi)) would contain
β2 + β3 + β4 and β0).

Secondly, let G = F4; here we exploit the distinction between long and
short roots. If i = 1 then Φ(Q1) contains just 6 short roots, of which no
two sum to a short root and none is orthogonal to α0; also α0 is the unique
root of height 2 with respect to P1. Thus if D = A2Ã2 we cannot have
Ã2∩Pi = P12(Ã2); and if D = A3Ã1 we cannot have D∩Pi = Pjk(A3)P1(Ã1)
for j, k ∈ {1, 2, 3}. If i = 3 then Φ(Qi) contains only 9 long roots, of which
no three may be added to form a root (since their α3-coefficients are all 2 or
4); thus if D = B4 or A3Ã1 the number of long roots in Φ(D)\Φ(Ru(D∩P3))
must be at least 3 or 1 respectively. If i = 4, the following is true of Φ(Qi):
it contains only 6 long roots, of which no three are pairwise orthogonal, no
two sum to a root and none is orthogonal to α̃0 = α1 + 2α2 + 3α3 + 2α4,
the unique short root of height 2 with respect to P4; also, given any two
of its long roots which are orthogonal, none of its short roots is orthogonal
to both. Thus if D = B4 we cannot have D ∩ Pi = Pj(B4) for j = 2
or 3, as then Φ(Ru(Pj(B4))) would contain 9 long roots; if D = C3A1

we cannot have D ∩ Pi = P2(C3)P1(A1), as then Φ(Ru(D ∩ Pi)) would
contain the pairwise orthogonal roots β0, 2β2 + β3 and γ1; if D = B3T1

we cannot have B3 ∩ Pi = P2(B3), as then Φ(Ru(D ∩ Pi)) would contain
β1 + β2 and β2 + 2β3, whose sum is a root; if D = A2Ã2 we cannot have
A2∩Pi = P12(A2), while Ã2∩Pi = P12(Ã2) would force α̃0 ∈ Φ(Ru(D∩Pi)),
whence Φ(A2)∩Φ(Ru(D∩Pi)) = ∅; and if D = A3Ã1 we cannot have either
A3 ∩ Pi = Pjk(A3) for j, k ∈ {1, 2, 3} or D ∩ Pi = P2(A3)P1(Ã1).

All other cases, including those in which G = G2, are straightforward,
and may be left to the reader. �

This completes the proof of Theorem 2(I)(b). In fact all the bounds
listed in Table 7.3 are sharp; for each entry dG,i,D, it is possible to find an
appropriate D for which dimQi − dimRu(D ∩ Pi) takes the value given, as
may be verified by using a computer to form all W -translates of Φ(D) and
taking intersections with Φ(Qi).

4. Proof of Theorem 2, Part (II)(a): Unipotent elements in
maximal rank subgroups.

In this section we prove Theorem 2(II)(a). Thus let G be an exceptional
algebraic group over the algebraically closed field K of characteristic p, and
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let M be a maximal closed reductive subgroup of G of maximal rank (that is,
containing a maximal torus of G). The possibilities for M are given by 1.1.

We begin by handling elements in M−M0. For convenience we deal with
both semisimple and unipotent elements in this case:

Lemma 4.1. Let x ∈ M −M0 be an element of prime order, and let D =
CG(x). Then dimxG−dim(xG∩ (M−M0)) satisfies the bounds of Theorem
2(II): That is,

dimxG − dim(xG ∩ (M −M0))

≥


eG, x a long root element
e′G, x unipotent, not a long root element
fG,M,D, x semisimple.

Proof. First consider G = E8. The non-connected possibilities for M are
those withM0 = A8, A2E6, D4D4, A4A4, A

4
2, A

8
1 or T8. Using 1.4, we see that

if M0 = A8 then dim(xG ∩ (M −M0)) = dim(A8/B4) = 44; if M0 = A2E6

then dim(xG ∩ (M −M0)) ≤ dim(A2E6/A1C4) = 47; if M0 = D4D4 then
dim(xG ∩ (M − M0)) ≤ dim(D4D4/A2A2) = 40; and in the other cases,
dim(xG ∩ (M −M0)) ≤ 28. The conclusion now follows if x is semisimple,
because then dimxG ≥ 112, 128 or 156 according as D . E7, D = D8 or D
has no E7 or D8 factor. It also follows if x is not a root element (since then
by 1.7, dimxG ≥ 92), or if M0 6= A8, A2E6, D4D4. However, if M0 is one
of the latter three subgroups, then x is not a root element by 1.13(iii).

Next let G = E7. Here M0 = T1E6, A7, A2A5, A
3
1D4, A

7
1 or T7.

Suppose M0 = T1E6. If p 6= 2 then by 1.4, CM0(x) = F4 or C4; and from
the proof of [8, 2.15], CG(x)0 = T1E6 or A7, respectively. Therefore dimxG−
dim(xG∩(M−M0)) = 54−27 or 70−43, which is equal to 27 in both cases,
giving the conclusion. If p = 2 then again by 1.4, dim(xG∩ (M −M0)) = 27
or 43. By [24, §2], VG(λ7) ↓ E6 = V (λ1)⊕ V (λ6)⊕ 02; since x interchanges
the first two spaces, it has at least 27 Jordan blocks of size 2 on VG(λ7), and
hence by [17] lies in class 3A′′1 or 4A1 in G. These classes have dimensions 54
and 70. We need to show that dimxG−dim(xG∩(M−M0)) ≥ e′G = 20. This
will follow provided we show that when CM0(x) = CF4(t) (in the notation
of 1.4), x lies in the class 4A1 rather than 3A′′1. To see this, let u ∈M −M0

be an involution with CM0(u) = F4. This F4 contains a subgroup D4〈s〉,
where s is an element of order 3 inducing a triality automorphism of D4.
Moreover, CG(D4) = (A1)3, with s permuting the 3 factors. Since u is
centralized by s, it must lie in a diagonal subgroup of this (A1)3. Now
taking the element t to be a root element in the D4, we see that tu lies
diagonally in a subgroup 4A1. This 4A1 is a Levi subgroup of G: For the
3A1 is a Levi of type SO4 × A1 in a Levi D6 of G, and inspection of the
Dynkin diagram of G shows that the fourth A1 can be chosen to make a
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Levi 4A1 subgroup with this. Therefore tu is in the class 4A1 of G. Since
tu is a conjugate of x, this finishes the proof in this case.

Now suppose M0 = A7. If p 6= 2 then by 1.4, CM0(x) = C4 or D4,
and in the latter case CG(x)0 = A7 (see the proof of [8, 2.15]). Hence
dimxG − dim(xG ∩ (M −M0)) ≥ 27, 37 or 35, according as D0 = E6T1,
D6A1 or A7. If p = 2 then 1.4 gives dim(xG ∩ (M − M0)) = 27 or 35.
Also, if V56 = VG(λ7), then V56 ↓ A7 = V (λ2) ⊕ V (λ6) (see [24, §2]).
As x interchanges V (λ2) and V (λ6), it acts on V56 as J28

2 (where J2 is a
Jordan block of size 2). Therefore by [17], x is in class 3A′′1 or 4A1 and the
required bound follows provided we show that when CM0(x) = CC4(t) (in
the notation of 1.4), x lies in the class 4A1 rather than 3A′′1. To see this, let
v be an involution in M −M0 such that CM0(v) = C4. By 1.7, v must lie
in the class 3A′′1. Let J be a fundamental subgroup A1 lying in this C4, and
take t to be an involution in J . Then J < CG(v), and by [23, 2.3], J lies
in a Levi subgroup of a parabolic of G containing CG(v). Therefore vt is in
the same class as the element ut of the previous paragraph, namely 4A1, as
desired.

Now let M0 = A2A5. By [31, 1.8],

L(E7) ↓ A2A5 = (V (λ1)⊗ V (λ2))⊕ (V (λ2)⊗ V (λ4))⊕ L(A2A5).

By 1.4, dim(xG ∩ (M −M0)) = 19 or 25. We know by 1.13(iii) that x is
not a root element. If p = 2 then by 1.7, dimxG ≥ 52, and the conclusion
follows. And if p 6= 2 then x interchanges the first two spaces in the above
restriction, whence we see that dimCL(G)(x) = 69 or 63. Hence dimxG ≥ 64
and the conclusion follows.

Of the remaining cases, M0 = A3
1D4 is dealt with by the same methods,

and A7
1, T7 are trivial to handle. This completes the case where G = E7.

Next consider G = E6. Here M0 = T2D4, A3
2 or T6.

Suppose M0 = T2D4. By [24, §2],

L(E6) ↓ D4 = V (λ1)2 ⊕ V (λ3)2 ⊕ V (λ4)2 ⊕ L(D4T2).

If |x| = 3 then by 1.4, dim(xG ∩ (M −M0)) = 16 or 22. When p 6= 3 the
above restriction implies dimCG(x) = 30 or 24, and the required bounds
follow. And when p = 3, x has at least 16 Jordan blocks of size 3 on
L(E6), so by [17], x 6∈ A1, 2A1, 3A1, whence dimxG ≥ 42 by 1.7, giving
the result. A similar argument gives the result when |x| = 2; note that
if p 6= 2 and D0 = D5T1 then dim(D ∩ M)0 ≥ dimB3T1 = 22, whence
dimxG − dim(xG ∩ (M −M0)) ≥ 24.

When M0 = A3
2, we have

VG(λ1) ↓ A3
2 = (V (λ1)⊗ V (λ2)⊗ 0)⊕

(V (λ2)⊗ 0⊗ V (λ1))⊕ (0⊗ V (λ1)⊗ V (λ2)),
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(see [24, Section 2]), from which we check that elements of order 2 or 3 in
M\M0 do not have centralizer of type D5; now the argument of the previous
paragraph gives the conclusion. Finally the case where M0 = T6 is trivial.

The cases G = F4, G2 are entirely similar and left to the reader. �

Let u be a nonidentity unipotent element of M , of order p if p > 0. By
the previous lemma we may ignore uG∩ (M−M0): In other words, to prove
Theorem 2(II)(a) it suffices to prove the lower bounds in the statement for
dimuG − dim(uG ∩M0). In particular we can assume u ∈M0.

Since M0 has finitely many unipotent classes (see 1.8), replacing u by a
suitable conjugate we may take dim(uG ∩M0) = dimuM0

(i.e., uM0
is an

M0-class of maximal dimension in uG ∩M0). Write

D = CG(u).

Lemma 4.2. The conclusion of Theorem 2(II)(a) holds if u is a long root
element of G (or a short root element if (G, p) = (F4, 2) or (G2, 3)).

Proof. Suppose u is a long root element. By 1.13(ii), u lies in a simple fac-
tor M0 of M0, and is a root element therein. Therefore dimuG − dimuM =
dimuG−dimuM0 . The possibilities for M0 are given by 1.1, and the dimen-
sions of uG, uM0 are given by 1.12. It follows from these results that

dimuG − dimuM0 ≥ eG,

(where eG is as in Table 1 in the Introduction), as required. Finally, if u is
a short root element and (G, p) = (F4, 2) or (G2, 3)), application of a graph
automorphism of G now gives the conclusion. �

Lemma 4.3. The conclusion of Theorem 2(II)(a) holds if

dimM + dimD ≤ dimG+ rank(G)− e′G,

where e′G is as in Table 1 (in the Introduction).

Proof. We have dimuG − dimuM0
= dimG− dimD− dimM + dimCM (u),

and the last term is at least rank(G). The result follows. �

In view of 4.2, 4.3, we assume from now on that u is not a long root
element (or a short root element if (G, p) = (F4, 2) or (G2, 3)), and that

dimM + dimD > dimG+ rank(G)− e′G.

Lemma 4.4. The possibilities for M are as follows:

G M0

E8 A1E7, D8, A8, A2E6

E7 T1E6, A1D6, A7, A2A5

E6 T1D5, A1A5, T2D4

F4 A1C3, B4, D4

G2 A2
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Proof. Since u is not a long root element (or a short root element when
(G, p) = (F4, 2) or (G2, 3)), we see from 1.7 that dimD is at most 156, 81,
46, 30, 6, according as G is E8, E7, E6, F4, G2, respectively. Since dimM >
dimG− dimD + rank(G)− e′G, the result now follows from 1.1. �

Observe that by 1.2, with one exception each of the possibilities for M
listed in 4.4 is the centralizer in G of an element of order 2 or 3 (except
when p = 2 or 3 respectively); the exception is M0 = D4 < F4. We shall
deal with the various cases using this observation.

The involution centralizers are of the following types:

(∗)

G = E8 : M = A1E7, D8

G = E7 : M0 = T1E6, A1D6, A7

G = E6 : M = T1D5, A1A5

G = F4 : M = B4, A1C3.

Lemma 4.5. Assume M = CG(t) for some involution t. Then the conclu-
sion of Theorem 2(II)(a) holds.

Proof. Here M is as in (∗) above, with p 6= 2. We have

dimuG − dimuM = dimG− dimD − dimM + dimM ∩D
= dim tG − dim tD.

Write R = Ru(D0) and D = D0/R. Choose a maximal unipotent sub-
group E of D normalized by t, and let V be the preimage of E in D. Then
V is also normalized by t; choose a maximal unipotent subgroup U of G con-
taining V and normalized by t. Now CU (t) is a maximal unipotent subgroup
of the reductive group CG(t). It follows that

dim tG = 2dim tU , dim tD = 2dim tE .

We have dim tR ≤ dim tV −dim tE ≤ dim tU −dim tE = 1
2(dim tG−dim tD).

It follows that

dim tG − dim tD = dim tG − dim tD − dim tR ≥ 1
2
(dim tG − dim tD).

Consequently it is sufficient to prove that

(†) dim tG − dim tD ≥ 2e′G.

For G = E8, e′G = 40 and dim tG ≥ 112, so we are done unless dim tD >

32. A glance at 1.7 shows that the inequalities dim tD > 32 and (†) are
simultaneously possible only if u is in one of the classes 2A1, A2, with
CG(t) = A1E7. Write u = u0u1 with u0 ∈ A1, u1 ∈ E7. Now

L(G) ↓ A1E7 = L(A1E7)⊕ (V (λ1)⊗ V (λ7))
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(see [24, Section 2]). If u lies in class 2A1 then by [17, Table 9], u acts on
L(G) as J14

3 ⊕ J64
2 ⊕ J78

1 (where Ji denotes a Jordan block of size i). Hence
from [17, Table 8] we see that u1 must be in class A1 or 2A1 of E7. Hence
by 1.7 we have

dimuG − dimuM ≥ dimuG − 52 = 92− 52 = e′G,

as required. Now consider u in class A2. The Jordan form of u on L(G) is
given in [17, Table 9]; and the possible Jordan forms of u1 on L(E7) and
VE7(λ7) are given in [17, Tables 7, 8]. From this we deduce that u1 must lie
in class 3A′′1 or A2 of E7, whence by 1.7,

dimuG − dimuM ≥ 114− 66 > e′G.

Next consider G = E7. By 1.7 together with (†), we are done unless u
lies in class 2A1, 3A′′1 or A2 (with CG(t) = T1E6 in the first and last cases).
If CG(t) = T1E6, then since this is a Levi subgroup of G, u lies in class
2A1, 3A1 or A2 of the E6 factor, respectively (see 1.6). In fact we see from
[17] that the 3A1 class in E6 lies in the 3A′1 class of G, not the 3A′′1 class.
Hence by 1.7 we have

dimuG − dimuM ≥ 20 = e′G

(with equality for the 2A1 class).
This leaves M0 = CG(t)0 = A1D6 or A7 to consider. Here u ∈ 3A′′1. Now

u lies in a subgroup A3
1T4 of G, so T4 ≤ CG(u). Also t ∈ CG(u), which is

connected (see 1.7), so u ∈ CM (T4). It follows that u lies in a Levi subgroup
of M0 of rank at most 3. Since u ∈ 3A′′1, this Levi subgroup is of type A3

1. If
M0 = A7, this implies that L(A7) ↓ u has Jordan blocks of size 2, whereas
by [17], elements 3A′′1 have no such blocks on L(E7), a contradiction. And
if M0 = A1D6, observe that the two unipotent classes of type 3A1 in D6

have actions J3 ⊕ J2
2 ⊕ J5

1 and J6
2 on the usual module, and hence by 1.10,

dimuG − dimuM ≥ 54− 32 > e′G.

Next, if G = E6 then (†) and 1.7 give the conclusion, except if u ∈ 2A1

and CG(t) = T1D5. As in a previous case, this is a Levi subgroup of G, so
u has type 2A1 in D5, with action J3 ⊕ J7

1 or J4
2 ⊕ J2

1 on the usual module.
Then 1.10 gives dimuG − dimuM ≥ 32− 20 > e′G.

Now suppose G = F4. When M = A1C3 it is easy to see that the
result holds, using (†). So suppose M = B4. Since p 6= 2, the unipotent
classes of M are labelled by Levi subgroups of B4 (see 1.7). For such Levi
subgroups which are also Levi subgroups of G, the corresponding unipotent
element u has the same label as an element of F4; the dimension of uG is
given by [6, p. 401], and that of uM by 1.10, and we check that in all cases
dimuG − dimuM ≥ 8 > e′G, as required. This leaves the Levi subgroups of
B4 which are not Levi subgroups of F4; these are A1A1, A3, A1B2 and B4.
By (†) we may assume that dim tD ≥ 5. From the list of possible D (see 1.7,
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with [6] to complete the list), we see that this implies that u ∈ TkE < G,
where Tk is a torus of rank k and E a semisimple group of rank 4− k ≤ 2.
Hence u lies in such a subgroup of B4, and it follows that u lies in the class
A1A1 of B4. Then u centralizes CG(A1A1) = C2, and it follows that u lies in
the class Ã1 of G. Thus dimuG − dimuM = 22− 16 = e′G, as required. �

Lemma 4.6. Assume M is as in (∗) above, with p = 2. Then the conclusion
of Theorem 2(II)(a) holds.

Proof. Consider first G = E8. Recall that we may take u to have prime
order, hence have order 2. Therefore by 1.7, u belongs to one of the classes
2A1, 3A1, 4A1. Moreover, dimuM ≤ 72 by 1.5, so we may assume that
dimuG < 72 + e′G = 112, and hence that u ∈ 2A1 (again by 1.7).

Let M = A1E7. Then u = u1 or u0u1, where 1 6= u0 ∈ A1 and u1 ∈ E7 is
in one of the involution classes A1, 2A1, 3A′′1, 3A

′
1, 4A1 of E7. By [31, 1.8],

L(G) ↓ A1E7 = (λ1 ⊗ λ7)⊕ (L(A1E7)).

The Jordan forms of the various possibilities for u1 acting on L(E7) and on
V (λ7) = V56 are given by [17], and hence we can calculate the Jordan forms
of u1 and u0u1 on L(G), hence determining the classes of these elements in
G (again using [17]). The outcome is as follows:

class of u1 in E7 class of u1 in E8 class of u0u1 in E8

A1 A1 2A1

2A1 2A1 3A1

3A′′1 3A1 3A1

3A′1 3A1 4A1

4A1 4A1 4A1

It follows from this and the class dimensions in 1.7 that dimuG−dimuM ≥
e′G, as required.

Now let M = D8. The involution classes in M are given by 1.10: Rep-
resentatives are a2l, c2l (l = 1, 2, 3, 4). The representatives a2l lie in Levi
subgroups lA1 of an A7 in M ; and c2l lies in a Levi subgroup SO4×(l−1)A1

(see [2, Section 8]). Inspecting the extended Dynkin diagram of G, we see
that all but one of these Levi subgroups of D8 are also Levi subgroups of G;
the exception is SO4 × 3A1. Excluding this exception for the time being, it
follows that u has the same label in E8 as in D8. The dimensions of uG and
uM are therefore given by 1.7 and 1.10 respectively, from which we check
that dimuG−dimuM ≥ 40 = e′G in all cases. Finally, consider u in the class
5A1 = SO4 × 3A1 of D8. Now L(G) ↓ D8 = L(D8) ⊕ V (λ8) by [31, 1.8].
We count Jordan blocks J2 for u on L(G). The action on the spin module
V (λ8) gives 64 such blocks. Also u lies in a subgroup of type SO4 ×D6 of
D8, and the tensor product of natural modules V4 ⊗ V12 is a summand of
L(D8) restricted to this subgroup, which gives a further 24 blocks J2 for u.
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Finally, the projection of u to D6 lies in a subgroup A5, and the action on
L(A5) gives another 18 J2 blocks for u. Hence u has at least 106 blocks J2

on L(E8). But this means that u is not in class 2A1 by [17], a contradiction.
This completes the proof for G = E8.

Next letG = E7. HereM0 = T1E6, A1D6 or A7, and by 1.5, dimuM ≤ 43.
Hence we can assume that dimuG < 43 + e′G = 63, so by 1.7, u lies in one
of the involution classes 2A1, 3A′′1 of G.

Let M0 = T1E6. As u ∈M0, u lies in class 2A1 or 3A1 of E6. Also M0 is
a Levi subgroup of G, so u correspondingly lies in class 2A1 or 3A′1, 3A

′′
1 of

G; and in fact when u lies in class 3A1 of E6, it lies in 3A′1 of E7, as can be
seen by considering the action of u on V56 = VE7(λ7) and using [17]. Now
we check using 1.7 that dimuG − dimuM ≥ 20 = e′G.

Now consider M0 = A7. Involutions in M0 have labels lA1 (l = 1, 2, 3, 4),
and for l 6= 4 these are also Levi subgroups of G, whence dimuG−dimuM ≥
dim(lA1)G − dim(lA1)M (where for l = 3, lA1 stands for either 3A′1 or 3A′′1
in G), and this is at least e′G by 1.7 and 1.10. For u in class 4A1 of M0,
we calculate the Jordan form of u on V56 = VG(λ7) using V56 ↓ A7 =
V (λ2) ⊕ V (λ6) (see [24, Section 2]); this Jordan form is J24

2 ⊕ J8
1 , whence

by [17], u is in class 3A′1 of G, and the conclusion again follows using 1.7
and 1.10.

Finally, suppose M = A1D6. By 1.6, dimuG ≥ 52, so we may assume
that dimuM > 52− e′G = 32. Write u = u1 or u0u1, where 1 6= u0 ∈ A1 and
u1 ∈ D6. By 1.10, the dimension bound implies that u1 is conjugate to c6
or c4 in D6. Observe

L(G) ↓ A1D6 = L(A1D6)⊕ (1⊗ V (λ5)),

and as we have seen before, the Jordan forms of c4, c6 on V (λ5) are both
J32

2 . Hence we calculate the possible Jordan forms of u on L(G), from which
we deduce using [17] that u is in class 3A′1 or 4A1 of G. This means that
dimuG ≥ 64. Since dimuM ≤ dim(u0c6)M = 38, the conclusion follows.
This completes the proof for G = E7.

When G = E6 we have M = T1D5 or A1A5, so dimuM ≤ 25 or 22
respectively, by 1.5. Therefore, assuming as we may that dimuG < dimuM+
e′G, we see using 1.7 that M = T1D5 and u ∈ 2A1. As D5 is a Levi subgroup
this means that u lies in a class 2A1 of D5, which, as shown in the proof
of 2.5, has dimension at most 20. Thus dimuG − dimuM ≥ 32− 20 > e′G.

Now let G = F4. If M = B4, involution classes of M and their centralizers
are given by [33, 2.2], and contain the elements y1, y2, y3, y6, y7, y8 given
there; the involution classes in G are given in [33, Theorem 2.1], containing
the elements x1, x2, x3, x4 (where x1, x2 are short and long root elements,
respectively). Moreover, y1, y2, y3, y6 are equal to x1, x2, x3, x4, respectively.
And y7 lies in a product A1A1 of two long root A1’s in G, whence from the
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restriction of V26 = VG(λ4) to A1A1 we see that V26 ↓ y7 has Jordan block
structure J10

2 ⊕J6
1 ; therefore by [17], y7 is G-conjugate to x3. Similarly y8 is

G-conjugate to x4. Thus we can now record the unipotent class dimensions
in G and M = B4:

u dimuB4 u conjugate to dimuG

y1 8 x1 16
y2 12 x2 16
y3 14 x3 22
y6 18 x4 28
y7 16 x3 22
y8 20 x4 28

Thus for non-root elements, dimuG−dimuM ≥ 6 = e′G, giving the result in
this case.

For M = A1C3 we have dimuM ≤ 14 by 1.5, whence we can assume
dimuG < 14 + e′G = 20. By 1.7 this forces u to be a root element, which is
not the case. �

The cases remaining to be considered are as follows:

(∗∗)

G = E8 : M0 = A8, A2E6

G = E7 : M0 = A2A5

G = E6 : M0 = T2D4

G = F4 : M0 = D4

G = G2 : M0 = A2

Observe that by 1.2, when p 6= 3 and G 6= F4, we have M0 = CG(v)0 for
some element v ∈ G of order 3.

Lemma 4.7. The conclusion of Theorem 2(II)(a) holds in the cases (∗∗)
above.

Proof. By the assumption just before 4.4,

dimD > dimG− dimM + rank(G)− e′G

(where D = CG(u)), and hence using 1.7 we see that u lies in one of the
following classes in G:

G = E8, M = A2E6 : 2A1, 3A1, A2

G = E8, M = A8 : 2A1

G = E7 : 2A1, 3A′′1
G = E6 : 2A1

G = F4 : Ã1(p 6= 2), Ã(2)
1 (p = 2), A1Ã1, A2, Ã2

G = G2 : Ã1(p 6= 3), Ã(3)
1 (p = 3).
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Consider G = E8. Suppose first that M0 = A2E6 with p 6= 3. Write
M0 = CG(v) with v of order 3, as above, and set u = u0u1 with u0 ∈
A2, u1 ∈ E6.

If u ∈ 2A1 then by 1.7, D = D0 and D/Ru(D) = B6. Since u ∈ M0, v
lies in D, and hence v centralizes a maximal torus T6 of D. It follows that
u lies in CM0(T6), a Levi subgroup of M0 of semisimple rank at most 2.
Consequently u1 lies in class A1, 2A1 or A2 of E6. If u0 6= 1 then u0u1 lies
in a Levi subgroup 2A1, 3A1 or A1A2 of G, respectively, so has this as its
label as these subsystems are unique up to conjugacy. Thus u1 lies in class
A1 or 2A1 of E6, and the result follows using 1.7. The same argument deals
with the case where u lies in the class A2. And if u ∈ 3A1, then as above
we see that v centralizes a rank 5 torus T5. If this projects to a rank 3 torus
in the factor E6, then it projects to T2 < A2, so u0 = 1 and hence u = u1

must lie in class 3A1 of the Levi subgroup E6, giving the result by 1.7. And
if T5 projects to a rank 4 torus in E6, we use the previous argument again.

Continue to assume M0 = A2E6, now with p = 3. Since dimuG ≥ 92,
we can assume that dimuM > 92 − e′G = 52, hence that dimCM (u) < 34.
Since u1 ∈ E6 has order 3, this implies that u1 is in one of the classes
A2 + A1, 2A2, A2 + 2A1, 2A2 + A1 of E6 (see 1.7 and [6, p. 402]). We can
also assume that dimuG < dimuM + e′G ≤ 6+dim(2A2 +A1)E6 +40 = 100,
whence u lies in class 2A1 of G by 1.7. However, by [17], on L(E6) each of
the above classes u1 has at least 22 Jordan blocks of size 3, whereas on L(G),
the class 2A1 has only 14 such blocks, a contradiction. This completes the
proof for M0 = A2E6.

Now suppose M0 = A8. Here u lies in class 2A1 of G. If p 6= 3, M0 =
CG(v), the above argument forces u to lie in class A1, 2A1 or A2 of M0. As
each of these is a Levi in E8, the class must in fact be 2A1 in M0, which by
1.10 has dimension 28. Therefore dimuG − dimuM ≥ 92 − 28. And when
p = 3, we can assume dimuM > dimuG− e′G = 52. By 1.10 this means that
u has 3 Jordan blocks of size 3 on the usual 9-dimensional module for M0.
But then u has more than 14 Jordan blocks of size 3 on L(A8), whereas class
2A1 has only 14 such blocks on L(G), a contradiction. The lemma is now
proved for G = E8.

The proof for G = E7 or E6 is very similar to the above, and is left to
the reader.

Now let G = F4. Here M = D4.S3, u ∈ M0. Then M0 < B4, and we
have already shown that dimuG − dimuB4 ≥ e′G, so there is nothing more
to be done.

Finally, in G = G2, the classes Ã1(p 6= 3), Ã(3)
1 do not intersect M0 =

A2, since the two unipotent classes in A2 are those with labels A1 and
G2(a1). �
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5. Proof of Theorem 2, Part (II)(b): Semisimple elements in
maximal rank subgroups.

In this section we prove Theorem 2(II)(b). Continue to assume that G
is an exceptional algebraic group over the algebraically closed field K of
characteristic p, and let M be a maximal closed reductive subgroup of G of
maximal rank. Let s be a nonidentity semisimple element of M . By 4.1,
we need only prove the bounds in Theorem 2 for dim sG − dim(sG ∩M0).
By 1.3(i), replacing s by a suitable conjugate we may take s ∈ M0 and
dim(sG ∩M0) = dim sM0

. Write

D = CG(s).

Now s lies in a maximal torus T of M0, and clearly T ≤ D ∩M . Thus
taking roots with respect to T we have

dim sG − dim sM = dimG− dimM − dimD + dim(D ∩M)
= 2(|Φ+(G)| − |Φ+(M)| − |Φ+(D)|+ |Φ+(D ∩M)|).

As with the proof of Theorem 2(I)(b), we shall see that we may obtain the
required bounds by using root system arguments. We note that conjugacy
classes of subsystems of simple root systems were determined in [10]. We
shall use the notation employed there; in particular we shall write D2 for a
subsystem of Dn which is orthogonal to a Dn−2 subsystem, and distinguish
the two classes of A5A1 subsystems in E7 as (A5A1)′ and (A5A1)′′.

Let Φ be a root system and Ψ be a subsystem of Φ. We shall use the
following concept. If X is a type of root system, we say that Ψ is X-dense
in Φ if every subsystem of Φ of type X meets Ψ. Observe that if Ψ is X-
dense in Φ, then for any subsystem Φ1 of Φ we have that Ψ∩Φ1 is X-dense
in Φ1, while any subsystem of Φ containing Ψ is also X-dense in Φ. Note
also that in the case where Φ has only one root length, a subsystem Ψ is
A2-dense precisely if Φ \Ψ does not contain distinct roots α, β and α + β;
such subsystems are called anti-open in [18]. For convenience we repeat
from [18] the list of all proper anti-open subsystems; note that a factor D1

here is to be interpreted as ∅.

Lemma 5.1. If Ψ is a proper subsystem of Φ, then Ψ is anti-open in
Φ if and only if (Φ,Ψ) = (An, A`An−`−1), (Bn, B`Dn−`), (Cn, C`Cn−`),
(Cn, Ãn−1), (Dn, D`Dn−`), (Dn, An−1), (E6, D5), (E6, A5A1), (E7, E6),
(E7, A7), (E7, D6A1), (E8, D8), (E8, E7A1), (F4, C3A1), (F4, B4) or (G2,

A1Ã1).

The first part of the following lemma generalizes the trivial direction of
Proposition 4.2 of [18]. Let X be a type of root system, and take a root
system of type X with simple roots β1, . . . , βs and highest root

∑
mjβj ; we

define the height of X to be
∑
mj . In the results which follow, we shall
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write α1, . . . , αn for simple roots of the root system Φ and α0 =
∑
njαj for

its highest root.

Lemma 5.2.
(a) Let r ∈ N, and let Ψ be a subsystem of the root system Φ whose Dynkin

diagram is obtained from that of Φ by
(i) removing nodes αi1 , αi2 , . . . with ni1 + ni2 + · · · = r − 1, or
(ii) first extending and then removing nodes αi1 , αi2 , . . . with ni1 +ni2 +

· · · = r.
Then Ψ is X-dense in Φ for any type of root system X of height at
least r.

(b) If (Φ,Ψ) = (E8, D4
2) or (E7, D4A1

3), then Ψ is A4-dense in Φ.

Proof. (a) If either (i) or (ii) holds, the positive roots outside Ψ are those of
the form

∑
mjαj with mi1 +mi2 + · · · ∈ {1, . . . , r− 1}; thus no sum of r or

more positive roots outside Ψ (allowing repetitions) can be another positive
root outside Ψ.

(b) In each case there is a single W (Φ)-orbit of subsystems having the
same type as Ψ, and the Dynkin diagram of Ψ is obtained from that of Φ
by extending and deleting the α1-node, then extending and deleting the α6-
node; since each node removed has label 2 in the relevant diagram, the roots
in Ψ are those with m1 and m6 even. Let Φ′ be any subsystem of Φ of type
A4, with simple system β1, β2, β3, β4. For β ∈ Φ′, set dβ = (k1, k6) ∈ Z2

2,
where for i ∈ {1, 6} we set ki = 0 or 1 according as the coefficient of αi

in β is even or odd; thus dβ+β′ = dβ + dβ′ , and we have an additive map
d : Φ′ → Z2

2. Assume if possible that (0, 0) is not in the image of d. By
composing d with a suitable automorphism of Z2

2 we may assume firstly
that dβ1 = (0, 1), and then that dβ2 = (1, 0) (since if dβ2 = (0, 1) then
dβ1+β2 = (0, 0), contrary to assumption). We cannot then have dβ3 = (1, 0)
or (1, 1) (else either dβ2+β3 or dβ1+β2+β3 would be (0, 0)), so this forces
dβ3 = (0, 1); but then any choice for dβ4 gives some root β with dβ = (0, 0).
Hence at least one of the roots of Φ′ lies in Ψ as required. �

It will also be useful to observe that certain subsystems are not X-dense.
As already mentioned, if Ψ fails to be X-dense in Φ, then so does any
subsystem of Ψ.

Lemma 5.3. If Φ and Ψ are as follows, then Ψ is not A3-dense in Φ:
(i) Φ = An, Ψ of rank n− 3;
(ii) Φ = Dn, Ψ = An−3A1;
(iii) Φ = D4, Ψ = D2;
(iv) Φ = D5, Ψ = D2

2;
(v) Φ = D6, Ψ = D3A1 or A2

2;
(vi) Φ = D7, Ψ = A3A2, D3A2, D3D2A1 or A2D2

2;
(vii) Φ = E6, Ψ = A4, A3A1

2 or A2
2A1;
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(viii) Φ = E7, Ψ = (A5A1)′ or (A5A1)′′.

Proof. In each case we exhibit a subsystem of Φ of type A3 lying outside Ψ,
by giving simple roots β1, β2, β3.

(i) Let αi1 , αi2 , αi3 (with i1 < i2 < i3) be the simple roots of Φ outside Ψ,
and take β1 = αi1 , β2 = αi1+1 + · · ·+ αi2 , β3 = αi2+1 + · · ·+ αi3 .

(ii) Let αn−2 and αn−1 be the simple roots of Φ outside Ψ, and take
β1 = αn−2, β2 = αn−1, β3 = αn−3 + αn−2 + αn.

(iii) Let Ψ have simple roots α3, α4 and take β1 = α2, β2 = α1, β3 =
α2 + α3 + α4.

(iv) Let Ψ have simple roots α0, α1, α4, α5 and take β1 = α3, β2 = α2,
β3 = α3 + α4 + α5.

(v) If Ψ = D3A1 with simple roots α0, α4, α5, α6, take βi = αi for i =
1, 2, 3. If Ψ = A2

2 with simple roots α1, α2, α4, α6, take β1 = α3 + α4,
β2 = α5, β3 = α2 + α3 + α4 + α6.

(vi) If Ψ = A3A2 with simple roots α1, α2, α3, α5, α7, take β1 = α4 +
α5, β2 = α6, β3 = α3 + α4 + α5 + α7. If Ψ = D3A2 with simple roots
α1, α2, α5, α6, α7, or Ψ = D3D2A1 with simple roots α0, α1, α3, α5, α6, α7,
or Ψ = A2D2

2 with simple roots α0, α1, α3, α4, α6, α7, take β1 = α2 + α3,
β2 = α4 + α5, β3 = α3 + α4 + α5 + α6 + α7.

(vii) If Ψ = A4 with simple roots α3, α4, α5, α6, take β1 = α2, β2 =
α1 +α3 +α4 +α5 +α6, β3 = α2 +α3 + 2α4 +α5. If Ψ = A3A1

2 with simple
roots α0, α1, α4, α5, α6, take β1 = α3 +α4, β2 = α2, β3 = α1 +α3 +α4 +α5.
If Ψ = A2

2A1 with simple roots α1, α2, α3, α5, α6, take β1 = α4, β2 =
α2 + α3 + α4 + α5, β3 = α1 + α3 + α4 + α5 + α6.

(viii) If Ψ = (A5A1)′ with simple roots α0, α3, α4, α5, α6, α7, take β1 = α2,
β2 = α1 +α3 +α4 +α5 +α6, β3 = α2 +α3 + 2α4 +α5. If Ψ = (A5A1)′′ with
simple roots α1, α2, α4, α5, α6, α7, take β1 = α3, β2 = α1 + α2 + α3 + 2α4 +
α5 + α6 + α7, β3 = α2 + α3 + 2α4 + 2α5 + α6. �

Lemma 5.4. If Φ and Ψ are as follows, then Ψ is not A4-dense in Φ:
(i) Φ = An, Ψ of rank n− 4;
(ii) Φ = D5, Ψ = A1

2;
(iii) Φ = D6, Ψ = D2A1

2;
(iv) Φ = E6, Ψ = A3A1 or A1

4;
(v) Φ = E7, Ψ = A3A1

3 or A1
7.

Proof. As with the previous result we exhibit a subsystem of Φ of type A4

lying outside Ψ, by giving simple roots β1, β2, β3, β4.
(i) Let αi1 , αi2 , αi3 , αi4 (with i1 < i2 < i3 < i4) be the simple roots of Φ

outside Ψ, and take β1 = αi1 , β2 = αi1+1 + · · ·+αi2 , β3 = αi2+1 + · · ·+αi3 ,
β4 = αi3+1 + · · ·+ αi4 .

(ii) Let Ψ have simple roots α0, α5, and take βi = αi for i = 1, 2, 3, 4.
(iii) Let Ψ have simple roots α0, α1, α3, α6 and take β1 = α2, β2 = α3+α4,

β3 = α5, β4 = α4 + α6.
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(iv) If Ψ = A3A1 with simple roots α0, α4, α5, α6, take β1 = α2, β2 =
α3 + α4, β3 = α1, β4 = α2 + α3 + 2α4 + 2α5 + α6. If Ψ = A1

4 with simple
roots α0, α1, α4, α6, take β1 = α3, β2 = α2 +α4, β3 = α5, β4 = α1 +α3 +α4.

(v) Write α0
′ = α2+α3+2α4+2α5+2α6+α7, and α0

′′ = α2+α3+2α4+α5.
If Ψ = A3A1

3 with simple roots α0, α0
′, α3, α4, α5, α7, take β1 = α2, β2 =

α1 +α3 +α4 +α5 +α6, β3 = α0
′′, β4 = α6+α7. If Ψ = A1

7 with simple roots
α0, α0

′, α0
′′, α2, α3, α5, α7, take β1 = α2+α4+α5+α6, β2 = α1+α3+α4+α5,

β3 = α6 + α7, β4 = α2 + α3 + α4 + α5. �

Lemma 5.5. If Φ = D7, then Ψ is not X-dense in Φ in the following cases:
(i) Ψ = A2A1

2 or D2A1
2, X = A5;

(ii) Ψ = D3D2, X = D4.

Proof. Once more we exhibit a subsystem of Φ of type X lying outside Ψ,
by giving simple roots βi.

(i) If Ψ = A2A1
2 with simple roots α1, α2, α4, α7, take β1 = α2 + α3,

β2 = α4 + α5, β3 = α6, β4 = α5 + α7, β5 = α3 + α4. If Ψ = D2A1
2 with

simple roots α1, α3, α6, α7, take β1 = α1+α2, β2 = α3+α4, β3 = α5+α6+α7,
β4 = α4 + α5, β5 = α2 + α3.

(ii) Let Ψ have simple roots α0, α1, α2, α6, α7 and take β1 = α3, β2 = α4,
β3 = α5, β4 = α5 + α6 + α7. �

Lemma 5.6. The conclusion of Theorem 2(II)(b) holds if G = E8.

Proof. Write Φ = Φ(G). As in the proof of 3.2, we take the list of possibilities
for D from [9]. Observe that if s1 and s2 are semisimple elements with
centralizers D1 and D2, then if D1 > D2 we have |Φ+(D1)|−|Φ+(D1∩M)| ≥
|Φ+(D2)|− |Φ+(D2∩M)|, and so f(s1, G/M) ≤ f(s2, G/M); thus it suffices
to consider the casesD = E7A1, D8, D7T1, E6A2, A8, D6A1T1, D5A3, A7A1,
A4

2 and A5A2A1. Again as in 3.2, we say that D is small if it contains no
E7 or D8 factor; thus |Φ+(D)| is 64, 56 or at most 42 according as D is
E7A1, D8 or small.

The possibilities for M are listed in 1.1; note that if M0 = A2
4, A1

8 or T8

then |Φ+(M)| ≤ 12, and hence f(s,G/M) ≥ 2(120−12−|Φ+(D)|), which is
88, 104 or at least 132 according as D is E7A1, D8 or is small. It therefore
suffices to consider the cases M0 = E7A1, D8, A8, E6A2, D4

2 and A4
2.

We may assume that D has more than 120 − |Φ+(M)| − 1
2fG,M,D positive

roots; if D is small, this number is 21, 24, 30, 30, 38 or 36 according as
M0 = E7A1, D8, E6A2, A8, D4

2 or A4
2. Thus the possibilities for D small

are as follows:

M0 D

D4
2 , A4

2 D7T1 or E6A2

A8, E6A2 D7T1, E6A2, A8 or D6A1T1

E7A1, D8 D7T1, E6A2, A8, D6A1T1, D5A3 or A7A1
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First letM0 = A4
2, so that by 5.2 Φ(M) is both A5-dense andD4-dense in

Φ. IfD = E7A1 orD8 then by 5.1 Φ(D) is A2-dense in Φ, and so Φ(D∩M) is
A2-dense in Φ(M); thus by 5.1 we see that the intersection ofD with each A4

factor must be A4, A3T1 or A2A1T1, so that |Φ+(D∩M)| ≥ 8. ForD = D8 it
follows that f(s,G/M) ≥ 2(120−20−56+8) = 104, while for D = E7A1 we
have f(s,G/M) ≥ 2(120−20−64+8) = 88. IfD = D7T1 or E6A2 then by 5.2
Φ(D) is A3-dense in Φ, so Φ(D ∩M) is A3-dense in Φ(M). For D = E6A2

we see by 5.3 that Φ+(D∩M) must contain at least two roots from each A4

factor, so |Φ+(D∩M)| ≥ 4; this gives f(s,G/M) ≥ 2(120−20−39+4) = 130.
For D = D7T1 we cannot have Φ(D ∩M) = D2

2, D2A1
2, A2D2 or A2A1

2,
because by 5.5 the first and third are not D4-dense in Φ(M) and the second
and fourth are not A5-dense there; thus we must have |Φ+(D ∩M)| ≥ 6,
whence f(s,G/M) ≥ 2(120− 20− 42 + 6) = 128.

Next let M0 = D4
2. If D = D7T1 or E6A2, by 5.2 Φ(D) is A3-dense

in Φ; by 5.3 Φ+(D ∩M) must contain at least three roots from each D4

factor, so |Φ+(D∩M)| ≥ 6, giving f(s,G/M) ≥ 2(120− 20− 42+6) = 120.
If D = E7A1 or D8 then Φ(D ∩M) is A2-dense in Φ(M), and so by 5.1
the intersection of D with each D4 factor is D4, A3T1, D3T1 or D2

2, whence
|Φ+(D∩M)| ≥ 2.4 = 8; for D = D8 this gives f(s,G/M) ≥ 2(120−24−56+
8) = 96, while for D = E7A1 we have f(s,G/M) ≥ 2(120−24−64+8) = 80.

Now let M0 = A8, so that Φ(M) is A3-dense in Φ by 5.2. If D = E7A1 or
D8 then Φ(D∩M) is A2-dense in Φ(M), and so must be A8, A7, A6A1, A5A2

or A4A3; for D = D8 this gives f(s,G/M) ≥ 2(120 − 36 − 56 + 16) = 88,
while for D = E7A1 we have f(s,G/M) ≥ 2(120 − 36 − 64 + 16) = 72. If
D = D7T1, E6A2 or A8 then Φ(D∩M) is A3-dense in both Φ(D) and Φ(M);
the latter condition implies that it must have rank at least 6 by 5.3. Listing
the subsystems of Φ(M) of rank at least 6 we find that only A3A2A1 and
A2

3 have fewer than 12 positive roots. For D = E6A2 or A8 we thus have
f(s,G/M) ≥ 2(120− 36− 39+9) = 108; for D = D7T1 neither A3A2A1 nor
A2

3 is a subsystem of Φ(D), so f(s,G/M) ≥ 2(120 − 36 − 42 + 12) = 108.
If D = D6A1T1 then by 5.3 |Φ+(D ∩M)| ≥ 3, so f(s,G/M) ≥ 2(120− 36−
31 + 3) = 112.

The cases where M0 = E6A2 may all be treated in like fashion; we use the
fact that Φ(D∩M) is A3-dense in Φ(D), and usually either A2-dense or A3-
dense in Φ(M), to produce lower bounds for |Φ+(D ∩M)|, from which the
required bounds on f(s,G/M) follow. For example, if D = E7A1 then A2-
density in Φ(M) implies that Φ(D ∩M) must be Y Z where Y = E6, D5 or
A5A1 and Z = A2 or A1; by A3-density in Φ(D) we cannot have Φ(D∩M) =
A5A1

2, so |Φ+(D∩M)| ≥ 19, giving f(s,G/M) ≥ 2(120−39−64+19) = 72.
Similarly, in all cases where M0 = D8, the A2-density of Φ(D∩M) in Φ(D)
immediately leads to the required bounds.

Finally, let M = E7A1, so that Φ(D∩M) is A2-dense in Φ(D); by taking
those cases already treated in which D = E7A1, and interchanging the roles
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of D and M , we are left with the cases D = E7A1, D7T1, D6A1T1, D5A3

and A7A1 to consider. A2-density immediately disposes of the last three
of these; for D = D7T1 we note that Φ(D ∩ M) cannot be D4D3 since
Φ(M) has no such subsystem, and all other A2-dense possibilities satisfy
the required bound. Thus we are left with D = E7A1; we seek to show
that f(s,G/M) ≥ 48, and so |Φ+(D ∩M)| ≥ 32. The A2-dense subsystems
which do not satisfy this bound are A7, A7A1 and D6A1; we may see that
these do not occur as follows. If Φ′ is any subsystem of Φ of type A7 or
D6A1, and Φ′ lies in an E7 subsystem Ψ, then ZΦ′ ∩ Φ = Ψ; thus no such
subsystem Φ′ can lie in two distinct E7 subsystems. It follows that Φ(D∩M)
cannot be A7 or A7A1; and if the intersection of Φ(D) with the E7 factor
of Φ(M) is D6A1, then the A1 cannot lie in the E7 factor of Φ(D), so that
the A1 factor of Φ(D) lies in the E7 factor of Φ(M)—but now interchanging
the roles of D and M shows that the A1 factor of Φ(M) lies in Φ(D), and
so Φ(D ∩M) = D6A1

2. This concludes the proof that the conclusion of
Theorem 2(II)(b) holds if G = E8. �

Lemma 5.7. The conclusion of Theorem 2(II)(b) holds if G = E7.

Proof. We proceed as in the previous proof, and write Φ = Φ(G). The
list of possibilities for D from [9] shows that it suffices to consider the cases
D0 = E6T1, D6A1, A7, D5A1T1, A6T1, A5A2, A5A1T1, D4A1

2T1 and A3
2A1.

Again as in 3.3, we say that D is small if it contains no E6, D6 or A7 factor;
thus |Φ+(D)| is 36, 31, 28 or at most 21 according as D0 is E6T1, D6A1, A7

or small.
The possibilities for M are listed in 1.1; note that if M0 = A1

7 or T7 then
|Φ+(M)| ≤ 7, and hence f(s,G/M) ≥ 2(63− 7− |Φ+(D)|), which is 40, 50,
56 or at least 70 according as D0 is E6T1, D6A1, A7 or small. It therefore
suffices to consider the cases M0 = E6T1, D6A1, A7, A5A2 and D4A1

3. We
may assume that D has more than 63− |Φ+(M)| − 1

2fG,M,D positive roots;
if D is small, this number is 10, 12, 13, 16 or 19 according as M0 = E6T1,
D6A1, A7, A5A2 or D4A1

3. Thus the possibilities for D small are as follows:

M0 D0

D4A1
3 D5A1T1 or A6T1

A5A2 D5A1T1, A6T1 or A5A2

A7 D5A1T1, A6T1, A5A2, A5A1T1 or D4A1
2T1

E6T1, D6A1 D5A1T1, A6T1, A5A2, A5A1T1, D4A1
2T1 or A3

2A1

First let M0 = D4A1
3; then by 5.2 Φ(M) is A4-dense in Φ, and so Φ(D∩

M) is A4-dense in Φ(D). By 5.4 we see that if D0 = A6T1 or D5A1T1 then
|Φ+(D ∩M)| ≥ 3, so f(s,G/M) ≥ 2(63 − 15 − 21 + 3) = 60; similarly if
D0 = A7 then |Φ+(D∩M)| ≥ 4, so f(s,G/M) ≥ 2(63−15−28+4) = 48. If
D0 = D6A1 or E6T1 then Φ(D) is A2-dense in Φ, so Φ(D ∩M) is A2-dense
in Φ(M), which forces the intersection of Φ(D) with the D4 factor of Φ(M)
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to be D4, D3, A3 or D2
2. For D0 = D6A1 it follows that |Φ+(D ∩M)| ≥ 4,

and so f(s,G/M) ≥ 2(63 − 15 − 31 + 4) = 42. For D0 = E6T1 we must
have Φ(D ∩M) = D4, A3A1

j for 0 ≤ j ≤ 2 or A1
4; since A3A1 and A1

4

are not A4-dense in Φ(D) by 5.4, it follows that |Φ+(D ∩M)| ≥ 8, giving
f(s,G/M) ≥ 2(63− 15− 36 + 8) = 40.

Next let M0 = A5A2, so that by 5.2 we have A3-density of Φ(M) in Φ
and hence of Φ(D ∩M) in Φ(D). By 5.3 it follows that if D0 = A5A2 then
|Φ+(D ∩M)| ≥ 3; if D0 = A6T1 then Φ(D ∩M) is not A1

3 or A2A1, so
|Φ+(D ∩M)| ≥ 5; and if D0 = D5A1T1 then Φ(D ∩M) is not A1

4 or A2A1,
so |Φ+(D∩M)| ≥ 5. If D0 = E6T1, D6A1 or A7 then Φ(D∩M) must also be
A2-dense in Φ(M), and thus must be either A5Ak or A4−jAjAk for 0 ≤ j ≤ 2
and 1 ≤ k ≤ 2. Thus |Φ+(D ∩M)| ≥ 7; and for D0 = E6T1 we cannot have
Φ(D ∩M) = A2

2A1 or A3A1
2 by A3-density in E6, so |Φ+(D ∩M)| ≥ 9. In

all cases the required bound on f(s,G/M) follows.
If M0 = A7, we have A2-density of Φ(M) in Φ and hence of Φ(D ∩M)

in Φ(D); in all cases the required lower bound on |Φ+(D ∩ M)| follows
immediately from 5.1. Likewise A2-density disposes of all cases with M0 =
D6A1 except those in which D0 = D6A1 or D5A1T1; these cases require
further treatment. First assume D0 = D6A1. By A2-density we see that if
|Φ+(D ∩M)| ≤ 14 then we must have Φ(D ∩M) = D4D2, D3

2A1 or D3
2.

Moreover, if the first of these holds then the A1 factor of Φ(D) cannot be
involved in the D2 (otherwise the intersection of Φ(M) with the D6 factor
of Φ(D) would not be A2-dense); the same is true of the A1 factor of Φ(M).
Thus the intersection of the two D6 factors would have to be a D4D2 or D3

2

subsystem. However, if Φ′ is a D4D2 or D3
2 subsystem of a D6 subsystem

Ψ of Φ, then ZΦ′ ∩ Φ = Ψ; thus Ψ is the unique D6 subsystem containing
Φ′, and so the intersection of two distinct D6 subsystems cannot be either
D4D2 or D3

2. We therefore have |Φ+(D ∩M)| ≥ |Φ+(A5)| = 15 and so
f(s,G/M) ≥ 2(63 − 31 − 31 + 15) = 32. Now assume D0 = D5A1T1.
Here A2-density shows that the intersection of Φ(M) with the D5 factor of
Φ(D) must be D5, D4, A4 or D3D2; we shall show that we cannot have
Φ(D ∩M) = D3D2, from which it will follow that |Φ+(D ∩M)| ≥ 9 and
so f(s,G/M) ≥ 2(63 − 31 − 21 + 9) = 40. We know by 5.2 that Φ(D) is
A3-dense in Φ; by 5.3 neither A3A1 nor D3A1 is A3-dense in D6, so if we
had Φ′ = Φ(D ∩ M) = D3D2 then Φ′ would have to lie in both the D6

factor of Φ(M) and the D5 factor of Φ(D). This would imply that ZΦ′ ∩ Φ
equals the D5 factor of Φ(D); since each D5 subsystem in Φ is orthogonal
to a unique positive root, there is a unique positive root β of Φ orthogonal
to Φ′, namely that of the A1 factor of Φ(D). However, the positive root of
the A1 factor of Φ(M) is orthogonal to the D6 factor, and thus to Φ′; so it
must be β, and Φ(D ∩M) is D3D2A1 rather than D3D2.

Finally let M0 = E6T1, so that Φ(D ∩ M) is A2-dense in Φ(D); by
taking those cases already treated in which D = E6T1, and interchanging
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the roles of D and M , we are left with the cases D0 = E6T1, D5A1T1, A6T1,
A5A1T1, D4A1

2T1 and A3
2A1 to consider. A2-density immediately disposes

of the last three of these. For D0 = A6T1 we note that A3A2 is not a
subsystem of Φ(M); for D0 = D5A1T1, similarly A3A1

3 is not a subsystem
of Φ(M), and the A3-density of Φ(D∩M) in Φ(M) rules out the possibilities
Φ(D ∩ M) = A4 or A3A1

2; in either case we see that |Φ+(D ∩ M)| ≥
|Φ+(A4A1)| = 11 and f(s,G/M) ≥ 2(63− 36− 21+11) = 34. If D0 = E6T1

we cannot have Φ(D ∩M) = A5A1, because if Φ′ is an A5A1 subsystem of
Φ which lies in an E6 subsystem Ψ, then ZΦ′ ∩ Φ = Ψ, and so Φ′ cannot
lie in two distinct E6 subsystems of Φ; thus by A2-density we must have
|Φ+(D ∩M)| ≥ |Φ+(D5)| = 20 and f(s,G/M) ≥ 2(63− 36− 36 + 20) = 22.
This concludes the proof that the conclusion of Theorem 2(II)(b) holds if
G = E7. �

Lemma 5.8. The conclusion of Theorem 2(II)(b) holds if G = E6, F4, G2.

Proof. The proof is carried out using the methods of the previous lemmas,
so we only provide a sketch. For G = E6 arguments based on A2- and A3-
density alone suffice in all cases except that whereM0 andD0 are bothD5T1;
here we note that the intersection of two D5 subsystems cannot be D3D2,
by the spanning argument used several times above, and so |Φ+(D ∩M)| ≥
|Φ+(A4)| = 10, giving f(s,G/M) ≥ 2(36− 20− 20 + 10) = 12.

Now let G = F4; here M0 = B4, D4, C3A1 or A2Ã2, and if p = 2 we may
also have M0 = C4 or D̃4. If M0 = D4 then Φ(M) consists of all the long
roots of Φ; so Φ(D ∩M) consists of the long roots of Φ(D), and the values
f(s,G/M) are clear. Applying the graph automorphism gives the values for
M0 = D̃4 when p = 2 (note that D cannot then be B4). In all cases where
M0 = C3A1, the fact that Φ(D∩M) is anti-open in Φ(D) immediately leads
to the required bounds. If M0 = B4 then Φ(D ∩M) contains all long roots
of Φ(D) and is anti-open in Φ(D); these considerations suffice in all cases
(note that if D = A2Ã2 then Φ+(D ∩M) contains at least one short root
in addition to all positive long roots of Φ+(D)). Again, applying the graph
automorphism deals with the possibility M0 = C4 when p = 2. Allowing
interchange of the roles of D and M , the only cases remaining to be treated
are those where M0 = A2Ã2 and D = B3T1 or A3Ã1. As far as long roots
are concerned, those of Φ(G) form a D4 system, while those of Φ(D) form
an A3 subsystem, which thus is anti-open and must meet the A2 factor of
Φ(M); this suffices to give the bound for D = A3Ã1, so assume D = B3T1

and suppose if possible that Φ(D ∩M) = A1. There is a unique positive
short root β such that the roots orthogonal to it are those of Φ(D); since
by assumption the A2 factor of Φ(M) does not lie in Φ(D), not all of its
roots are orthogonal to β, and so β cannot lie in the Ã2 factor of Φ(M).
Thus if γ1, γ2, γ3 are the positive short roots of Φ(D), then β, γ1, γ2, γ3 are
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four orthogonal short roots lying outside the Ã2 factor of Φ(M); but this is
impossible because the short roots of Φ(G) form a D̃4 subsystem, in which
any D̃2

2 subsystem is anti-open. Thus we cannot have Φ(D∩M) = A1, and
so |Φ+(D ∩M)| ≥ 2, from which the required bound follows.

Finally if G = G2 the bounds are immediate from consideration of long
and short roots. �

This completes the proof of Theorem 2(II)(b).

6. Completion of proof of Theorem 2: Part (III).

In this section we complete the proof of Theorem 2 by handling Part (III).
Thus let M be a maximal closed subgroup of the exceptional algebraic group
G, and suppose M does not contain a maximal torus of G. If M is finite
then dimxG ∩M = 0 for all x ∈ G, and Theorem 2(III) obviously holds.
Hence we may assume M has positive dimension. We shall make use of
the information given about the possibilities for M in [22, Theorem 1];
this result gives the list of possibilities for M , excluding some unknown
cases in small characteristics. Note that all the unknown cases in small
characteristics have M of small dimension, and are quickly ruled out in the
next lemma by dimension arguments.

Lemma 6.1. Either the conclusion of Theorem 2(III) holds, or G,M are
as follows:

G M
E8 G2F4

E7 A1F4

E6 F4, C4(p 6= 2)
F4 A1G2(p 6= 2), G2(p = 7)

Proof. If M 6= M0 then M0 possesses a graph automorphism, and we see
from [22, Theorem 1] that G,M0 are as in the following table:

G M0

E8 A2, A3, A1G2G2

E7 A2, D4, A1A1

E6 A2

It follows easily using 1.4 that if x ∈M−M0 is of prime order then dimxG−
dim(xG ∩ (M −M0)) ≥ eG, e′G or hG, according as x is a root element, a
unipotent non-root element, or a semisimple element, respectively. Thus in
order to prove Theorem 2(III), we need only show that dimxG − dim(xG ∩
M0) ≥ eG, e′G or hG in the respective cases just described.

First consider a semisimple element s ∈M0. As usual we can assume that
dim(sG ∩M0) = dim sM0

. By 1.1, we have dim sG ≥ kG = 112, 54, 32, 16, 6,
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according asG has type E8, E7, E6, F4, G2 respectively. Hence Theorem 2(III)
holds unless dim sM0

> kG − hG. Thus we may assume that dim sM >
kG−hG, whence dimM − rank(M) > kG−hG. Now [22, Theorem 1] shows
that M is in the list in the conclusion.

Now consider a unipotent element u ∈ M0. If u is a long root element
then by 1.13(ii), u lies in a simple factor of M and is a long root element
therein (note that by the maximality of M , the case in 1.13(iii) where u is
a short root element in a subgroup Bn does not arise). Now we see that the
conclusion of Theorem 2(III) holds, using [22, Theorem 1] and 1.12.

Thus we may assume u is not a long root element (or a short root
element if (G, p) = (F4, 2) or (G2, 3)). Then by 1.7, dimuG ≥ k′G =
92, 52, 32, 22, 8, according as G = E8, . . . , G2. As above, we may suppose
dimM − rank(M) > k′G − e′G, which again leads to the list in the conclu-
sion. �

Lemma 6.2. The conclusion of Theorem 2(III) holds if G = E6,M = F4

or C4 (p 6= 2).

Proof. In this case, M = CG(τ), where τ is an involutory graph automor-
phism of G (see 1.4).

Consider first a semisimple element s ∈M . Letting D = CG(s), from 1.5
we have

dimD ∩M = dimCD(τ) ≥ |Σ+(D)|+ rank(D)− rank(D′),

and therefore

dim sG − dim sM = dimG− dimD − dimM + dimD ∩M
≥ dimG− dimM − (|Σ+(D)|+ rank(D′)).

Hence either the conclusion of Theorem 2(III) holds, or M = F4 and
(|Σ+(D)| + rank (D′)) > 14, in which case D0 = D5T1, D4T2, A5T1, A5A1,
A4A1T1 or A3

2.
Assume then that M = F4 and D is in this list. Observe that M ∩D =

CD(τ) = CF4(s), a reductive group, and τ induces an automorphism on D.
Suppose D = T1D5. When p 6= 2, D centralizes an involution t, so

M ∩ D = CF4(t) = B4; and when p = 2 the fact that CD(τ) = CF4(s) is
reductive forces it to be B4 again. Thus dim sG − dim sM = 32− 16 > hG,
as required.

Likewise, if D0 = D4T2 then CD(τ)0 = B3T1 (note that B2B1T1 is not
possible, as this does not lie in a Levi subgroup of F4); if D0 = A5T1 or
A5A1 then D centralizes an involution t when p 6= 2, so CD(τ) ≤ CF4(t),
whence CD(τ)0 = C3T1 or C3A1 respectively (and when p = 2 the fact
that CD(τ) is reductive forces the same conclusion); if D = A4A1T1 then
CD(τ) = B2A1T1; and if D0 = A3

2 then |s| = 3, so dimCM (s) ≥ 16 by 1.5.
The required bounds follow.
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Now consider a unipotent element u ∈ M of order p. For M = F4,
unipotent class representatives for F4, and the corresponding classes in E6,
are given in [17, Table A], and the required bound for dimuG − dimuM is
immediate from [6, pp. 401-2].

Now let M = C4 (p 6= 2). If u is not in class A1 or 2A1 of G, then
dimuG ≥ 40 by 1.7, hence we may assume that dimuM > 40 − e′G = 30.
By 1.10, the only such class in C4 is that of a regular unipotent element,
with a single Jordan block on the usual 8-dimensional C4-module V8. As
u has order p, this implies that p ≥ 11. If V27 denotes the 27-dimensional
G-module VG(λ1), then V27 ↓ C4 = VC4(λ2) by [24, 2.5]. One checks that on
this module u has one Jordan block of size 13 if p ≥ 13, and has 2 blocks of
size 11 if p = 11. Hence by [17, Table 5], u lies in class E6(a1) of G, giving
dimuG − dimuM = 70− 32 > e′G.

If u is in class A1 then u is a long root element in both G and C4, so
dimuG−dimuM = 22−8. Finally, suppose u is in class 2A1. By [17], V27 ↓
u = J3 ⊕ J8

2 ⊕ J8
1 . Since V27 ↓ C4 = VC4(λ2), the only compatible possibility

for V8 ↓ u is J2
2 ⊕ J4

1 . Then by 1.10, dimuM = 14, while dimuG = 32, so
the result holds in this case also. �

Lemma 6.3. The conclusion of Theorem 2(III) holds if G = E7,M =
A1F4.

Proof. We first handle unipotent elements u. If u is a root element of G,
then by 1.13 and 1.12, dimuG − dimuM ≥ 33− 16 = 17.

Now suppose u is not a root element. Then by 1.7, dimuG ≥ 52. If
p = 2 then u is an involution, and from 1.7 we have dimuM ≤ 30, giving
dimuG − dimuM ≥ 52 − 30 > 20 = e′G, as required. So assume p 6= 2. We
may assume that

dimuG < e′G + dimuM ≤ 20 + dimM − rank(M) = 70.

Hence by 1.7, u lies in class 2A1, 3A′′1, 3A
′
1 or A2 of G.

Write u = u0u1 with u0 ∈ A1, u1 ∈ F4. We may assume that dimuM >
dimuG− e′G, whence dimuM > 32 and dimuF4

1 > 30. Therefore u1 is in one
of the classes A2 + Ã1, B2, . . . , F4 of F4 listed in order as in [17, Table 4].
By [24, 2.4],

L(G) ↓ A1F4 = L(A1F4)⊕ (V (2)⊗ V (λ4)).

Hence, using [17, Tables 3, 4], we can compute the possible Jordan forms of
u = u0u1 on L(G) with u1 in one of the above classes. We find that none of
these agrees with the Jordan form of any of the classes 2A1, 3A′′1, 3A

′
1, A2,

as given in [17, Table 8]. This completes the proof for unipotent elements.
Now consider a semisimple element s ∈ G. If s is an involution, then

by 1.2, dim sG ≥ 54 while dim sM ≤ 30, giving dim sG − dim sM ≥ 24 >
hG = 22, as required. So we may suppose s has odd (prime) order. We may
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also assume that dim sG < 22 + dim sM , whence dim sG < 72. By 1.1, this
forces CG(s) = T1D6 or T1E6. Now by [24, Section 2],

L(G) ↓ A1D6 = L(A1D6)⊕ (V (1)⊗ V (λ5)),

L(G) ↓ T1E6 = L(T1E6)⊕ V (λ1)⊕ V (λ6).

It follows that if CG(s) = T1D6 then for some root of unity δ, the eigenvalues
of s on L(G) are 1 (multiplicity 67), δ, δ−1 (multiplicity 32 each) and δ2, δ−2

(multiplicity 1 each); and if CG(s)0 = T1E6 then the eigenvalues of s on
L(G) are 1 (multiplicity 79), δ, δ−1 (multiplicity 27 each).

Write s = s1s2 with s1 ∈ A1, s2 ∈ F4. The conclusion is clear if s2 = 1,
so assume s2 6= 1.

Suppose now that s1 6= 1 also, and consider the composition factor
V (2) ⊗ V (λ4) of M = A1F4 on L(E7). Since a maximal torus of M has
nontrivial 0-weight spaces on each factor V (2) and V (λ4) (of dimension 2
on V (λ4)), we see that the eigenvalues δ, δ−1 both appear with positive
multiplicity for s1 on the 3-dimensional factor VA1(2), and for s2 on the
26-dimensional factor VF4(λ4). In particular, the eigenvalue δ2 appears for
s on the tensor product. It follows that if δ3 6= 1, then CG(s) = T1D6

and s1, s2 act on the two tensor factors as diag(δ, δ−1, 1), diag(δ, δ−1, 124)
respectively. But then dimCV (2)⊗V (λ4)(s) = 26, and so, as dimCG(s) = 67,
we have dimCL(A1F4)(s) = 41. This forces dimCF4(s2) ≥ 38, whereas there
is no such semisimple element in F4 (by 1.1 for example).

Therefore δ3 = 1 and s has order 3. On V (2)⊗V (λ4) we have s = s1s2 =
diag(δ, δ−1, 1)⊗ diag(δ, . . . , δ, δ−1, . . . , δ−1, 126−2k) (where in the second fac-
tor δ, δ−1 appear with multiplicity k). Then dimCV (2)⊗V (λ4)(s) = 26 again,
giving a contradiction as before.

We have now established that s1 = 1, that is, s ∈ F4. Also CG(s) = T1D6

or T1E6, and A1 = CG(F4) ≤ CG(s) = CG(T1), whence T1 ≤ CG(A1) = F4.
Suppose now that p 6= 2. If CG(s) = T1D6, then the torus T1 lies in

a fundamental subgroup J ∼= SL2 centralizing D6, and [25, Theorem 1]
forces J < F4. Thus J is a fundamental SL2 in F4, whence CF4(s) =
CF4(T1) = T1C3, and dim sG − dim sM = 66 − 30, giving the conclusion.
And if CG(s) = T1E6 then an involution in T1 lifts to an element of order 4
in the simply connected cover of G, which is impossible as T1 < F4.

Finally, consider the case where p = 2. Here there is an element t ∈ T1

of order 3, and CG(t) = CG(s) = CG(T1). Moreover by 1.2, CF4(t) =
A2A2, T1B3 or T1C3, and

dim sG − dim sM = dim sG − (dimM − dimCF4(t)).

The right hand side is greater than hG = 22, except when CG(s) = T1E6

and CF4(t) = A2A2. However, in the latter case, we deduce from

VF4(λ4) ↓ A2A2 = (V (λ1)⊗ V (λ1))⊕ (V (λ2)⊗ V (λ2))⊕ (0⊗ V (λ1 + λ2))
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(see [24, Section 2]), that dimCV (λ4)(t) = 8, whence dimCV (2)⊗V (λ4)(t) =
24. This yields dimCL(G)(t) < 79, a contradiction (as CG(t) = CG(s) =
T1E6 in this case). �

Lemma 6.4. The conclusion of Theorem 2(III) holds if G = E8,M =
G2F4.

Proof. For s semisimple, we have dim sG−dim sM ≥ 112−dimM+rank (M)
> hG, as required.

Now consider unipotent elements u. If u is a root element of G then
dimuG − dimuM ≥ 58− 16 > eG. Otherwise, we may assume that

dimuG < dimM − rank(M) + e′G = 100.

Hence by 1.7, u lies in class 2A1 of G. Then dimuG = 92, so we can suppose
that dimuM > 92 − e′G = 52, whence dimuF4 > 40. As u has order p, we
see from 1.7 that p 6= 2 or 3. By [17], the largest Jordan block of u on L(G)
has size 3. Hence if u = u0u1 with u0 ∈ G2, u1 ∈ F4, then by [17] again, u1

lies in class A1 or Ã1 of F4. But then dimuM
1 < 40, a contradiction. �

Lemma 6.5. The conclusion of Theorem 2(III) holds if G = F4.

Proof. Here M = A1G2 (p 6= 2) or G2 (p = 7). If u is a long root element of
G, then use of 1.13 gives dimuG − dimuM ≥ 16 − 6 > eG = 4. And if u is
not a long root element then by 1.7, dimuG ≥ 22 and dimuM ≤ 14, giving
dimuG − dimuM ≥ 8 ≥ e′G, as required.

Now consider a semisimple element s ∈M . We can suppose CG(s) = B4,
as otherwise by 1.1 we have dim sG ≥ 28, giving the conclusion. Then
dim sG = 16, while since s is an involution, dim sM ≤ 10, giving the result.

�

The proof of Theorem 2 is now complete.

7. The tables of bounds for Theorem 2.

This section consists of four tables which define the constants referred to in
the statement of Theorem 2. The numbers cG,i,α, cG,i,β and c′G,i are defined
in Tables 7.1 and 7.2; and the numbers dG,i,D and fG,M,D in Tables 7.3 and
7.4. In the latter tables, separate bounds are given for certain cases in which
the subgroup D has a large normal factor, as indicated by the heading “D .”
in the second column. For example, from Table 7.3 for G = E8, we have
dG,2,E7A1 = 41, dG,4,A7T1 = 67 (since here D.E7, A7 respectively); and from
Table 7.4 for G = E6, we have fG,A5A1,D5T1 = 16, fG,NG(D4T2),A4A1T1

= 26.
In Table 7.4, if G = F4 then M0 = C4 or D̃4 only occurs for p = 2;

likewise if G = G2 then M0 = Ã2 only occurs for p = 3.
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i cE8,i,α c′E8,i cE7,i,α c′E7,i cE6,i,α c′E6,i

1 18 28 8 12 4 6
2 22 34 11 16 6 8
3 23 36 12 18 7 10
4 25 40 14 21 9 12
5 25 39 13 20 7 10
6 22 36 10 16 4 6
7 18 30 6 10
8 12 20

Table 7.1. G = E8, E7, E6.

i cF4,i,α cF4,i,β c′F4,i cG2,i,α cG2,i,β c′G2,i

1 5 6− 2δp,2 8− 2δp,2 3 3− δp,3 4− δp,3

2 7 9− 3δp,2 11− 2δp,2 2 3 4− δp,3

3 6 9− 2δp,2 11− 2δp,2

4 4 6− δp,2 8− 2δp,2

Table 7.2. G = F4, G2.

i
G D . 1 2 3 4 5 6 7 8
E8 E7 35 41 44 48 47 44 36 24

D8 40 48 51 55 54 50 43 29
other 48 58 62 67 66 61 52 36

E7 E6 12 17 18 22 21 17 11
D6 16 20 23 26 24 20 12
A7 17 23 25 28 27 22 15

other 20 26 30 34 32 26 17
E6 D5 6 8 10 12 10 6

A5 8 11 13 15 13 8
other 10 12 16 18 16 10

F4 B4 4 6 7 5
C3 8 11 11 8
B3 8 12 12 9

other 10 13 14 11
G2 A2 2 3

other 3 3

Table 7.3. Values of dG,i,D.
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G D . M0

E8 E7A1 D8 E6A2 A8 D4
2 other

E7 48 56 65 68 72 84
D8 56 64 81 84 88 100

other 70 80 102 108 116 128
E7 E6T1 D6A1 A7 other

E6 22 24 27 36
D6 24 32 32 39
A7 27 32 35 45

other 34 40 44 58
E6 D5T1 A5A1 D4T2 A2

3 T6

D5 12 16 20 24 26
A5 16 20 24 27 34

other 20 24 26 32 42
F4 B4 C4 D4 D̃4 C3A1 A2Ã2

B4 8 − 9 − 8 12
C3 8 10 12 16 14 18
B3 10 8 16 12 16 22

other 12 12 16 16 18 24
G2 A2 Ã2 A1Ã1

A2 6 − 4
other 3 3 4

Table 7.4. Values of fG,M,D.
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