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Recent major progress in the study of the homology cobor-
dism group of homology 3-spheres is related to the work of
Fukumoto, Furuta, and Ue on their w-invariant. We identify
the w-invariant with the p-invariant of Neumann and Sieben-
mann for all plumbed homology spheres. This leads to proving
that all Seifert fibered and some classes of plumbed homology
spheres with nontrivial Rohlin invariant have infinite order in
the homology cobordism group.

The homology cobordism group ©3 of oriented integral homology 3-sphe-
res plays an outstanding role in the study of manifolds of high dimensions.
Its most spectacular application is to the question of whether a closed topo-
logical manifold M of dimension five or higher is a polyhedron. It is shown
in [10] and [11] that every such M is a polyhedron if and only if there exists
a homology sphere with nontrivial Rohlin invariant which has second order
in ©3. It is not known if such a homology sphere exists. In fact, it is not
known, at least to this author, whether ©2 has any torsion at all or whether
©3 modulo torsion is free abelian.

The group ©2 has been studied successfully in the last two decades by
the methods of gauge theory. The main focus of such studies has been on
Seifert fibered homology spheres (a1, ..., a,) and other plumbed homology
spheres. First, Fintushel and Stern [3] have shown that certain manifolds
Y(a1, ..., a,) have infinite order in ©3. Then Furuta [8] has found an infinite
collection of Seifert fibered homology spheres of infinite order all of which
are linearly independent in ©3, thus effectively establishing that ©3 is an
infinitely generated abelian group.

Gauge theoretical methods have also given a boost to the study of ©3
via the p-invariant of Neumann [12] and Siebenmann [18]. It has produced
more examples of Seifert fibered homology spheres having infinite order in
©3, see [15] and [16]. Of particular importance in this study was the so
called 10/8-condition on the signature of smooth closed spin 4-manifolds
established by Furuta [9]. Recently, Fukumoto and Furuta [6] extended
this result to spin V-manifolds. For any integral homology sphere ¥, they
introduced a family of invariants w(X, X, ¢) of ¥ and a spin V-manifold
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(X, ¢) it bounds, and obtained some strong restrictions on the behavior of
w(X, X, ¢) whenever ¥ has finite order in ©3.

In the special case of a Seifert fibered homology sphere ¥ = ¥(ayq, ..., a,),
Fukumoto, Furuta and Ue in [7] showed that w(3, X, c) = —f(X) for a spe-
cific choice of (X, ¢). Based on this result, they proved that  is a homology
cobordism invariant for all ¥(aq,...,a,) and their multiples provided one
of the Seifert invariants a; is even, or else their number does not exceed six.

We develop a general theory of the w-invariant for plumbed homology
spheres and plumbed V-manifolds. Plumbed V-manifolds comprise a rather
large class of V-manifolds and include, in particular, all V-manifolds studied
in [4] and [7] in connection with plumbed homology spheres. Every plumbed
homology sphere bounds a spin plumbed V-manifold.

Theorem 1. Let X be a plumbed homology sphere then w(3, X, c) = —p(X)
for every spin plumbed V-manifold (X, c) such that 0X = X.

Using this theorem, we study homology cobordism properties of Seifert
fibered and plumbed homology spheres. We notice that the results of [7] and
[16] can be combined to remove the above mentioned restriction on Seifert
fibered homology spheres of [7], and prove the following general result.

Theorem 2. Any Seifert fibered homology sphere ¥(aq,...,a,) with non-
vanishing p-invariant has infinite order in the homology cobordism group.

The modulo 2 reduction of the p-invariant coincides with the Rohlin in-
variant. In particular, if the Rohlin invariant of ¥(ay,...,a,) is nontrivial
then X(ai,...,a,) cannot have order two in ©3. Thus if one is to look for
an element in ©2 solving positively the triangulation conjecture, all Seifert
fibered homology spheres, as well as all homology spheres homology cobor-
dant to them, should be excluded from consideration.

The methods of [6] and [7] are further applied to study homology cobor-
dism properties of general plumbed homology spheres. It is not clear if these
techniques are strong enough to prove that i is a homology cobordism in-
variant for all of them. However, we use them to construct an infinite family
of plumbed homology spheres which are not Seifert fibered but for which the
conclusion of Theorem 2 is true. This is a generalization of the results of
[4].

Theorem 3. Let 3 be the splice of two Seifert fibered homology spheres
Y(ay,...,an) and X(ay, ..., qn) along fibers of degrees a, and oy, and let
P=Ga1...0p—1 Qf -..Qpm_1— Ay - Q. Suppose that X has finite order in the
homology cobordism group. If p > 0 then p(X) =0, and if p < 0 then p(X)
s either zero or one.

Note that such a X is an algebraic link if and only if p < 0, and it is
Seifert fibered if p = 0. Thus the theorem does not provide us with a
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definite conclusion about (X)) precisely in the case when ¥ is a non-Seifert
fibered algebraic link.

I am thankful to M. Furuta for useful discussions at Max-Planck-Institut
fiir Mathematik in Bonn in 1998, and to Y. Fukumoto and M. Ue for sending
me preprints [4], [5] and [7]. Discussions with W. Neumann and L. Sieben-
mann, as well as the referee’s suggestions, were invaluable in bringing this
paper into its final form.

1. The w-invariants of Fukumoto and Furuta.

In this section we review the w-invariants defined in [6] by using V-manifolds.
We formulate Fukumoto-Furuta’s extension of the smooth 10/8-theorem to
spin V-manifolds and show how it is related to certain homology cobordism
properties of the w-invariants.

1.1. Closed V-manifolds. The general concept of V-manifold is described
in [14]. In this paper, we need only a restricted class of V-manifolds, namely
compact V-manifolds X of dimension four with isolated singular points which
may only occur in the interior of X. If X is such a V-manifold, each of its
singular points has a neighborhood isomorphic to the cone over a lens space
or some other linear spherical space form. The usual concepts of topology
and differential geometry extend to V-manifolds after defining everything
in an equivariant setting. We will be interested in particular in a spin
structure on X and the (complex) index of the associated Dirac operator
D(X). Fukumoto and Furuta proved in [6] the following result about this
index.

Theorem 4. Let X be an oriented closed spin V-manifold with b1(X) =0,
and let ¢ be a spin structure on X. Then ind D(X) is even, and either

ind D(X) =0 or —b_(X) <ind D(X) < by (X).

Note that if X is actually smooth, the statement of this theorem is equiv-
alent to the 10/8-theorem of Furuta [9]. In this case, the index of Dirac
operator is computed from the index theorem as

(1) ind D(X) = —py (X)/24 = — sign (X)/8,

which together with inequality —b_(X) < ind D(X) < by (X) of the the-
orem implies that by(X)/|sign (X)| > 10/8. In the special case of spin
orbifolds whose only singularities are cones over lens spaces, Theorem 4 was
also proved in [1].

1.2. Definition of w-invariants. Let 3 be an oriented integral homology
sphere, and let X be a compact oriented spin V-manifold with only isolated
singularities, all in its interior, such that b;(X) = 0 and X = ¥. Such
a V-manifold always exists, moreover, it can be chosen to be smooth and
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simply connected. Let ¢ be a spin structure on X. For every triple (2, X, ¢),
the w-invariant is defined in [6] as

w(X, X,c) =ind D(X UY) +sign (Y)/8,

where Y is any smooth spin 4-manifold with Y = —X. Here, D(X UY)
is Dirac operator associated with the spin structure on X UY induced by
¢ and the spin structure on Y. Of course, if X is smooth we simply get
w(X, X, c) = —sign (X)/8.

The definition of w(X, X, ¢) does not depend on the choice of Y. The
reduction of w(X, X, c) modulo 2 equals the Rohlin invariant of ¥ for any
choice of X and ¢. Moreover, w(3, X, ¢) is additive with respect to con-
nected sums of the triples (3, X, c). All these statements are verified in [6].
Together with Theorem 4 they imply the following important property of
the w-invariants.

Theorem 5. Let 3 be an oriented integral homology sphere which has finite
order in the homology cobordism group ©3. Then, for any choice of X and
¢, either w(3,X,¢c) =0 or

—b_(X) <w(E, X,c) < bp(X).

For example, if 3 happens to bound a spin V-manifold X such that
bi(X) <1, b_(X) < 1 and w(X, X,¢) # 0, then ¥ cannot be of finite
order in the homology cobordism group. The strength of Theorem 5 lies in
the fact that many homology spheres ¥ do bound spin V-manifolds X with
small values of by (X).

2. Calculus of plumbing graphs.

This section is devoted to 3- and 4-dimensional manifolds obtained by plumb-
ing D?-bundles over 2-spheres, and to the Ji-invariant of Neumann and
Siebenmann.

2.1. Plumbed manifolds. A plumbing graph I' is a graph with no cycles,
each of whose vertices v; carries an integer weight e;, ¢ = 1,...,s. Associate
to each vertex v; the D?-bundle Y (e;) over S? with the Euler number e;. If
the vertex v; has d; edges connected to it in the graph I', choose d; disjoint
discs in the base of Y'(e;) and call the disc bundle over the j-th disc Bjj, so
that B;; = D? x D?. When two vertices, v; and vy, are connected by an edge,
identify B;; with By, by exchanging the base and fiber coordinates. This
pasting operation is called plumbing, and the resulting smooth 4-manifold
P(T") is said to be obtained by plumbing according to I'. Its boundary
M(T') = OP(I') is usually referred to as a plumbed 3-manifold.

The 4-manifold P(T") is simply connected. The group Hs(P(T'),Z) has a
natural basis represented by the zero-sections of the plumbed bundles. We
note that all these sections are embedded 2-spheres, and that they can be
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oriented in such a way that the intersection form of P(I") will be given by
the matrix A(I") = (aij)i j=1,...s With the entries

e, iti=j;
a;; = 1, if ¢ is connected to j by an edge;
0, otherwise.

Let M = OP(T") be a 3-dimensional manifold obtained by plumbing ac-
cording to a graph I', then M is an integral homology sphere if and only if
the matrix A(T") is unimodular, that is, det A(T') = £1.

Different plumbing graphs can describe the same 3-dimensional manifold.
In fact, plumbing graphs I'; and I'y describe the same 3-manifold if and only
if I’y can be obtained from I'y by a sequence of the moves shown in Figure 1
and their inverses. A proof of this statement can be found in the book [2]
and also in the paper [18]. Each of the moves 1 and 2 will be called a blow
down, and its inverse a blow up.

2.2. Seifert manifolds and lens spaces. Let M be a 3-manifold Seifert
fibered over S? with Seifert invariants (b; (ai,b1),..., (an,bn)), a; > 1. It
can be thought of as the boundary of the 4-manifold obtained by plumbing
according to the star-shaped graph shown in Figure 2.

The integer weights ¢;; in this graph are found from continued fractions

a;/b; = [ti1, ..., tim,;) where ¢ =1,...,n and we use the notation
[t th] =t !
1yl — U1 , 1
2 1
ty,

Different decompositions of a;/b; into continued fractions lead to plumbing
graphs describing the same 3-manifold M but different 4-manifolds P(T").

A Seifert manifold M is an integral homology sphere if and only if the
determinant of matrix A(I") associated with the plumbing graph in Figure 2
is =1, which translates into the condition

(2) ai...Qy - (—b—I—i bl/a2> = =+1.
=1

We fix an orientation on M by choosing +1 in (2). By considering (2) modulo
a; we see that it determines b; modulo a; which is enough to determine the
manifold M completely. We use the notation ¥(ay, ..., ay) for this manifold
and call it a Seifert fibered homology sphere.
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la.  Delete a component of I'; consisting of an isolated
vertex with weight +1.

Yo oetl &1 AN
N N
1b. — o — ® ¢
7/ 7/
4 4
/ N\ /
cetl +1 ek, < e e,
N\ N\
Le. o4« — »—a
7/ AN 7/ AN
7 \ 7 \
N\ 0 / N\ /
v a €2 N ’
2 N\ / \A/ 61+€2
7/ AN 7/ AN
7 \ 7 \

Disjoint union of

—=
PR
Figure 1.
t11 t12 tim,
L 4 - - @
o1 t22 tom,
b L 4 L 4 - - @
tnl tn2 tnmn
L 4 - - @
Figure 2.

In general, the order of the first homology of M (b;(a1,b1),..., (an,bs))
equals the absolute value of

ar...an - (—b+z bi/%) ;
i=1
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unless the latter is equal to zero, in which case H;(M,Z) is infinite.

Lens spaces are a special case of Seifert fibered manifolds. Our orien-
tation convention will be that a lens space L(p,q) is obtained by (—p/q)-
Dehn surgery on an unknot in S®. Expanding —p/q = [t1,...,t,] into a
continued fraction we get L(p,q) as the boundary of the 4-manifold ob-
tained by plumbing on the chain I" shown in Figure 3. We will use notation
AT) = A(ty,. .., tn).

ty to tn
—o— - - —o
Figure 3.

One can notice that this plumbing graph also represents the lens space
L(p,q*) with —p/q* = [tn,...,t1] where g¢* = 1 mod p. This reflects the
fact that L(p,q) and L(p,q*) are homeomorphic. Our convention is that
lens spaces include only rational homology spheres. In particular, although
S$3 and S! x S% can both be obtained by chain plumbing (see for instance
Figure 4), we do not regard S* x S? as a lens space.

0 2 -7 0 1 1
[ 4 4 4  J o —=0
g3 St x §2

Figure 4.

2.3. Intersection forms of plumbed 4-manifolds. There is a simple
algorithm to diagonalize matrices of the form A(T"), see [2]. This algorithm is
a graph realization of the usual Gauss diagonalization process for symmetric
matrices. Let us allow trees weighted by arbitrary rational numbers. Given
such a tree, pick a vertex and direct all its edges toward this vertex. Now,
the tree can be simplified by performing operations of the two types shown
in Figures 5 and 6 (we re-index vertices if necessary).

We end up with a finite collection of isolated points weighted by rational
numbers dy, ...,ds. Then the diagonal matrix D with the diagonal entries
dy,...,ds is a diagonalization of A(T), that is, A(T) = U DU with det U =
+1. In particular, det A(I') = det D and sign A(I") = sign D.

Example. For the tree I' in Figure 7 we have det A(I') = detD = 2-3 -
(1/6) - (—2) - (—1/2) =1 and sign A(I') =sign D =3—-2=1.
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€1 e €1
€9 , ® ¢o
€j
°
€L ® ¢
, 1 1
e.—=e; — — — o — I
J J €1 (%
Figure 5.
0 o |
e ® ¢
2 €k+1 2
N
€k -1 .. €k
Figure 6.
2 2 2
[ [ ]
1 1/6 1/6
) 3 ) 3 -1/2 3
—_— ° —_— o L
-2 -2 o« 2
Figure 7.

Example. The diagonalization of the matrix A(T') = A(¢y,...,t,) corre-
sponding to the tree in Figure 3 directed from right to left has entries

[tn], [tnflatn]a R [t27 ey tn717tn]a [tla cee 7tnflatn]-
The determinant of A(ty,...,t,) equals (up to a sign) the numerator of
the reduced fraction [t1,...,t,—1,t,]. We extend the concept of continued

fraction by allowing division by zero in the sense of Figure 6.

2.4. Graph links and splicing. By a link (X, K) = (£,51U---US,,) we
will mean a pair consisting of an oriented integral homology 3-sphere ¥ and a
collection K of disjoint oriented knots Si, ..., Sy, in 3. Empty links are also
allowed; they are just homology spheres. A link (X(ay,...,a,),S1U---USp)
where the link components S, ..., Sy, are fibers in X(ay,...,ay) is called a
Seifert link. Note that a general Seifert link may include singular fibers as
well as some nonsingular fibers.
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Let (X,K) and (¥, K’) be links and choose components S C K and
S’ C K'. Let N(S) and N(S’) be tubular neighborhoods and m, ¢ C ON(S)
and m/, ¢’ C ON(S’) be standard meridians and longitudes. The manifold

Y= (Z\int N(S))U (X \int N(5"))

obtained by pasting along boundaries by matching m to ¢ and m’ to ¢, is
an integral homology sphere. The link (X", (K \ S)U (K"\ S")) is called the
splice of (3, K) and (¥, K') along S and 5.

Any link which can be obtained from a finite number of Seifert links by
splicing is called a graph link. Empty graph links are precisely plumbed, or
graph, homology spheres, see [2].

Any graph link can be represented by a usual plumbing graph except some
vertices of degree one in such a graph are left unweighted, and are drawn
as arrowheads. An arrowhead vertex with the adjacent edge is referred to
as an arrow. A plumbing graph I' with arrowheads represents a link K in a
3-manifold M as follows, see [2], pp. 134-135. Let T be I' with all the arrows
deleted, and put M = dP(T'). Each arrowhead v; of ' is attached at some
vertex v; of T, and to this arrow we associate a fiber S; of the bundle Y (e;)
used in plumbing. We take S; for different arrows v; to be disjoint, then K
is the union of these S;.

Example. Figure 8 shows the Seifert link (S%, K) where K is the right
handed trefoil, corresponding to a regular fiber in a Seifert fibration of S3.

Figure 8.

Example. Figure 9 shows the Seifert link (3(2,3,7), K) with K represent-
ing the singular fiber of degree 7.

Figure 9.
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The splicing operation on graph links can be described in the language
of plumbing graphs as follows. Suppose we are given two graph links rep-
resented by their plumbing diagrams I' and I as shown in Figure 10 with
arrows attached to vertices weighted by e, and e}, respectively.

N\ / /7
N ©n €m 7/
N\ /
’r—> —«
/ N\
/ F F/ N\
Figure 10.

The plumbing diagram for the spliced link is shown in Figure 11. Here,
a = det A(Ty)/ det A(T) where T is the plumbing graph I' with the arrow
deleted, and Iy is the portion of T’ obtained by removing the n-th vertex
weighted by e, and all its adjacent edges. The integer o’ is obtained similarly

from the graph I".

Figure 11.

Example. The diagrams in Figure 12 show plumbed homology spheres ob-
tained by splicing two copies of S? along left- and right-handed trefoils (on
the left), and by splicing ¥(2,3,7) and ¥(2,3,11) along singular fibers of
degrees 7 and 11 (on the right). Both diagrams were simplified by using the
usual rules.

2 -

2 2 -2
1 6 -6 -1 0 -8 5 0
*—o *—o
3 -3 3

3 -

Figure 12.
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The above description of splicing in terms of plumbing graphs allows us to
think of it as an operation on the corresponding plumbed 4-manifolds. This
splicing operation in four dimensions can be described as follows. Let W
and W’ be plumbed 4-manifolds with boundaries OW = 3 and oW’ = ¥/,
and let X" be the splice of ¥ and ¥’ along knots S and S’. Represent X as
the union ¥ = X U (T x I) U N(S) where the torus T is the boundary of
a tubular neighborhood N(S) of S, X is the knot exterior, and I = [0, 1].
Let ¥ = X' U (T x I) U N(S’) in a similar fashion. Then we can glue
W to W' along T x I to get a manifold with boundary %" U S3, the S3
component coming from gluing N(S) with N(S’) by matching meridian to
longitude and vice versa. Filling S with 4-dimensional ball, we get the same
plumbed 4-manifold as from the operation on plumbing graphs.

2.5. The p-invariant of plumbed homology spheres. For any plumbed
homology sphere ¥ = OP(I'), there exists a unique homology class w €
Hy(P(T'),Z) satisfying the following two conditions. First, w is characteris-
tic, that is (dot represents intersection number)

(3) w-z=z-xmod2 forall xze Hy(P(I'),Z),

and second, all the coordinates of w are either 0 or 1 in the natural basis
of Hy(P(T"),Z) represented by embedded 2-spheres. We call w the Wu class
for P(I"). It is proved in [12] that the integer

(4) A(S) = 5 (sien P(T) ~w-w)

only depends on ¥ and not on I'. We call it the f-invariant. One can easily
see that condition (3) implies that for any two adjacent vertices in I' the
corresponding coordinates of w cannot both be equal to 1. Therefore, the
class w can be chosen to be spherical, and f(X) = () mod 2 where u(X)
is the Rohlin invariant.

Another description of the fi-invariant is as follows. In the natural basis
of Hy(P(T'),Z), the defining property (3) translates into the linear system

S
(5) Zaijwj = Qi3 mod 2, 1= 1,...,8.
j=1

Due to the fact that det A(T') = 1 mod 2, this system has a unique solution
w = (w1, ..., ws) over Z/2. One can show that w = diag A(T')~! mod 2, see
for example [17]. Hence w; can be computed as the mod 2 determinant of
A(T';) where T'; is obtained from I' by removing vertex v; and all its adjacent
edges. The subset S of vertices v; of I' such that w; = 1 mod 2 is called the
Wau set of I'. The p-invariant is then given by the formula
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The p-invariant is easy to compute. It is additive with respect to splicing,
so one only needs to compute it for Seifert fibered homology spheres. Explicit
formulas for fi(X(aq,...,ay)) can be found in [12].

All the above works as well for any plumbed Z/2-homology sphere M
thus defining f(M). It is no longer an integer although 8 - (M) still is.
For plumbed 3-manifolds M which are not Z/2-homology spheres, one can
define an invariant (M, ¢) which will depend on a spin structure ¢ on M,
see [12] and [17].

3. Plumbed V-cobordisms.

In this section we take a different point of view on plumbed 4-manifolds
and think of them as cobordisms between plumbed 3-manifolds and disjoint
unions of lens spaces. We describe such cobordisms by decorated plumbing
graphs.

3.1. Plumbed manifolds as V-cobordisms. Given a 4-manifold P(I")
obtained by plumbing on a graph I', let IV be a chain in T' of the form
shown in Figure 3. Plumbing on I yields a submanifold P(I") of P(T") with
boundary a lens space L(p,q). The closure of P(I') \ P(I") is a smooth
compact 4-manifold Xy with oriented boundary —L(p,q) U OP(I"), which
can be thought of as a cobordism between L(p, q) and 9P(T"). Starting with
several chains I', in I', one can establish a cobordism between 0P (T") and a
disjoint union L of several lens spaces. The chains {I'} } must be disjoint in
the following sense: No two chains have a common vertex, and no edges of
I" have one endpoint on one chain and the other endpoint on the other.

Such cobordisms will be called plumbed V-cobordisms. A plumbed V-
cobordism X is always a smooth manifold; the name V-cobordism refers to
the fact that each lens space on the boundary of X can be capped off with
a cone to make it into a V-manifold X. The latter will be referred to as a
plumbed V-manifold.

Plumbed V-cobordisms can be conveniently represented by decorated
plumbing graphs. These are plumbing graphs I' with extra circles (not
necessarily round) each of which encloses exactly one chain I'j. The above
condition on the chains {I',} to be disjoint translates into the following
conditions on the decorating circles: Any two planar 2-discs bounded by
decorating circles are disjoint, and no edge of I' is intersected by more than
one decorating circle.

Example. Consider the decorated plumbing graph in Figure 13. It de-
scribes a plumbed V-cobordism Xy between L = L(2,—1)UL(2,1)UL(41,5)
UL(3,1)UL(3,—1) and ¥, where ¥ is the splice of ¥(2,3,7) and ¥(2,3,11)
along the singular fibers of degrees 7 and 11, compare with Figure 12.
The only generators in the second homology of Xy come from the vertices
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Figure 13.

outside all of the circles, that is the vertices weighted by 0. Therefore,
HQ(X(),Z) =7 &® 7.

3.2. Rational intersection forms of plumbed V-cobordisms. By the
rational intersection form of a plumbed V-cobordism Xy with 0Xg = —LUX
we mean the cup-product pairing

B: H*(Xy,Q) ® H*(X(,Q) — Q.

The form B is nondegenerate over the rationals whenever Hy (X, Q) = 0. The
form B is also referred to as the rational intersection form of the plumbed
V-manifold X, and by definition sign X = sign X = sign B.

Let Xy be represented by a decorated plumbing graph I" so that P(T") =
(UP(T})) UL Xo where T’} are disjoint chains inside the decorating circles.
Since Hi(L,Q) = 0 we have a splitting

(6) AT) =€p AT)) @ B.
In particular,
sign A(T') = Zsign A(T},) +sign B, and
det A(T') = [ det A(T}) - det B.

Let L = |J L(pk, qx) and suppose that 3 is an integral homology sphere.
Then det A(T') = £1 and det B = +1/p; ... py.

In practical terms, the intersection form B = (b;j) can be calculated as
follows. We call a vertex v and a decorating circle adjacent if the circle
intersects an edge one of whose endpoints is v.

The generators in the second homology of X correspond to the vertices
of I" outside all of the decorating circles. Given such a vertex v; weighted
by an integer e;, we have

bii=e;i— Y di, dy = det A(T))/ det A(T).

Here, the summation goes over all the indices k such that v; is adjacent to
the circle containing I',. By T, we denote the portion of I'}. obtained by
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removing the vertex inside I'j adjacent to v; and deleting all its adjacent
edges. We agree that the determinant of an empty graph is equal to 1.

For any two generating vertices v; and v; connected by an edge inside I'
away from the decorating circles, b;; = 1. If these two vertices are adjacent
to the same decorating circle enclosing a chain I'}, we have

bi; = det A(T)/ det A(T}),

where f; is the portion of I', obtained by removing all the vertices of I}
belonging to the shortest chain connecting v; with v; and deleting all their
adjacent edges. Note that the sign of b;;, ¢ # j, can be reversed by changing
orientations of the generators v; or v;. Since our plumbing graphs have no
cycles, any choice of signs for b;;, ¢ # 7, will do.

Example. The rational intersection form of the plumbed V-cobordism de-
scribed by the decorated plumbing graph in Figure 13 is given by

[(—11/246  —1/41
b= ( —1/41 —7/246)'

Example. An important problem in calculations with plumbing graphs is
to identify the extra lens space that arises from splicing, see Figure 14 where
the lens space in question is circled.

0 ul Ul 0

Figure 14.

This problem can be solved as follows. In the canonical meridian-longitude
bases, the splicing is given by the formula

()=o) ()

To find the parameters of the lens space, one should re-write this gluing
operation in the base-fiber bases. Suppose that we splice Seifert links
(X(at,...,a,),S) and (B(aq,...,am),S") along Seifert fibers S and S’ of
degrees a,, and «,,, respectively. Then

my\ an b\ [z m'\ am, B\ [«
y4 o —aj...0an—-1 dn h)’ f’ B -1 ...0m—1 5m h/ ’
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where
n—1 m—1
dn:al...an_l-Zbi/ai and 5m:a1...am_1-26j/aj.
i=1 j=1
Therefore,
z\ _(q -p*\ (2
hl — —p _q* h
where

p=ai...0np-1" "Q1...0n-1 — Ap * Oy,

n—1
q=—ai...ap—-1 "1 ...0n}—-1" E bi/ai—bn-am,
=1
m—1
*
g =—ap...an—-1--Qa1...0p_1" E 5j/04j—ﬁm‘am
j=1

and p* is determined from equation pp* + qq¢* =1 as
n—1 m—1
pr=—ai...an_1-Q1...Qpm_1 Zbi/ai Z a;/Bj + bnfm.
i=1 j=1
The resulting lens space is L(p, q) with the above parameters p and ¢q. Note

that it only depends on the two spliced Seifert links and not on the rest of
the manifold.

3.3. Spin structures on plumbed V-cobordisms. There exists a sim-
ple algorithm which determines whether a given plumbed V-cobordism X
admits a spin structure. If such a spin structure exists it has to be unique
because Hi(Xo,Z) = 0.

Given a V-cobordism X represented by a decorated plumbing diagram
I", consider the vertices outside all of the circles. They form a free ba-
sis in Hy(Xo,Z). Enumerate these vertices from 1 to n and let w; =
det A(T";) mod 2 where I'; is obtained from I' by removing the i-th vertex
and all adjacent edges, i =1,...,n.

Proposition 6. The V-cobordism Xg admits a spin structure if and only if
w; =0mod 2 foralli=1,...,n.

Proof. We work in the basis specified above. The V-cobordism Xy is spin
if and only if its integral intersection matrix on Hs(X,Z) is even. The
latter is the inverse of the rational intersection matrix B. The i-th diagonal
element of B! equals det B;/det B, where B; is the minor obtained from
B by removing the i-th row and i-th column.
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To compute the determinants, let us introduce the following notation.
The chains circled in the graph I' will be denoted by F;-. For every j, the
lens space obtained by plumbing according to F;- will be called L(pj,q;), so
that p; = +det A(I";). The determinant of B can be calculated using the
splitting (6) as

det A(T) 1
[1; det A(I') [L;p;
where we take into account that det A(I') = £1 since ¥ is an integral ho-
mology sphere. Similarly,

det B =

N det A(Fz)
det Bz = m

Therefore, w; = det B;/ det B = det A(I';) mod 2, and the result follows. [

Example. The plumbed V-cobordism Xy shown in Figure 13 is spin. This
can be seen in two different ways. One is to find its rational intersection

form B and its inverse,
1 (—42 36
B = < 36 —66/’

and note that B~! is even. The other is to apply Proposition 6 as follows.
Enumerate the vertices generating Ha(Xy,Z) from left to right. Removing
vertex number 1 together with its adjacent edges leaves us with the graph
I’y shown in Figure 15. The determinant of A(I';) is the product of the
determinants of the connected components of I';. The one vertex component
in the upper left corner has even determinant, therefore, w; = 0 mod 2.
Similarly, removing vertex number 2, it can be seen that ws = 0 mod 2, so
that the V-cobordism Xj is spin.

2 -2
[ ]
-8 5 0
[ J
-3 3
Figure 15.

Let Xy be a V-cobordism represented by a decorated plumbing graph I,
and v; a vertex outside all of the decorating circles. We say that v; is in
the Wu set of X if w; = 1 mod 2. Thus X is spin if and only if its Wu set
is empty. Proposition 6 implies that the Wu set of Xj is calculated by the
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same rules as the Wu set of (undecorated) plumbing graph I, see Section 2.5.
Therefore, one can simply say that the Wu set of X consists of the vertices
of I' which belong to the Wu set of I' and sit outside all of the decorating
circles. This observation implies the following result.

Corollary. Every plumbed homology sphere bounds a spin plumbed V-co-
bordism.

Proof. Let % be an integral homology 3-sphere obtained by plumbing ac-
cording to a graph I'. Since the Wu set of I' contains no adjacent vertices,
we can draw one circle around each vertex v; with w; = 1, and the resulting
circles will be disjoint. An extra precaution should be taken not to get a
zero-weighted vertex inside any of the circles. This can be easily avoided by
blowing up the graph I' at the corresponding vertices. The graph I'" with so
drawn circles represents a spin plumbed V-cobordism with boundary ¥. O

3.4. Spin V-cobordisms for Seifert fibered homology spheres. Let
Y(ai,...,ay) be a Seifert fibered homology sphere such that one of the
invariants, say aj, is even. Using the freedom allowed by Equation (2),

one can choose Seifert invariants (b; (a1,b1), ..., (an,by)) so that by is odd,
b is even and all b; with ¢ = 2,...,n, are even. Each a;/b; admits then
a continued fraction expansion [t;1,...,tim,] with all ¢;; even, so that the

manifold obtained by plumbing on the graph in Figure 2 is spin. We can
make it into a spin V-cobordism X, by decorating as shown in Figure 16.

t11 tim,

t2m/2

tnmn

Figure 16.

We see immediately that Ha(Xo,Z) = Z. The rational intersection form
of Xo is b — > bi/a; = —1/ay...an, so that it is negative definite, with
by =0and b_ =1.

Let ¥(ay,...,ay) be a Seifert fibered homology sphere with all invariants
a; odd. For any choice of Seifert invariants (0; (a1,b1), ..., (an, by)), consider
the standard plumbing graph I' as in Figure 2 (we choose b = 0 for the sake
of simplicity). The central vertex of I' weighted by 0 is in the Wu set for
any choice of Seifert invariants. Blow I' up (n — 1) times to get the graph
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shown in Figure 17. The O-framed vertices adjacent to the central vertex
are not in the Wu set of the blown up graph, so if we decorate it as shown
in Figure 17 we will get a spin plumbed V-cobordism Xj.

0 0 o1 tom,

Figure 17.

Proposition 7. The signature of the rational intersection form B of spin
plumbed V-cobordism Xo shown in Figure 17 equals Y ;- sign (a;/b;) — 1.

Proof. Let us consider the decorated plumbing graph in Figure 18 and the as-
sociated rational intersection form B’. The (undecorated) plumbing graphs
in Figures 17 and 18 represent the same plumbed homology sphere, and
one can check that their intersection forms have equal signatures. Splitting
these forms over the rationals, we get

n n
Z sign A(0,ti1, ..., tim,) + sign B = Z sign A(ti1, ..., tim,) + sign B'.
i=1 i=1

Since sign A(ti1, ..., tim;) = sign A(0,t1, ..., tim,) + sign (a;/b;) by the di-
agonalization algorithm, and sign B’ = —1, we are finished. O

to1 toms

Figure 18.
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< en a a e
/ N\
Figure 19.

3.5. Splicing plumbed V-cobordisms. Given two plumbed V-cobor-
disms described by decorated plumbing graphs, we splice them as (undeco-
rated) plumbing graphs as shown in Figure 11, and keep the decorations on
both components unchanged. Thus in the gluing region the spliced graph
may look as shown in Figure 19.

Note that the two new vertices, framed in Figure 19 by a and a’, do not
belong to the Wu set of the spliced graph because by removing either of them
together with the two adjacent edges, we split the graph in two connected
components with determinants 0 and +1. The latter follows easily from the
formulas for a and o’ given in Section 2.4. Therefore, the splice of two spin
plumbed V-cobordisms is again a spin plumbed V-cobordism.

4. The w-invariants for spin plumbed V-cobordisms.

In this section, we use an explicit formula for the w-invariant given in [7] to
prove that, for any spin plumbed V-manifold (X, c¢) with boundary X, we
have w(3, X, ¢) = —f(X). This implies in particular that, given a plumbed
integral homology sphere X, the integer w(X, X, ¢) is independent of the
choice of a spin plumbed V-manifold (X, ¢).

4.1. A formula for the w-invariants. Let X be a compact oriented spin
V-manifold with b;(X) = 0, 0X = X, and with only isolated singularities
which are the cones over lens spaces, L(p;,q;). Let Y be a smooth spin 4-
manifold with Y = —X then ind D(X UY") and therefore w(X, X, ¢) can be
calculated explicitly by applying the V-index theorem. Such a calculation
in [7] provides us with the formula

(7) w(27X7 C) 7§ <blgn + Z q17p17€l ) )

where sign (X)) stands for the signature of the rational intersection form of
X, and functions o(q,p,e) for any relatively prime integers p and ¢ and
€ = %1 are defined by the formula

Ip|—1
1 k mk 7wk k
o(q,p,e) = — E (cot (W> cot ( q) + 2¢F ese < > csc <7Tq>> .
P = p p p p

For a spin plumbed V-manifold X, the parameter £ can be calculated as
follows. Let X be described by a decorated plumbing graph I' and let
L(p, q) be the lens space obtained by plumbing on a chain I"” inside one of
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the decorating circles. Suppose that the chain looks like the one in Figure 3,
with —p/q = [t1,...,t,]. The Wu set of the graph I' is uniquely determined;
in particular, we know which of the vertices of I belong to this Wu set. We
set € = 1 if the vertex of I” weighted by ¢; is in the Wu set, and ¢ = —1
otherwise. In particular, if p is odd, e = (—1)971.

The paper [7] gives us the formula ¢ = (—1) L where L(p,q) is
thought of as (—p/q)-surgery on an unknot K in S® with meridian m, and
with the spin structure given by w € H'(S?\ K,Z/2). The latter obviously
agrees with the spin structure described by plumbing on a chain, so the
consistency of two formulas for € will follow from the next lemma.

w(m)—

Lemma 8. The intersection of the Wu set of I' with the set of vertices of
I is a Wu set of T”.

Proof. If p is odd then L(p,q) is a Z/2-homology sphere. Therefore, the
intersection form A(T') of P(I") splits over Z/2 in two summands, one of
which is A(T"), and hence the Wu set also splits. If p is even, blow up T’
near I'" as shown in Figure 20.

0 0 t to tn
—@ \ 4 \ 4 \ 4 - =
Figure 20.

Let T be the chain with vertices framed by 0,1, ...,t,. Since det A(T") is
odd we can apply the argument above and conclude that the restriction of
the Wu set of I on I'” is a Wu set of I'”. To complete the proof we only
need to check that the restriction of the Wu set of I on I is a Wu set of
I, which is immediate. O

4.2. The o-function. The function o(q,p, <) has the following properties,
proved in [7], which in practice allow to calculate it without actually referring
to its definition:

(1) U(q +cp, D, 6) = U(qap7 (_1)05)

(2) U(_Q7p>€) = 0(q7 _p?E) = _U(Qapa 5)‘

(3) If p+ q is odd then o(p,q,—1) + o(q,p, —1) = sign (pq), in particular,
o(1,p,—1) = —sign p for any even p.

(4) For any p, g such that |p| > |¢q| and p+q¢ is odd, there exists a continued
fraction decomposition p/q = [t1,...,t,] with all ¢; even and |t;] > 2.
Then o(q,p, —1) = — >, sign t;.

We will show that in fact o(q,p,e) is nothing else but the f-invariant
of L(p,q). To be more precise, if p is odd then L(p,q) is a Z/2-homology
sphere, so the f-invariant is defined as in Section 2.5 and only depends on
L(p, q) and not on the choice of a plumbing graph. The only difference is that
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a(L(p, q)) is not an integer although 8-fi(L(p, q)) still is. If p is even, there are
two different Wu classes because of the fact that H'(L(p,q),Z/2) = Z/2.
Suppose that L(p,q) is obtained by plumbing on a chain I like the one
shown in Figure 3 so that —p/q = [t1,...,t,]. Since ¢ = %[to, ..., t,] is odd,
the Wu set of A(I”) is uniquely determined by whether the first vertex of
I, weighted by t1, is in the Wu set. We say that v = 1 if it is in the Wu set
and v = 0 otherwise. Fixing v allows to define the f-invariants i(L(p, q),v)
as before.

Proposition 9. If p is odd then o(q,p,(—1)4"Y) = 8u(L(p,q)). If p is
even, U(Q7p7 (_1)11*1) = 8E(L(p7 q)vv)'

Proof. First we note that we may assume without loss of generality that
Ip| > |gq|- Suppose that p is odd and ¢ is even. We find a continued
fraction decomposition p/q = [t1,...,t,] as in Property (4) and evaluate
o(q,p,—1) = =Y 1=, sign t; = —sign A(tq,...,t,) (the latter equality is
true because all |¢;| are greater than or equal to 2). Since the Wu set is
empty, 8 i(L(p,q)) = —sign A(t1,...,tpn).

If both p and ¢ are odd, we use Property (1) to get o(q,p,1) = o(q —
p,p,—1) with even ¢ — p. By the previous argument, o(q¢ — p,p,—1) =
8u(L(p,q —p)). Let —p/(q¢ — p) = [t1,...,t,] with all t; even, then —p/q =
[0,1,%1,...,t,] with Wu set consisting of just one vertex weighted by 0. Since
sign A(ty,...,t,) = sign A(0,1,¢,...,t,) by the diagonalization algorithm,
we see that @(L(p,q — p)) = m(L(p,q)), which completes the proof in this
case.

If p is even, one should consider two separate cases, v = 0 and v = 1.
The first is treated as the case of odd p and even ¢, with all even ¢; which
provides for v = 0. The case v = 1 is completely similar to the case of odd
p and ¢, if one keeps in mind that adding two vertices framed by 0 and 1
does not change the Wu set of A(ty,...,t,). O

It should be mentioned that Proposition 9 might give easy proofs of var-
ious number-theoretical properties of o(g, p, ) proved in [7].

4.3. Proof of Theorem 1. Let X be a spin plumbed V-manifold described
by a decorated plumbing graph I with chains I';, ¢ = 1,...,n, inside the
decorating circles, so that OP(I") = ¥ and OP(I';) = L(p;, ¢;). Let w; be the
Wu classes of A(I'), i =1,...,n, and w the Wu class of A(T"). Since X is
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spin, w = wy + - -+ + wy. Then
(51gn Xo + Z o(qi, pi, 5i)>/8, by formula (7),
(s1gn Xo + Z(sign P(T%) — w; - wi)>/8, by Proposition 9,
<81gn Xo+ Z sign P(T'}) — w - w) /8, since Xy is spin,
=—(sign P(T") —w - w)/8, by formula (6),

= (%),

In particular we see that w(X, X, ¢) is independent of the choice of (X, ¢) as
long as we stay in the class of spin plumbed V-manifolds.

w(X, X, c)

5. Homology cobordism properties of the fi-invariant.

Using Theorem 1, we can reformulate Theorem 5 of Fukumoto and Furuta
[6] as follows.

Theorem 10. Let Y be a plumbed homology sphere bounding a spin plumbed
V-manifold X. If ¥ has finite order in the homology cobordism group then
either (X)) =0 or —b_(X) < —(X) < b4 (X).

In this section, we apply this result to study the homology cobordism
properties of Seifert fibered and plumbed homology spheres. We generalize
results obtained in this direction in [4], [6], and [7].

5.1. Proof of Theorem 2.Let ¥ = X(ay,...,a,) be a Seifert fibered
homology sphere with one of the a; even. Let X be the plumbed V-manifold
shown in Figure 16. It is spin and it has b_(X) = 1 and b4 (X) = 0. By
Theorem 10, if ¥ has finite order in the homology cobordism group, (%)
must vanish.

Let ¥ = ¥(aq,...,a,) be a Seifert fibered homology sphere with all the
a; odd, and suppose it has finite order in the homology cobordism group.
Choose invariants b; so that all a;/b; but one are positive. Then the plumbed
spin V-manifold X shown in Figure 17 has b4 (X) 4+ b_(X) = n — 1 and
by (X) — b_(X) = n — 3, see Proposition 7. Therefore, b, (X) =n — 2 and
b_(X) =1, and Theorem 10 implies that

(8) 0< —a() <n-—2.

Now choose a different set of invariants (a;, b;) so that all a;/b; but one are
negative. The above argument with the V-manifold as in Figure 17 shows
that

(9) l-n<—a(X)<0.
These inequalities together prove that fi(X) vanishes.
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There is another way to prove the theorem for Seifert fibered homology
spheres ¥ = X(ay,...,a,) with all a; odd. It uses inequality (8) and the
result of [16] which says that if an algebraic link has finite order in the ho-
mology cobordism group, its fi-invariant is nonnegative. Since X(aq, ..., a,)
is an algebraic link, we conclude that —(X) < 0, which completes the proof.

5.2. Proof of Theorem 3. Let us denote Seifert invariants of X(ay, ..., ay)
and YX(au,...,qn) respectively by (a;, b;) and (o, ;). The splicing con-
struction provides us with the plumbing graph I' shown in Figure 21, which
we decorate as indicated. One may assume without loss of generality that
the V-manifold X we obtain is spin: If all the a; and «a; are odd this is
automatic; if some of them are even certain precautions should be made in
choosing b; and ;.

t1n1 t11 0 0 0 0 m™m Timy

Figure 21.
We use here the notations a;/b; = [ti, ..., tim,], @j/B; = [Tj1,- -, Tjmyl;
p/q = lu1,...,u;] and p/q* = [ug,...,u;1], where the parameters p, ¢ and ¢*

were computed in Section 3.2.

Let us denote the rational intersection form of X by B, and consider
another plumbed V-manifold X’ given by the plumbing graph I decorated
as shown in Figure 22.

t1n, t11 TI1 Tlma

Figure 22.

Let B’ be the rational intersection matrix of X’. One can easily see that
the matrices A(T') and A(I”) have the same signature. Decomposing these



488 NIKOLAI SAVELIEV

two matrices over the rationals provides us with the identity

n—1 m—1
sign B + Z sign A(0, i1, ..., tin,) + Z sign A0, 71, - -+, Tjm;)
i=1 j=1
n—1
+ sign A(0,u1, ..., u,0) = sign B’ + Zsign Atity .. tin)
=1
m—1
+ Z sign A(7Tj1,. -+, Tjm,) +sign Aut, ..., ug).
j=1

By the diagonalization algorithm,
sign A(0, i1, ..., tin,) — sign A(i1, ..., tin,) = —sign (a;/b;),
and similarly for «;/3;. The difference
sign A(0,uq,...,u,0) —sign A(ug, ..., ug)

is computed as follows. Decompose the matrix A(0,uq,...,ux,0) over the
rationals into the direct sum of A(uq,...,ux) and the rational intersection
matrix U of the decorated plumbing graph shown in Figure 23.

0 Ul U 0
Figure 23.

Then sign A(0,uq,...,u, 0) —sign A(ug,...,ux) = sign U. The two-by-
two matrices B’ and U are computed by the usual rules as

B = <_ 2 bi/lcb/zb_ " > ﬁj_/z/jp— q* /p) » U= C%ﬁ —_ql*//];> ’

and the resulting formula for sign B is

n—1 m—1
sign B = sign B’ — sign U + Z sign (a;/b;) + Z sign (o /B;).
i=1 j=1

After simplification using explicit formulas from Section 3.2, we obtain
B — am/(ai...an—1-p) —1/p
—1/p an/(aq ... Qp—1 D)
and det B' = —1/(ay...ap—1 - @1...qm—1 - p). Thus sign B = 0 if p > 0,
and sign B’ = —2 if p < 0 (the latter could be seen alternatively from the
fact that, in the case when p is negative, X is an algebraic link and therefore
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bounds a negative definite plumbed manifold). Concerning the matrix U,
we compute

detU = —p*/p
ai...Qp—1-Q1...0m-1 2 bifa;d  a;/Bj — an - m(bn/an)(Bm/om)

Y
Al ...0pn—-1 " Q1 ...0n%_1 — Ap " Oy,

where the summation extends over ¢ = 1,...,n — 1 and 57 = 1,...,m —
1. Replacing > b;/a; by > bi/a; + k at the expense of changing b, /a, to
bn/an — k, and doing the same with the other set of invariants, we see that
det U is positive at least for large |k|. If k is large positive, sign U = —2; if
k is negative and large in absolute value, sign U = 2.

Suppose that 3 has finite order in the homology cobordism group, and
that p is positive. Then sign B’ = 0. If we choose b;/a;, i = 1,...,n — 1,
and «;/Bj, j =1,...,m — 1, to be large positive then sign B =n +m — 4.
Since the rank of B is n +m — 2, we conclude that by =n+m —3, b_ =1,
and

—1<—-aX)<n+m-—3.

If we choose b;/a;, i = 1,...,n — 1, and «;/B;, j = 1,...,m — 1, to be
negative and of large absolute value then sign B = —n — m + 4 so that
by =1,b_=n+m—3, and

3—n—-m< —p(X) <1
These two sets of inequalities on fi(X) imply that (X) = 0.

Suppose now that p is negative then sign B’ = —2 and arguing as above
we get inequalities

—2<—-pX)y<n+m—-4 and 2—-n—-—m< —p((X) <0,
which imply that fz(X) is either zero or one. This completes the proof.
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