
Pacific
Journal of
Mathematics

ON THE EXISTENCE OF SPECIAL STABLE SPANNED
VECTOR BUNDLES ON PROJECTIVE CURVES

E. Ballico

Volume 206 No. 1 September 2002



PACIFIC JOURNAL OF MATHEMATICS
Vol. 206, No. 1, 2002

ON THE EXISTENCE OF SPECIAL STABLE SPANNED
VECTOR BUNDLES ON PROJECTIVE CURVES

E. Ballico

Let X be a smooth projective curve. Here we give condi-
tions on r, d, v (essentially, existence of special spanned line
bundles on X with many sections) for the existence of a rank
r spanned vector bundle E on X with rank(E) = r, deg(E)
= d and h0(X, E) ≥ v.

0. Introduction.

Let X be a smooth projective curve of genus g ≥ 2 defined over an arbitrary
algebraically closed field K. For any vector bundle E on X, call µ(E) :=
deg(E)/rank(E) the slope of E. A vector bundle E on X is said to be
spanned if the natural map H0(X, E)⊗OX → E is surjective. Such bundles
are important tools for the projective geometry of X because they are exactly
the vector bundles associated to a morphism from X into a Grassmannian.
A vector bundle E on X is said to be stable (resp. semistable) if for every
proper subsheaf A of E we have µ(A) < µ(E) (resp. µ(A) ≤ µ(E)). In
particular every line bundle is stable. A stable line bundle, E, on X is
simple, i.e., every endomorphism of E is induced by the multiplication by
some λ ∈ K. The stable vector bundles on X are the more interesting
bundles on X from the point of view of moduli problems. The aim of this
paper is the proof of the following result.

Theorem 0.1. Let X be a smooth projective curve of genus g ≥ 2. Fix
integers r, k, m with r ≥ 2, k ≥ 2 and m > 0. Assume the existence of line
bundles Li ∈ Pick(X), 1 ≤ i ≤ r, Mu ∈ Pick+1(X), 1 ≤ u < r, with the
following properties:

(a) Every Li, 1 ≤ i ≤ r, and every Mu, 1 ≤ u < r, is spanned;
(b) h0(X, Li) ≥ m for every integer i with 1 ≤ i ≤ r and h0(X, Mu) ≥

m + 1 for every integer u with 1 ≤ u < r;
(c) no two of the line bundles Li, 1 ≤ i ≤ r, are isomorphic;
(d) no two of the line bundles Mu, 1 ≤ u < r, are isomorphic;
(e) we have h0(X, Hom(Li,Mu)) = 0 for every pair (i, u) with 1 ≤ i ≤ r

and 1 ≤ u < r, i.e., for every pair (i, u) there is no P ∈ X with
Mu

∼= Li(P ).
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Then for every integer d with rk < d < r(k + 1) there exists a rank r
spanned stable vector bundle E on X with deg(E) = d and h0(X, E) ≥ mr.

Remark 0.2. Fix the integers g, r, m with g ≥ 2, r ≥ 2 and m > 0. Let
ρ(g, y, x) := g − (x + 1)(g + x− y) be the Brill-Noether number for gx

y ’s on
curves of genus g. Let X be a general curve of genus g. By Brill-Noether
theory ([1], Ch. V and Ch. VII), the assumptions of 0.1 are satisfied for the
triple (r, k,m) if and only if we have ρ(g,m, k) ≥ 0 and either ρ(g,m, k) > 0
or the finite number (computed in [1], p. 211), of gm

k ’s on X is at least r.

Remark 0.3. We believe that Theorem 0.1 is quite strong. Its main feature
is that its statement depends only on the Brill-Noether theory of special line
bundles on X. The problem of existence of spanned stable vector bundles on
X is quite different from the problem of existence of stable vector bundles on
X with many sections. For instance if 2d ≥ g + 2 there exists L ∈ Picd(X)
with h0(X, L) ≥ 2 ([1]); however, if X is hyperelliptic and d ≤ g + 1 such L
may be spanned only if d is even. There are curves of genus g for which the
assumptions of 0.1 are not satisfied for a certain triple (r, k,m), while by
Remark 0.2 for the same integers the assumptions of 0.1 are satisfied for a
general curve of genus g and the same triple (r, k,m). For instance on a hy-
perelliptic curve there is no spanned special line bundle of odd degree. This
phenomenon is not due to the weakness of 0.1 but to the nature of the prob-
lem of existence of spanned vector bundles. This phenomenon arises even
for line bundles, as shown by the case of hyperelliptic curves. Conversely,
there are curves not with general moduli for which 0.1 gives a better result
than the on the corresponding one on a general curve. For any smooth
curve C the set of nonnegative integers k such that C has a base point free
g1
k is called the Lüroth semigroup of C. See [4] for the computation of the

Lüroth semigroup of smooth plane curves and [6] for the computation of
the Lüroth semigroup of a general k-gonal curve of genus g. See the intro-
ductions and the references of [4] and [6] for several other results on this
topic. As stressed in Remarks 0.2 and 0.3 the existence of special spanned
line bundles on X depends on X, not just on its genus, even in the range of
integers d, x with ρ(g, d, x) ≥ 0 in which by the classical existence theorem
of Brill-Noether theory ([1], Ch. V and Ch. VII) there is L ∈ Picd(X)
with h0(X, L) ≥ x + 1. For line bundles the spannedness condition is im-
portant because only these line bundles correspond to morphisms from X
to projective spaces. Similarly, only spanned vector bundles corresponds to
morphisms from X into Grassmannians. If L ∈ Pic(X) has many sections,
at least throwing away the base locus, B, we obtain a spanned line bundle
L(−B) with h0(X, L(−B)) = h0(X, L(−B)) and hence at least a morphism
of degree deg(L) − length(B) < deg(L) to the same projective space. But
if E is a vector bundle with r := rank(E) > 1 and E′ is a subsheaf of E
spanned by H0(X, E), we may have rank(E′) < rank(E). Even if we assume
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rank(E′) = rank(E), the geometric properties of E′ may be very different
from the ones of E. In particular E′ may be unstable even if E is stable. For
instance as far as we know the sharper existence theorems for stable vector
bundles with many sections on X produce stable bundles, E, such that E′

is a direct sum of line bundles (see e.g [6]) and hence with E′ not stable,
not simple and usually not even semistable. We hope to have convinced the
reader that for rank r > 1 the Brill-Noether theory of stable vector bundles
on X and the Brill-Noether theory of stable and spanned vector bundles on
X are quite different and that both (but even more the second one) depends
on the algebraic structure of X, not just its genus. Theorem 0.1 is easy to
use both for curves with general moduli and for curves for which the classical
theory of special divisor is known. The interested reader may see the case
of plane curves in [5]. The proof of 0.1 uses a construction (see 1.1) made in
[2] for the same purpose. Except for the use of this construction, the proofs
are completely different from the ones in [2].

1. Proof of 0.1.

The following construction of spanned vector bundles was made in [2], Con-
struction 1.1.

Construction 1.1. We fix a vector bundle A on X and a rank t vector
bundle M on X which is spanned by its global sections. We fix an integer
x with t + 1 ≤ x ≤ h0(X, M). We are looking for exact sequences on X:

0 → A → E → M → 0(1)

with h0(X, E) = h0(X, A) + x and such that the image of H0(X, E) into
H0(X, M) is an x-dimensional subspace of H0(X, M) spanning M . Notice
that if A is spanned, then any such E is spanned. Here we will construct
all such bundles E, although in this paper we only use that the construc-
tion gives spanned bundles. Fix a linear subspace W ⊆ H0(X, M) with
dim(W ) = x and W spanning M . We want to find all exact sequences (1)
such that the image of the map H0(X, E) → H0(X, M) contains W . In
particular we will obtain h0(X, E) ≥ h0(X, A) + x. Consider the Euler’s
sequence on the Grassmannnian G(t, x) seen as the Grassmannian of all
(x− t)-dimensional linear subspaces of W :

0 → S → W ⊗OG(t,x) → Q → 0.(2)

Since W spans M , the universal property of the Grassmannian G(t, x)
gives a morphism f : X → G(t, x) such that M ∼= f∗(Q). Set U := f∗(S).
Hence U is a vector bundle with rank(U) = x−t, deg(U) = −deg(M) and U∗

is spanned by W ∗. Thus if M has no trivial factor, we have h0(X, U∗) ≥ x.
The case x = t + 1 is very nice because in this case we have U∗ ∼= det(M).
Fix j ∈ H0(X; Hom(U,A)). The map j induces a map u(j) : U → A⊕OX⊕x .
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Recall that a subsheaf T ′ of a locally free sheaf T on X is said to be saturated
(or saturated in T ) if T/T ′ has no torsion, i.e., if either T ′ = T or T/T ′ is
locally free. Since W spans M , U is a saturated subsheaf of W ⊗ OX and
u(j)(U) is saturated in A⊕OX⊕x . Hence Coker(u(j)) is a vector bundle. Set
E := Coker(u(j)). We have rank(E) = rank(A)+rank(M). By construction
E has A as a saturated subbundle. By construction E fits in an exact
sequence (1). By construction the x chosen spanning sections of M are
lifted to E. Now we check that this construction gives all such bundles.
Take E fitting in (1) with h0(X, E) = h0(X, A)+x. Hence the image, W , of
H0(X, E) into H0(X, M) has rank x; if E is spanned, then W spans M and
E is a quotient of A⊕W with U as kernel, i.e., we have an exact sequence

0 → U → A⊕W → E → 0(3)

in which the map U → W is induced by (2), while the map U → A obtained
from (3) is our map j.

Lemma 1.2. Fix an integer r ≥ 2. Let X be a smooth curve of genus ≥ 1.
Fix Li ∈ Pic(X), 1 ≤ i ≤ r−1, and M ∈ Pic(X) with deg(Li) = deg(M)−1
for every i. Assume Li

∼= Lk if and only if i = k and h0(X, Hom(Li,M)) = 0
for every integer i with 1 ≤ i ≤ r − 1 i.e., assume that there is no P ∈ X
with M ∼= Li(P ) for some i. Let E be a rank r vector bundle on X fitting
in an exact sequence (1) with A = L1 ⊕ · · · ⊕ Lr−1. Then E is stable if and
only if it has no Li as a direct factor.

Proof. Assume the existence of a proper subbundle F of E with µ(E) ≤
µ(F ). Taking F with minimal rank we may assume F stable. Since µ(E) =
deg(L1) + 1/r and rank(F ) < r, we obtain µ(F ) ≥ deg(L1) = deg(M) − 1.
Hence the stability of F implies that either the induced map f : F → M
is zero or it is surjective. Since A is semistable and µ(F ) > µ(A), F is not
contained in A. Hence f is surjective. Since Ker(f) ⊆ A, either Ker(f)
is a direct sum of some of the Lj ’s or deg(F ) = deg(M) + deg(Ker(f)) ≤
rank(f)(deg(L1)). Thus Ker(f) is a direct sum of some of the Lj ’s, say
Ker(f) ∼= ⊕1≤i≤sLi with 1 ≤ s ≤ r − 2. Thus µ(E/F ) = deg(L1). Since A
is semistable, we obtain the existence of an integer i with 1 ≤ i ≤ r−1 such
that the compositions of the maps Li → A → E → E/F → Ls+1 induce a
splitting of E with Li as direct factor.

Corollary 1.3. Let X be a smooth curve of genus ≥ 1. Fix Li ∈ Pic(X),
1 ≤ i ≤ r − 1, and M ∈ Pic(X) with deg(Li) = deg(M) − 1 for every
i. Assume Li

∼= Lk if and only if i = k and h0(X, Hom(Li,M)) = 0 for
every integer i with 1 ≤ i ≤ r − 1 i.e., assume that there is no P ∈ X with
M ∼= Li(P ) for some i. Set A := L1 ⊕ · · · ⊕ Lr−1. Assume h0(X, Li) ≥ 2
for every i and M spanned. Assume Li

∼= Lk if and only if i = k and
h0(X, Hom(Li,M)) = 0 for every integer i with 1 ≤ i ≤ r − 1 i.e., assume
that there is no P ∈ X with M ∼= Li(P ) for some i. Fix a linear space
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W ⊆ H0(X, M) with dim(W ) = 2 and W spanning M . Let E be the general
spanned bundle obtained by Construction 1.1 with respect to the vector space
W . Then E is stable.

Proof. Since dim(W ) = 2, we have U ∼= M∗. Since h0(X, Li) ≥ 2, we have
h0(X, Hom(U,Li)) ≥ 3. Hence for a general j ∈ H0(X, Hom(U,A)) the
bundle Coker(u(j)) has no Li as a direct factor. Thus we conclude by 1.2.
Taking duals, from Lemma 1.2 we obtain the following result.

Lemma 1.4. Let X be a smooth curve of genus ≥ 1. Fix A ∈ Pic(X) and
Mi ∈ Pic(X), 1 ≤ i ≤ r−1, with deg(Mi) = deg(A)+1 for every i. Assume
Mi

∼= Mk if and only if i = k and h0(X, Hom(A,Mi)) = 0 for every integer
i with 1 ≤ i ≤ r − 1 i.e., assume that there is no P ∈ X with Mi

∼= A(P )
for some i. Set M := M1⊕ · · · ⊕Mr−1. Let E be a rank r vector bundle on
X fitting in an exact sequence (1). Then E is stable if and only if it has no
Mi as a direct factor.

By quoting Lemma 1.4 instead of Lemma 1.2 in the proof of Corollary 1.3
we obtain the following result.

Corollary 1.5. Let X be a smooth curve of genus ≥ 1. Fix A ∈ Pic(X)
and Mi ∈ Pic(X), 1 ≤ i ≤ r − 1, with deg(Mi) = deg(A) + 1 for every
i. Assume Mi

∼= Mk if and only if i = k and h0(X, Hom(A,Mi)) = 0 for
every integer i with 1 ≤ i ≤ r − 1 i.e., assume that there is no P ∈ X with
Mi

∼= A(P ) for some i. Set M := M1 ⊕ · · · ⊕ Mr−1. Assume h0(X, A) ≥
2 and that each Mi is spanned. Fix a linear space W ⊆ H0(X, M) with
dim(W ) = r and W spanning M . Let E be the general spanned bundle
obtained by Construction 1.1 with respect to the vector space W . Then E is
stable.

Lemma 1.6. Fix a non-split exact sequence

0 → H → E → G → 0(4)

of vector bundles on X with H semistable, G stable, µ(H) < µ(G) (i.e.,
µ(E) < µ(G)) and such that µ(G) is the minimal rational number of the
form a/b with a, b integers, 1 ≤ b < rank(E), and a/b > µ(E). Then E is
stable.

Proof. Assume E unstable and take a proper subbundle T of E with slope
µ(T ) ≥ µ(E). Taking such T with minimal rank we may assume that T
is stable. First assume µ(T ) > µ(E). Since 1 ≤ rank(T ) < rank(E), we
have µ(T ) ≥ µ(G) by the assumption on µ(G). Since G is stable, either
the induced map α : T → G is zero or it is surjective. In the former case
we have T ⊆ H. Since H is semistable, we obtain µ(T ) ≤ µ(H) < µ(G),
contradiction. Now assume that the induced map α : T → G is surjective. If
α is an isomorphism, then (4) splits, contradiction. If α is surjective but not
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an isomorphism, we have µ(T ) < µ(G) because T is stable. Hence we obtain
a contradiction and prove that µ(T ) = µ(E), i.e., up to now we checked the
semistability of E. If µ(T ) = µ(G) the map α is either 0 or surjective
because G has no proper subsheaf of slope β with µ(E) ≤ β < µ(G) by the
property of µ(G) and the stability of G. As above we obtain a contradiction
and prove the lemma. A similar, but easier, proof give the following result.

Lemma 1.7. Fix a non-split exact sequence (4) of vector bundles on X
with H and G semistable, µ(H) ≤ (G) (i.e., µ(E) ≤ µ(G)) and such that
µ(G) is the minimal rational number of the form a/b with a, b integers,
1 ≤ b < rank(E), and a/b ≥ µ(E). Then E is semistable.

Remark 1.8. By Riemann-Roch we have h1(X, Hom(G, H)) = rank(G) ·
rank(H)(g−1+µ(G)−µ(H))+h0(X, Hom(G, H)) ≥ rank(G) ·rank(H)(g−
1 + µ(G)− µ(H)) and hence under the assumptions of Lemmas 1.6 and 1.7
for any fixed G and H we always have non-split exact sequences (4).

Lemma 1.9. Let H and G spanned vector bundles on X with H semistable,
G stable, µ(H) < µ(G) (i.e., µ(E) < µ(G)) and such that µ(G) is the
minimal rational number of the form a/b with a, b integers, 1 ≤ b < rank(E),
and a/b > µ(G). Assume h0(X, Hom(H,G)) = 0. Then there exists a
spanned stable vector bundle E on X fitting in the exact sequence (4) and
with h0(X, E) = h0(X, H) + h0(X, G).

Proof. Apply Construction 1.1 taking M := G, V := H0(X, G) and A :=
H. Let U := ker {G, V } be the associated kernel bundle. For every j ∈
H0(X, Hom(U,H)) the bundle coker(u(j)) fits as middle term in an exact
sequence (4). By Lemma 1.6 it is sufficient to show that for general j ∈
H0(X, Hom(U,H)), the corresponding exact sequence does not split. Fix
j ∈ H0(X, Hom(U,H)) such that coker(u(j)) ∼= H ⊕G. Hence j induces an
exact sequence

0 → U → H ⊕W → H ⊕G → 0.(5)

Since h0(X, Hom(H,G)) = 0 and for every homomorphism f : W ⊕H →
H ⊕G, f |{0} ×H factors through the inclusion of H ⊕ {0} into H ⊕G.

Hence we obtain j = 0. Thus to show that for general j coker(u(j)) 6=
H ⊕ G it is sufficient to show that h0(X, Hom(U,H)) > 0. This is true
because both U∗ and H are spanned.

Remark 1.10. The proof of 1.9 works in the set-up of Lemma 1.7 and gives
the existence semistable non-split spanned bundles fitting in (4) even if G
is only assumed to be semistable and µ(H) = µ(G).

Proof of Theorem 0.1. By Corollaries 1.3 and 1.5 for every integer r ≥ 2
Theorem 0.1 is true for the integers d = rk + 1 and d = r(k + 1) − 1. In
particular 0.1 is true for r = 2. Fix r ≥ 3. Assume rk +2 ≤ d ≤ r(k +1)−2
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and that Theorem 0.1 is true on X for all ranks r′ < r. We take integers
r′, r′′, a, b with r′ > 0, r′′ > 0, r′ + r′′ = r, a + b = d and such that
the pair of rational numbers (a/r′,b/r′′) satisfies the assumption of the pair
(µ(H),µ(G)) of Lemma 1.6. We apply the inductive assumption on r to find
stable spanned bundles H, G with deg(H) = a, rank(H) = r′, deg(G) = b
and rank(G) = r′′. Then we apply Corollary 1.7. It is easier to prove
the existence of spanned semistable bundles. Indeed we have the following
result.

Proposition 1.11. Let X be a smooth projective curve of genus g ≥ 2. Fix
integers r, k, m with r ≥ 2, k ≥ 2 and m > 0. Assume the existence of line
bundles Li ∈ Pick(X), 1 ≤ i ≤ r, Mu ∈ Pick+1(X), 1 ≤ u < r, with the
following properties:

(a) Every Li, 1 ≤ i ≤ r, and every Mu, 1 ≤ u < r, is spanned;
(b) h0(X, Li) ≥ m for every integer i with 1 ≤ i ≤ r and h0(X, Mu) ≥

m + 1 for every integer u with 1 ≤ u < r;
(c) no two of the line bundles Li, 1 ≤ i ≤ r, are isomorphic;
(d) no two of the line bundles Mu, 1 ≤ u < r, are isomorphic;
(e) we have h0(X, Hom(Li,Mu)) = 0 for every pair (i, u) with 1 ≤ i ≤ r

and 1 ≤ u < r, i.e., for every pair (i, u) there is no P ∈ X with
Mu

∼= Li(P ).

Then for every integer d with rk ≤ d < r(k + 1) there exists a rank r
spanned semistable vector bundle E on X with deg(E) = d and h0(X, E) ≥
mr.

Proof. If d = rk, set E = ⊕1≤i≤rLi. If rk < d < r(k + 1), just apply
Theorem 0.1. However, notice that the proof of semistability in 1.6 (and
hence for Theorem 0.1) was much easier than the proof of stability.
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