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In this paper we study some of the arithmetic structure
that is found in a special kind of semi-ring in the isols. These
are the semi-rings [D(Y ), +, ·] that were introduced by J.C.E.
Dekker, and that were later shown by E. Ellentuck to model
the true universal recursive statements of arithmetic when Y
is a regressive isol and is hyper-torre (= hereditarily odd-even
= HOE). When Y is regressive and HOE, we further reflect on
the structure of D(Y ). In addition, a new variety of regressive
isol is introduced, called combinatorial. When Y is such an
isol, then it is also HOE, and more, and the arithmetic of
D(Y ) is shown to have a richer structure.

1. Introduction.

One of the nice directions in the theory of isols deals with modelling familiar
arithmetic properties of the nonnegative integers in collections of isols. In
this paper we continue in that direction. We study two particular properties
for regressive isols; the property of hereditarily odd-even (HOE), and the
property of being combinatorial (COMB). The first of these was studied
in [1] and [10]; its significance is based on the work of E. Ellentuck on
hyper-torre isols in [8], and on the fact that being HOE gives an arithmetic
characterization to being regressive and hyper-torre. Being a combinatorial
isol is a new notion introduced here. It is also defined by an arithmetic
feature of nonnegative numbers which is extended to the isols.

Both HOE and COMB isols are studied in the context of the (Dekker)
semi-ring of regressive isols that they generate. In [6] J.C.E. Dekker intro-
duced the study of a special sort of semi-ring D(Y ) in the isols. Associated
with each isol Y , the algebraic system [D(Y ),+, ·] provides a natural and
interesting extension of the arithmetic of the nonnegative integers. Just how
much of the structure of familiar arithmetic is present in these systems is
known to depend upon the choice of the isol Y . It is the classical result
of E. Ellentuck in [8] that if Y is a hyper-torre regressive isol, equivalently
HOE, then the system [D(Y ),+, ·] is a model for the true universal recursive
statements of arithmetic. By some recent work of T.G. McLaughlin in [11],
and our own in [4], we know that there are new varieties of regressive isols
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Y for which one can find a richer structure for the isols in D(Y ). It is in
that way that the notion of a combinatorial isol evolved.

The principal concepts of our paper are the two properties of HOE and
COMB for regressive isols, and the special semi-ring of isols D(Y ). These
notions are defined in the following way:

Definition D1. An isol Y is said to be hereditarily odd-even (HOE) if
every predecessor of Y has parity (i.e., is either an even isol or an odd isol).
Thus Y is HOE if every U ≤ Y has the form U = 2S or U = 2S + 1, for
some isol S.

Definition D2. An isol Y is said to have direct comparability of summands
(DCS), if whenever Y = A + B, then either A ≤ B or B ≤ A.

Definition D3. An isol Y is said to be combinatorial (COMB) if g∗(Y )
has DCS, whenever g is any recursive combinatorial function, and g∗ is the
extension of g to the isols.

Definition D4. Let Y be any isol, and let RCF denote the collection of
all recursive combinatorial functions of one variable. Then:

D(Y ) = (U ≤ g∗(Y ) | for any g in RCF).

These notions have been defined when Y is any isol, but in our study
we shall almost always be assuming in addition that Y is regressive. This
approach is significant because there is a rich collection of known results
that we can then apply. Our main results in the paper concern the system
of isols [D(Y ),+, ·] when Y is regressive and HOE, and when Y is regressive
and COMB.

Regressive isols that are infinite and HOE have been studied in [1], [4] and
[10]. Their existence was first shown by L. Harrington; the result and its
proof are given in [10, Theorem 20.15]. The existence of infinite regressive
isols that are combinatorial comes indirectly from the presentation in [4].
There, isols called completely torre were introduced and studied. These isols
are infinite and regressive, and, based upon [4, Theorems 4.1 and 4.2], can
be shown to be combinatorial. That there are completely torre isols was
proved in [4, Theorem 5.1]. When Y is a regressive isol and HOE, we show
that the members of D(Y ) are all comparable by the ≤∗ relation, and that
there is present a weak form of Euclidean division. When Y is a regressive
isol and COMB, it is shown that the members of D(Y ) are all comparable by
the ≤ relation, and that now there is present the familiar form of Euclidean
division.

2. Preliminaries.

We shall assume that the reader is familiar with basic concepts and results
in the theory of isols and regressive isols. The main results that are applied
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appear in [1], [4], and [10]. It is very useful in the paper to be able to
apply the classical metatheorem of A. Nerode that permits certain universal
Horn sentences that are true in the nonnegative integers to be extended to
sentences that are true in the isols.

We let E = (0, 1, 2, . . . ) whose members are called numbers, and let Λ
be the collection of isols, and ΛR the collection of regressive isols. If g is
a recursive function in any number of variables, then g∗ will denote the
extension of g to the isols. A function g : E → E is said to be increasing, if
x ≤ y implies g(x) ≤ g(y), for all numbers x and y. Combinatorial functions
of one variable are increasing functions. The very useful property about
recursive increasing functions that we use is: If g is a recursive increasing
function (of one variable), then g∗ maps regressive isols to regressive isols.
Throughout the paper the set notations E and D(Y ) are also used to denote
the algebraic systems [E,+, ·] and [D(Y ),+, ·], respectively.

The following are some of the properties that HOE regressive isols are
known to possess ([10]). Let Y be such an isol. Then every predecessor of
Y is HOE, and so also is g∗(Y ) when g is any increasing recursive function.
In addition, Y satisfies the following comparability of summands property
(CS): Whenever Y = A + B, then either A ≤∗ B or B ≤∗ A.

The relation of ≤∗ was introduced by J.C.E. Dekker in [6]. It is defined in
the following way: Let A and B be any isols. Then A ≤∗ B is true just when
(a) A and B are finite and A ≤ B, or (b) A is finite and B is infinite, or (c)
both A and B are infinite and there are sets α and β belonging to A and B
respectively, and a partial recursive function p, such that p is defined on all
numbers in α, p(α) = β, and p is one-one on α. It is one of the fundamental
results ([6]), that when A and B are any isols, then A ≤∗ B and B ≤∗ A
together imply that A = B.

One aim in [6] was to associate with any pair of regressive isols A and B
a new regressive isol, written as min(A,B), called the minimum of A and
B. A variety of results were proved which established a close similarity of
min(A,B) in relation to ≤∗, as one would find for the familiar minimum
function for numbers of E in relation to ≤. For example,

min(A,B) = min(B,A), min(A,B) ≤∗ A, and

min(A,B) = A if and only if A ≤∗ B.

Later it was shown ([10]) that min(A,B) = min∗(A,B) where min∗ de-
notes the extension to the isols of the familiar minimum function on E2 and
A and B are any regressive isols. In addition, ≤∗ is also the same as ≤Λ,
being the extension to the isols of the familiar ≤ relation, when it is retricted
to regressive isols.

By combining these results with the Nerode metatheorem for extending
statements to the isols we will be able to obtain some useful consequences
that relate to functions and regressive isols.
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Let A and B be regressive isols. It is a well-known property that A ≤ B
implies that A ≤∗ B, and also that the converse is not true ([6]). Thus if
Y is a regressive isol that has DCS, then Y has CS. Even more is also true.
Assume that Y is a regressive isol that has DCS. Then, based on results in
[4], each predecessor of Y also has DCS, and then Y is HOE. It was also
shown that 2Y , as well as any finite multiple of Y , has DCS.

Assume that g is a recursive combinatorial function and let Y be a re-
gressive isol. While it is known that if Y is HOE then g∗(Y ) is also HOE,
it is presently not known whether if when Y has DCS then g∗(Y ) also has
DCS. It is for the last reason, and because of our special interest in D(Y ),
that the notion of a combinatorial isol was introduced in the manner it was.

From the results cited in our comments above we may directly obtain the
following result.

Proposition 2.1. Let Y be a regressive isol that is combinatorial and let
X be any member of D(Y ). Then X has the following properties: DCS, CS
and HOE.

Let g be a recursive combinatorial function, and let X and Y be any isols.
It follows from an early classical result of J. Myhill ([12]) that if X ≤ Y then
g∗(X) ≤ g∗(Y ). Based on this fact we may establish the following result.

Proposition 2.2. Let Y be a regressive isol that is combinatorial and let
X ≤ Y . Then X is also regressive and combinatorial.

Proof. The regressiveness of X follows directly from the fact that it is a
predecessor of a regressive isol. To show that X is combinatorial, let g be
any recursive combinatorial function. Then X ≤ Y implies g∗(X) ≤ g∗(Y ),
by the theorem of J. Myhill. Then, g∗(Y ) has DCS since Y is combinatorial,
and g∗(X) has DCS since it is a predecessor of a regressive isol that has DCS.
Hence, it follows that X is a combinatorial isol, and it completes our proof.

It is one of the basic facts about recursive functions and their extension
to the isols that if f and g are recursive combinatorial functions, then their
composition h = f◦g is also recursive combinatorial, and h∗(X) = f∗(g∗(X))
for all isols X. Based on this fact we have the following result.

Proposition 2.3. Let Y be a regressive and combinatorial isol. Then:
(1) g∗(Y ) is regressive and combinatorial for every recursive combinatorial

function g, and
(2) every member of D(Y ) is regressive and combinatorial.

Proof. In each part the regressive property of the isol is clear. We shall then
only deal with the property of being combinatorial.

Re (1). Let g be a recursive combinatorial function. To show that g∗(Y )
is combinatorial, let f be any recursive combinatorial function and consider
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f∗(g∗(Y )). We wish to see that it has DCS. Setting h = f ◦ g, we then have
that h is recursive combinatorial and f∗(g∗(Y )) = h∗(Y ). Then f∗(g∗(Y ))
has DCS, since Y is a combinatorial isol.

Re (2). Each member X of D(Y ) is predecessor of a g∗(Y ), for some recur-
sive combinatorial function g. Then g∗(Y ) is a combinatorial isol by part
(1), and then X is also combinatorial, by Proposition 2.2. That completes
our proof.

Lastly, we mention that it is an open question at the present time whether
the properties of HOE and COMB are distinct.

3. Characterizations for D(Y ) when Y is HOE.

Throughout this section we will assume that Y is a regressive isol. Our
interest is to establish a variety of ways that the system D(Y ) may be
characterized when Y is HOE.

A function s : E → E is called elementary if for each number x the value
of s(x) is 0 or 1. An elementary function is therefore the characteristic
function of a subset of E, and a recursive elementary function corresponds
to a recursive subset of E. Our interest is in recursive elementary functions
and in establishing some properties about their extension to the isols, as:
When Y is HOE, then the value of s∗(Y ) is an isol and is equal to 0 or 1.
The extension to the isols of a recursive elementary function need not map
each regressive isol to an isol. That fact follows from a result of E. Ellentuck
which states that the extension of a recursive function f : E → E maps
regressive isols to the isols if and only if f is eventually increasing, meaning
that there is a number k such that the function g(x) = f(x+k) is increasing.
Thus, when applied to a recursive elementary function s, it follows that s∗

maps ΛR into Λ only in the case that s is eventually constant.

Proposition 3.1. Let s be a recursive elementary function. Let U and V
be isols such that V = s∗(U). Then V is equal to 0 or 1.

Proof. If V is equal to 0, then we are done. Let us now assume that V is
positive, and let V = W + 1. Then s∗(U) = W + 1.

Since s is an elementary function, the statement

s(u) = w + 1 → w = 0(1)

is true in the nonnegative integers. We would like to extend it to the isols.
Though (1) is a Horn sentence (expressed with recursive functions), we shall
first give an equivalent statement that is a Horn sentence with recursive
combinatorial functions. Then, to the new sentence we apply the Nerode
metatheorem.

Let s+ and s− be recursive combinatorial functions such that for all num-
bers x, s(x) = s+(x)− s−(x). Then s∗(U) = (s+)∗(U)− (s−)∗(U). We may
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then express (1) by

s+(u) = s−(u) + w + 1 → w = 0.(2)

And, then (2) extends to the isols by the Nerode metatheorem, which gives
in particular, that

(s+)∗(U) = (s−)∗(U) + W + 1 → W = 0.(3)

Since s∗(U) = (s+)∗(U)− (s−)∗(U), it follows from (3) that

s∗(U) = W + 1 → W = 0.

Hence, from our given that s∗(U) = W + 1 it follows that W = 0, and also
V = 1. That completes our proof.

Proposition 3.2. Let Y be a regressive isol that is HOE. Let s be a recur-
sive elementary function. Then s∗(Y ) is an isol.

Proof. Let s+ and s− be recursive combinatorial functions such that for
all x, s(x) = s+(x) − s−(x). Then both (s+)∗(Y ) and (s−)∗(Y ) are HOE
regressive isols, so each is either even or odd. We have by definition that
s∗(Y ) = (s+)(Y )−(s−)(Y ) is an element of Λ∗ (the ring of “isolic integers”);
and we would like to show that in fact s∗(Y ) is an element of Λ. Now for
any number x, if s+(x) and s−(x) are both even or both odd, then s(x) = 0;
otherwise s(x) = 1. Thus:

(1) s+(y) + s−(y) = 2u → s+(y) = s−(y)

and

(2) s+(y) + s−(y) = 2u + 1 → s+(y) = s−(y) + 1.

Since (1) and (2) are universal Horn formulas with only recursive combina-
torial functions appearing, they both extend to Λ, and so we have

(1′) (s+)∗(Y ) + (s−)∗(Y ) = 2U → (s+)∗(Y ) = (s−)∗(Y )

and

(2′) (s+)∗(Y ) + (s−)∗(Y ) = 2U + 1 → (s+)∗(Y ) = (s−)∗(Y ) + 1.

Either the antecedent of (1′) or that of (2′) must hold for some U , since
(s+)∗(Y ) and (s−)∗(Y ) both have parity. But if either the conclusion of
(1′) or that of (2′) holds, then (s−)∗(Y ) ≤ (s+)∗(Y ), and this implies that
(s+)∗(Y )− (s−)∗(Y ) is an element of Λ. That completes our proof.

Comment. The classical metatheorem of A. Nerode permits one to ex-
tend universal Horn sentences that are built up from recursive combinato-
rial functions that are true in the nonnegative integers to sentences that are
true in the isols. In that way the metatheorem was applied in the proofs of
Propositions 3.1. and 3.2. Sometimes in our paper when we wish to apply
metatheorem our reasoning leads us first to a Horn sentence that is expressed
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in terms of recursive functions, but not necessarily recursive combinatorial.
So an application of the metatheorem is not directly appropriate, and what
we then do is convert the statement into an equivalent expression that is a
Horn sentence and which is expressed in terms of recursive combinatorial
functions (as in the proof of Proposition 3.1). The metatheorem is then
applied to extend the latter statement to the isols.

In our paper the conversion of any such Horn sentence to another may
always be accomplished by the familiar method of replacing a recursive func-
tion g, that may not be combinatorial, by a difference g+−g− of two recursive
combinatorial functions, and then appropriately arranging the sides of an
equation so that only recursive combinatorial functions, and their sums and
products, are represented. In what follows we shall sometimes apply the
metatheorem to Horn statements that are simply expressed in terms of re-
cursive functions. It is done so with the belief that no unnecessary problems
would occur for the reader.

Proposition 3.3. Let Y be a regressive isol that is HOE. Let s be any
recursive elementary function. Then s∗ maps D(Y ) into D(Y ).

Proof. Let V be a member of D(Y ). Then V ≤ g∗(Y ) for some recursive
combinatorial function g. Since Y is HOE, then g∗(Y ) is also since g is
a recursive combinatorial function. Then V is also HOE, since it is the
predecessor of a HOE isol. Lastly, s∗(V ) is an isol and equal to 0 or 1, by
Propositions 3.1. and 3.2. Hence s∗(V ) is in D(Y ).

The converse of Proposition 3.3 is also true, and we shall now present
some ideas that will lead us to that result.

Definition. Let k be any positive number. Then [ x
k ] will be denote the

recursive function of x whose value is the greatest integer that is present
upon a division of x by k. Equivalently, x = k ([ x

k ])+ r for a unique number
r with 0 ≤ r < k.

For each value of a positive number k the function [ x
k ] is recursive in-

creasing. Its extension to the isols will therefore map regressive isols to
regressive isols, and also regressive isols that are HOE to regressive isols
that are HOE. We also note that by applying the Nerode metatheorem to
some valid statements in the nonnegative integers, we may infer when Y is
regressive, that Y is even if and only if Y = 2

[
Y
2

]∗, and Y is odd if and
only if Y = 2

[
Y
2

]∗ + 1.

Proposition 3.4. Let Y be a regressive isol. Assume that s∗ : D(Y ) →
D(Y ), for every recursive elementary function s. Then Y is HOE.

Proof. Let V ≤ Y . Then V is a member of D(Y ). We wish to show that V
has parity. Let s be the recursive elementary function defined by, s(x) = 0
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if x is even, and s(x) = 1 if x is odd. Then s∗(V ) is in D(Y ), by our
hypothesis, and also, its value is either 0 or 1, by Proposition 3.1. Because
each of the statements,

s(x) = 0 → x = 2
[
x
2

]
, and s(x) = 1 → x = 2

[
x
2

]
+ 1,

is true for every number x, it follows (by the Nerode metatheorem) that if
s∗(V ) = 0 then V = 2

[
V
2

]∗, and if s∗(V ) = 1 then V = 2
[

V
2

]∗ + 1. Hence
V is either even or odd, and it follows that Y is HOE.

We know if Y is HOE then Y has comparability of summands (CS),
and then also every member of D(Y ) has CS, since each is HOE. This latter
property of comparability of summands of members of D(Y ) actually implies
that Y is HOE. We wish establish that fact, and we begin with following
result. It is proved in [1] as Lemma L1, and a proof for it will be omitted
here.

Proposition 3.5. Let Y be a regressive isol such that 2Y +1 has CS. Then
Y has parity.

Proposition 3.6. Let Y be a regressive isol. Then the following statements
are equivalent:

(1) Y is HOE;
(2) each member of D(Y ) has CS;
(3) all of the members of D(Y ) are ≤∗ comparable.

Proof. For (1) → (2): This direction follows from our previous comments,
being that: When Y is HOE, then each member of D(Y ) is also HOE, and
hence has CS.

For (2) → (3): Assume (2), and let V and W be in D(Y ). Then the isol
V + W is also in D(Y ), and hence has CS. That implies that V ≤∗ W or
W ≤∗ V , which gives (3).

For (3) → (1): Assume (3), and let U ≤ Y . We wish to show that U is
even or odd. Since Y is in D(Y ), then U and 2U + 1 are also in D(Y ). In
view of Proposition 3.5, it suffices for us to observe that 2U + 1 has CS. If
2U +1 = V +W , then V and W are in D(Y ), and hence are ≤∗ comparable.
And that implies that 2U + 1 has CS. It completes our proof.

Our final topic in this section is about division for isols in the system
D(Y ). Unless one assumes some special property for Y to satisfy there is no
chance that any familiar form of division, as in the arithmetic of E, would
be true in D(Y ). For example, if Y is neither even nor odd, as would be the
case if Y is infinite and multiple-free, then one does not even have Y = 2V
or Y = 2V + 1.



HEREDITARILY ODD–EVEN AND COMBINATORIAL ISOLS 17

We shall see that certain familiar forms of division apply for the systems
D(Y ) when Y is HOE, and when Y is COMB. It is the first of these that
we shall now begin to study.

Definition. We will say that D(Y ) permits E-divisibility if for all positive
numbers k, and all V in D(Y ), there exist unique members A and r of D(Y )
such that, V = kA + r and 0 ≤ r < k.

Comment. We would like to comment upon the uniqueness property that
appears in the above definition. Because the familiar uniqueness property
of Euclidean division in arithmetic will extend to the isols, that extension
provides a corresponding uniqueness property in the isols. In our study of
E-divisibility, we shall then only focus upon the appropriate existence of
isols, as A and r, in the above definition, and not on their uniqueness. Later
in our paper, in Section 5, we will present a complete description of how the
uniqueness property of arithmetic may be extended to the regressive isols.

Proposition 3.7. Let Y be a regressive isol. Then the following statements
are equivalent:

(1) Y is HOE;
(2) D(Y ) permits E-divisibility.

Proof. For (1) → (2): Assume that Y is HOE. Let V be in D(Y ). Let k be
any positive number. Then V is HOE. We wish to show that

(1) V = k

([
V
k

]∗)
+ r for a number r with 0 ≤ r < k.

If we can show (1), then it is clear that our desired conclusion will follow,
since

[
V
k

]∗ is an isol and is in D(Y ).
For each number i with 0 ≤ i < k, let si be the recursive elementary

function defined by: si(x) = 1 if x = k ([ x
k ]) + i, and si(x) = 0 otherwise.

Then, for each i with 0 ≤ i < k,

(2) si(x) = 1 → x = k

([
x
k

])
+ i,

and

(3) s0(x) + · · ·+ sk−1(x) = 1,

for all numbers x. We can now consider the extension to the isols of these
statements. It follows from (3) and its extension to the isols that

(4) (s0)∗(V ) + · · ·+ (sk−1)∗(V ) = 1.

In view of Propositions 3.1 and 3.2, it follows that the value of just one of
the summands in (4) is equal to 1, and each of the others is equal to 0. Let
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us assume (sj)∗(V ) = 1. Then, from the extension to the isols of (2) we may
infer that

V = k

([
V
k

]∗)
+ j,

and where 0 ≤ j < k. Since
[
V
k

]∗
is a member of D(Y ), we may therefore

conclude statement (2).
For (2) → (1): Assume that D(Y ) permits E-divisibility. Let V ≤ Y .

Note that V is a member of D(Y ). We wish to show that V has parity. By
our assumption it follows that V = 2A or V = 2A + 1, for some isol A in
D(Y ). Therefore V is even or odd, and that completes our proof.

We will conclude this section with a single result that contains all of the
characterizations about D(Y ) that have been shown to be equivalent to Y
being HOE.

Theorem 3.1. Let Y be a regressive isol. Then the following statements
are equivalent:

(1) Y is HOE;
(2) each member of D(Y ) has comparability of summands;
(3) all the members of D(Y ) are ≤∗ comparable;
(4) s∗ maps D(Y ) into D(Y ), for every recursive elementary function s;
(5) D(Y ) permits E-divisibility.

Proof. We obtain the equivalence of (1), (2), and (3), by Proposition 3.6.
Propositions 3.3 and 3.4 imply that (1) and (4) are equivalent. Lastly,
Proposition 3.7 gives the equivalence of (1) and (5).

4. Combinatorial regressive isols.

In this section we present a collection of results that extend the ideas of
the previous section to the setting of D(Y ) when Y is a regressive isol
and combinatorial (COMB). It is interesting to observe the transition of
certain properties as one goes from Y being regressive and HOE, to Y being
regressive and COMB, and how these become expressed for members in
D(Y ). We shall see that the following analogues appear:

Y HOE Y COMB

≤∗ ≤

CS DCS

E-divisibility I-divisibility
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Here I-divisibility refers to a very general extension of Euclidean division
that is present in D(Y ) when Y is regressive and COMB. Moreover, there
is a very nice analogue of E. Ellentuck’s Theorem: When Y is regressive
and Hypertorre (= HOE), then D(Y ) is a model for the true universal-
recursive statements of arithmetic. It follows from the recent work of T.G.
McLaughlin in [11] that one has: When Y is regressive and COMB, then
D(Y ) is a model for all the true AE-recursive statements of arithmetic.

In the following we shall assume that Y is a regressive isol.

Theorem 4.1. The following statements are equivalent:
(1) Y is COMB;
(2) each member of D(Y ) has DCS;
(3) the members of D(Y ) are ≤ comparable.

Proof. For (1) → (2): (We shall repeat an earlier observation.) Assume
(1), and let V be a member of D(Y ). Then V ≤ g∗(Y ), for some recursive
combinatorial function g. Then g∗(Y ) has DCS, as Y is COMB, and then V
has DCS, since it is a predecessor of a regressive isol that has DCS. Hence
(2).

For (2) → (3): Assume (2). Let V and W be members of D(Y ). Then
V + W is also a member of D(Y ). Hence V + W has DCS, and therefore
V ≤ W or W ≤ V .

For (3) → (1): Assume (3). Let g be any recursive combinatorial function
of one variable. We wish to show that g∗(Y ) has DCS. We first observe that
g∗(Y ) is a member of D(Y ), and therefore whenever g∗(Y ) = V + W , then
V ≤ W or W ≤ V since both V and W are in D(Y ), and the members of
D(Y ) are ≤ comparable, by our assumption. Hence g∗(Y ) has DCS, and so
Y is combinatorial. That completes our proof.

Definition. We will say that D(Y ) permits I-divisibility if for all members
V and A of D(Y ), with A positive, there exist unique members Q and R of
D(Y ), such that V = QA + R and 0 ≤ R < A.

Comment. As in the case for E-divisibility that was introduced earlier,
also here for I-divisibility, one has the feature that if there exist isols Q and
R as in the previous definition then their values are unique. The reasoning
that is appropriate to achieve the uniqueness feature is presented in the
concluding section of our paper. For now we shall only consider the existence
of isols as Q and R, and not their uniqueness.

Lemma 4.1. Let Y be COMB, and let V and W be members of D(Y ).
Assume that V ≤∗ W . Then V ≤ W .

Proof. By Theorem 4.1 it follows that either V ≤ W or W ≤ V . We may
therefore assume that W ≤ V . Then also W ≤∗ V , and by combining that
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with the given fact that V ≤∗ W , we have V = W . Then, here also, one has
V ≤ W .

Let g : E → E be recursive and combinatorial function. We would
like to show that g∗ maps D(Y ) into D(Y ). First, let us recall the result
of J. Myhill ([12]) that if V and W are any isols, then V ≤ W implies
that g∗(V ) ≤ g∗(W ). Now assume that V is a member of D(Y ). Then
V ≤ f∗(Y ), for some recursive and combinatorial function f . And therefore,
g∗(V ) ≤ g∗(f∗(Y )). Here g∗(f∗(Y )) = (g ◦ f)∗(Y ), where the composition
function g ◦f is also recursive and combinatorial. Hence, g∗(V ) is a member
of D(Y ), and we conclude that g∗ maps D(Y ) into D(Y ).

This result may be generalized for recursive functions g : En → E in the
following two ways. First, if g is a recursive combinatorial function, then g∗

maps D(Y )n into D(Y ). This result was proved by J.C.E. Dekker in [6]. In
addition, we also have:

Lemma 4.2. Let Y be regressive and COMB. Let g : En → E be any
recursive function. Then g∗ maps D(Y )n into D(Y ).

Proof. To show that g∗ maps D(Y )n into D(Y ), let g+ and g− be any
recursive and combinatorial functions such that g = g+ − g− on En. Then
g∗ = (g+)∗ − (g−)∗ on Λn.

Let V1, . . . , Vn be any members of D(Y ). Then

(1) g∗(V1, . . . , Vn) = (g+)∗(V1, . . . , Vn)− (g−)∗(V1, . . . , Vn).

Because each of g+ and g− is recursive and combinatorial, then each of
(g+)∗(V1, . . . , Vn) and (g−)∗(V1, . . . , Vn) is an element of D(Y ), and therefore
these isols are ≤ comparable, by Theorem 4.1.

Let us observe that

(2) g−(x1, . . . , xn) ≤ g+(x1, . . . , xn),

for all numbers x1, . . . , xn; this is true because g = g+ − g− on En and g is
a recursive function. We may extend statement (2) to the isols, and since
each of (g+)∗(V1, . . . , Vn) and (g−)∗(V1, . . . , Vn) is a regressive isol, we may
then infer that

(3) (g−)∗(V1, . . . , Vn) ≤∗ (g+)∗(V1, . . . , Vn).

We also know that the isols in (3) are ≤ comparable. By Lemma 4.1, it then
follows that

(4) (g−)∗(V1, . . . , Vn) ≤ (g+)∗(V1, . . . , Vn).

In view of (1) and (4), we may conclude that g∗(V1, . . . , Vn) is an isol.
Lastly, it is also a member of D(Y ), for from (1) we see that g∗(V1, . . . , Vn) ≤
(g+)∗(V1, . . . , Vn), and the latter isol is a member of D(Y ).

We may therefore conclude that g∗ maps D(Y )n into D(Y ), and it com-
pletes our proof.
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Theorem 4.2. Let Y be a regressive isol. Then the following statements
are equivalent:

(1) Y is COMB;
(2) g∗ maps D(Y )n into D(Y ), for every recursive function g : En → E;
(3) D(Y ) permits I-divisibility.

Proof. For the direction (1) → (2), it is the content of Lemma 4.2.
For (2) → (3): Assume (2), and let q(v, a) and r(v, a) be recursive func-

tions that relate to Euclidean division in the following way: For all numbers
v and positive numbers a,

(1) v = q(v, a) · a + r(v, a) and 0 ≤ r(v, a) < a.

Statement (1) gives a familiar representation of Euclidean division. We will
make another representation, it being more appropriate for our reasoning
here. Let m(v, a) be an additional recursive function such that

(2) a = b + 1 → (v = q(v, a) · a + r(v, a) and r(v, a) + 1 + m(v, a) = a),

for all numbers v, a and b. It is easy to see that statement (2) also represents
Euclidean division on E, and also this statement will extend to the isols
by the Nerode metatheorem. Because each of the functions q, r and m is
recursive, then each of their extensions to the isols will map D(Y )2 into
D(Y ), by our assumption.

To verify that D(Y ) permits I-divisibility, let V and A be members of
D(Y ), with A positive. Then A = B + 1, for an isol B, and B is also a
member of D(Y ). Let Q = q∗(V,A), R = r∗(V,A) and M = m∗(V,A).
Based on the extension of (2) to the isols, we have

(3) V = QA + R and R + 1 + M = A.

Since each of the isols Q,R and M is a member of D(Y ), and, as then
the second condition in (3) implies 0 ≤ R < A, our desired conclusion for
I-divisibility in D(Y ) follows.

For (3) → (1): Assume (3). To verify (1), let g : E → E be any recursive
combinatorial function, and let V ≤ g∗(Y ). Then V is a member of D(Y ).

We wish to show that V has DCS. Let V = A + B. Then A and B are
also members of D(Y ), since each is a predecessor of V .

If A = 0, then A ≤ B. Let us now assume that A is positive. Then by
the I-divisibility in D(Y ), there are members Q and R of D(Y ) such that

B = QA + R and 0 ≤ R < A.

Case i. If Q = 0, then B = R, and then B < A. Then also B ≤ A.

Case ii. If Q is positive, then A ≤ QA, and then A ≤ B.

We may therefore conclude that either A ≤ B or B ≤ A, and it therefore
follows that V has DCS. This completes our proof.
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With Theorems 4.1 and 4.2 we obtain an analogue of Theorem 3.1 for
regressive isols that are combinatorial. In these results it is interesting to
see the increase of richness in the arithmetic of D(Y ) as one goes from Y
being HOE to Y being combinatorial.

5. Concluding remarks.

(1) We would like to verify that the familiar uniqueness property for Eu-
clidean division in the nonnegative extends also to the regressive isols. It
is done here just for regressive isols because it was in that setting that the
property was introduced, in relation to E-divisibility and I-divisibility for
members of D(Y ), when Y is a regressive isol.

We shall consider the expression for the familiar uniqueness property in
E, then find an equivalent form, and then apply the Nerode metatheorem
to extend the latter expression to the isols. Let ∆(v, q, a, r) denote the
statement

v = qa + r and 0 ≤ r < a,

for numbers v, q, a and r. Since the relation 0 ≤ r is always true for numbers
of E, it will be dropped. We also rewrite r < a as min(r + 1, a) = r + 1,
where min is the familiar minimum function of E2. With these changes then
∆(v, q, a, r) is equivalent to

(1) v = qa + r and min(r + 1, a) = r + 1.

We shall let ∆0(v, q, a, r) denote the expression in (1). It is usual when the
uniqueness property is introduced for it to have the form: For all numbers
v, q, a, q0, r and r0, with a positive, then ∆(v, q, a, r) and ∆(v, q0, a, r0) to-
gether imply that q = q0, and r = r0. We shall use the following equivalent
form in terms of (1): For all numbers b, v, q, a, q0, r and r0, we have

(2)
(
a = b + 1 and ∆0(v, q, a, r) and ∆0(v, q0, a, r0)

)
→ (q = q0 and r = r0).

Then (2) represents a Horn sentence built up from equations between re-
cursive functions. Because it is true in E, its extension to the isols is also
true, by the metatheorem of A. Nerode. Let ∆∗

0 denote the extension of
∆0 (namely, statement (1)) to the isols, and consider ∆∗

0(V,Q,A, R) for
regressive isols V,Q,A and R. It gives

(3) V = QA + R and min∗(R + 1, A) = R + 1.

We note in (3) that the equation min∗(R + 1, A) = R + 1 is equivalent to
the relation R + 1 ≤∗ A, since R + 1 and A are regressive isols.

When we combine the previous results and comments, we arrive at the
following form for the uniqueness property of division in the regressive isols:
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For all regressive isols V,Q,A, R,Q0 and R0, with A positive,

if V = QA + R, V = Q0A + R0, R + 1 ≤∗ A and(4)

R0 + 1 ≤∗ A, then Q = Q0 and R = R0.

In relation to the uniqueness property that was considered earlier in our
paper, property (4) is stronger than what was needed then. It follows from
the fact that when A and R are any regressive isols, then A < R implies
that A + 1 ≤∗ R, since A < R is equivalent to A + 1 ≤ R.

(2) We would like to introduce a result about regressive combinatorial
isols. It illustrates an interesting property based on the work in [4]. Let us
call a regressive isol Y special combinatorial, if Y is infinite, combinatorial,
and whenever Y + A is a regressive isol, then Y + A is also combinatorial.
Such isols exist, for it follows from the work in [4] that each completely torre
regressive isol is special combinatorial.
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