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Let G be a semisimple simply connected affine algebraic
group over an algebraically closed field k of characteristic
zero, let A(G) be the k-algebra of regular functions of G,
and let C(G) be the subalgebra consisting of class functions.
We explain how Lusztig’s work on canonical bases affords a
constructive proof of the fact, due to Richardson, that A(G)
is a free C(G)-module.

1. Introduction.

We fix an algebraically closed field k of characteristic zero. Let G be a re-
ductive affine algebraic group over k and let V be an affine G-variety over k.
We denote by A(G) and A(V ) the k-algebras of regular functions on G and
V respectively. The action of G on V gives rise to a rational representation
of G on A(V ). A natural question is to investigate whether the algebra
A(V ) is a free module over its subalgebra A(V )G of invariant elements. The
case where V is a k-vector space on which G acts linearly has been investi-
gated by Chevalley [Ch, Bo], Kostant [Ko], Popov [Po], Schwarz [Sc], and
Littelmann [Li]. In the general case, only examples have been studied, for
instance by Richardson [Ri1, Ri2] or Schwarz and Wehlau [SW].

We will investigate the case where the variety V is the group G, acting on
itself by inner automorphisms. Then the subalgebra of invariant elements
C(G) = A(G)G is the set of regular class functions. We assume in the re-
mainder of the paper that G is semisimple and simply connected. Richardson
proved in [Ri1] that the following result holds under these assumptions.

Theorem 1. There exists a G-stable vector subspace E of A(G) such that
the product map of A(G) induces a vector space isomorphism from C(G)⊗kE
onto A(G).

Richardson’s proof is based on a study of the geometric properties of the
conjugacy classes of G and relies on heavy results of commutative algebra like
the Quillen-Suslin theorem. Furthermore, as Richardson himself observed,
his method gives only the existence of a subspace E, and does not tell how
to choose an explicit E. One can ask for instance (see Sect. 12.1 in [Ri1])
if it is possible to find a subspace E which behaves nicely in relation to the
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Peter-Weyl decomposition of A(G), that is, the decomposition into isotypical
components for the left regular representation of G.

The aim of this paper is to provide an alternate proof of Richardson’s
theorem. Our method gives a more rigid choice for E, which satisfies the
condition stated above. It relies on canonical bases, which are a quite recent
tool in representation theory. The source of this method can be traced back
to a paper of Joseph and Letzter [JL], who acknowledge an idea of Polo.
Our main reference for canonical bases will be Lusztig’s book [Lu2], whose
notations will be recalled but not explained.

2. A graded quantized model and its canonical basis.

In this section, tensor products and linear duals are taken over the field Q(v)
of rational functions in one indeterminate.

2.1. Notations. We choose a maximal torus T in G. The weight lattice X
is the character group of T . The coroot lattice Y is the dual lattice of X,
the duality pairing between X and Y being denoted by 〈 , 〉 : Y ×X → Z.
The choice of a Borel subgroup B containing T affords a set I ⊆ Y of simple
coroots and an injection (I → X, i 7→ i′) that gives the corresponding simple
roots. The dominant integral weights form a cone X+ in the weight lattice.
The set I is a basis of the lattice Y . We assume that a symmetric bilinear
form (ν, ν ′) 7→ ν · ν ′ is given on Y so that i · i is a positive even integer and
2(i · j)/(i · i) = 〈i, j′〉 for all i, j in I.

We define on X+ two order relations. For any ν, ν ′ in X+, we say that
ν ≤ ν ′ whenever ν ′ − ν ∈

∑
i∈I N i′ and that ν 4 ν ′ whenever ν ′ − ν ∈ X+.

The poset (X+,4) is a distributive lattice.
Let v be an indeterminate. From the data above, one can define the

Q(v)-algebra f , generated by the symbols (θi)i∈I submitted to the quan-
tized Serre relations ([Lu2], Chap. 1 and §33.1). One then defines as in
Chapter 3 of [Lu2] the quantized enveloping Q(v)-algebra U and its involu-
tive automorphism ω. Following §§3.4–3.5 in [Lu2], we denote the category
of weight U-modules by C and its full subcategory of integrable U-modules
by C′. Given a dominant integral weight λ, there is a unique simple object
Λλ in C′ with highest weight λ and highest weight vector ηλ, and a unique
simple object ωΛλ in C′ with lowest weight −λ and lowest weight vector ξ−λ

([Lu2], §3.5). In §14.4 of [Lu2], Lusztig defines the canonical basis B of f
and its family of subsets B(λ), where λ ∈ X+. An immediate consequence
of these definitions is the following fact.

Lemma 2. For any b ∈ B, there is a dominant integral weight ε(b) such
that {λ ∈ X+ | b ∈ B(λ)} = ε(b) + X+.

Proof. With the notations of §14.4 of [Lu2], b belongs to B(λ) if and only
if the inequality 〈i, λ〉 ≥ min {n | b ∈ σBi,n} holds true for all i ∈ I. It is
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therefore sufficient to set ε(b) so that for all i ∈ I, 〈i, ε(b)〉 = min {n | b ∈
σBi,n}. �

2.2. A graded quantized model for A(G). By §25.1 in [Lu2], for any
dominant integral weights λ, µ ∈ X+, there are unique maps of U-modules
iλ,µ : Λλ+µ → Λλ⊗Λµ and ωiλ,µ : ωΛλ+µ → ωΛµ⊗ωΛλ such that iλ,µ(ηλ+µ) =
ηλ ⊗ ηµ and ωiλ,µ(ξ−λ−µ) = ξ−µ ⊗ ξ−λ.

Using the antipode of U, the dual vector space M∗ of a U-module M
can be viewed as a U-module. If M and N are U-modules and if one of
them is finite-dimensional, then the U-modules (M ⊗N)∗ and N∗⊗M∗ are
naturally isomorphic. The dual of a finite-dimensional object of C′ belongs
to C′.

For any dominant integral weight λ, we define the U-module Hλ = (ωΛλ⊗
Λλ)∗. We also set H =

⊕
λ∈X+ Hλ. The family of maps

 Hλ ⊗Hµ → Hλ+µ

(Λλ)∗ ⊗ (ωΛλ)∗ ⊗ (Λµ)∗ ⊗ (ωΛµ)∗ → (Λλ+µ)∗ ⊗ (ωΛλ+µ)∗

p⊗ q ⊗ r ⊗ s 7→ (iλ,µ)∗(r ⊗ p)⊗ (ωiλ,µ)∗(q ⊗ s)


(1)

induces a product m : H ⊗H → H which endows H with the structure of
a X+-graded algebra. One can easily show that this algebra is associative
and has a unit.

By Proposition 25.1.4 (a) in [Lu2], for any dominant integral weight λ
there is a unique U-linear map δλ : ωΛλ⊗Λλ → Q(v) such that δλ(ξ−λ⊗ηλ) =
1, where Q(v) is considered as a U-module via the co-unit of U. This form
δλ is a U-invariant element in Hλ.

For any two dominant integral weights λ and µ, Lusztig defines in §25.1.5
of [Lu2] the map tλ : ωΛλ+µ ⊗ Λλ+µ → ωΛµ ⊗ Λµ as the composition

ωΛλ+µ ⊗ Λλ+µ

ωiλ,µ⊗iλ,µ−−−−−−→ ωΛµ ⊗ ωΛλ ⊗ Λλ ⊗ Λµ

id⊗δλ⊗id−−−−−−→ ωΛµ ⊗Q(v)⊗ Λµ.

Lemma 3.

(a) The dual map (tλ)∗ : Hµ → Hλ+µ is injective and coincides with the
left multiplication by δλ in the algebra H.

(b) In the algebra H, one has δλ δµ = δλ+µ for any dominant integral
weights λ and µ.

Proof. The injectivity of (tλ)∗ follows from the surjectivity of tλ, which is
shown in [Lu2], Lemma 25.1.6 (c). Let us write δλ =

∑
i pi ⊗ qi in (Λλ)∗ ⊗

(ωΛλ)∗. Then for any elements
∑

j rj⊗sj ∈ (Λµ)∗⊗(ωΛµ)∗ and
∑

k tk⊗uk ∈
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ωΛλ+µ ⊗ Λλ+µ, we have

〈δλ × (
∑

j rj ⊗ sj),
∑

k tk ⊗ uk〉

=
∑
i,j,k

〈(iλ,µ)∗ (rj ⊗ pi)⊗ (ωiλ,µ)∗ (qi ⊗ sj), tk ⊗ uk〉

=
∑
i,j,k

〈rj ⊗ pi ⊗ qi ⊗ sj ,
ωiλ,µ(tk)⊗ iλ,µ(uk)〉

=
∑
j,k

〈rj ⊗ δλ ⊗ sj , (ωiλ,µ ⊗ iλ,µ)(tk ⊗ uk)〉

= 〈
∑

j rj ⊗ sj , tλ(
∑

k tk ⊗ uk)〉.

This calculation proves (a).
Now the linear form δλ δµ on ωΛλ+µ ⊗ Λλ+µ is U-linear and takes the

value 1 on the element ξ−λ−µ ⊗ ηλ+µ, since it can be written as (tλ)∗ (δµ) =
δµ ◦ tλ. Therefore it coincides with δλ+µ, which proves (b). �

2.3. Dual-based modules and isotypical decompositions. The sim-
ple objects of the category C′ are the U-modules Λσ, where σ is a dominant
integral weight; they are pairwise non-isomorphic. Given an object M in C′
and a dominant integral weight σ, we denote the sum of the simple subob-
jects of M isomorphic to Λσ by M [σ]. By complete reducibility, we have
M =

⊕
σ∈X+ M [σ]. Given P ⊆ X+, we denote the subspace

⊕
σ∈P M [σ]

by M [P ]. For short, we will write ≥ σ instead of {τ ∈ X+ | τ ≥ σ}, 6< σ
instead of {τ ∈ X+ | τ 6< σ}, and so on.

In Chapter 27 of his book [Lu2], Lusztig defines the notion of a based
module. A based module is a pair (M,B) consisting of a finite-dimensional
U-module M which belongs to C′ and a Q(v)-basis B of M satisfying several
properties stated in §27.1.2 of [Lu2]. Based modules are the objects of a
category: A morphism from the based module (M,B) to the based module
(M ′, B′) is a morphism f : M → M ′ of U-modules such that f(B) ⊆ B′∪{0}
and such that the set B ∩ ker f is a basis of ker f .

We define a dual-based module as a pair (M,B) consisting of a finite-
dimensional U-module M which belongs to C′ and a Q(v)-basis B of M such
that the dual module M∗ together with the basis B∗ dual to B is a based
module. Dual-based modules form a category, the morphisms between two
dual-based modules being defined in the same way as morphisms between
based modules.

For any dual-based module (M,B) and any dominant integral weight σ,
we put

B[σ] = (B ∩M [≤ σ]) \ (B ∩M [< σ]).

The following properties of dual-based modules are direct consequences
of similar properties of based modules.
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Proposition 4. Let (M,B) be a dual-based module and let σ be a dominant
integral weight.

(a) The subspaces M [≤ σ] and M [< σ] are spanned over Q(v) by their
intersection with B.

(b) The restriction of the canonical surjection p : M [≤ σ] → M [≤ σ]/M [<
σ] to B[σ] is injective and the pair (M [≤ σ]/M [< σ], p(B[σ])) is a
dual-based module.

(c) When σ runs over X+, the sets B[σ] form a partition of B.
(d) Let (M ′, B′) be a sub-dual-based module of (M,B) and assume that

M has only one nonzero isotypical component. Then the Q(v)-vector
space M ′′ spanned by B \B′ is a complementary sub-U-module of M ′

in M and the pair (M ′′, B \B′) is a dual-based module.
(e) Let (M ′, B′) be a dual-based module and assume that U acts trivially

on M or on M ′. Then (M⊗M ′, B⊗B′) is a dual-based module, where
B ⊗B′ denotes the set {b⊗ b′ | b ∈ B, b′ ∈ B′}.

Proof. Proposition 27.1.8 in [Lu2] asserts that for any dominant integral
weight τ and any based module (N,C), the submodule N [≥ τ ] is spanned
over Q(v) by its intersection with C. One deduces from this fact that the
submodule N [P ] is spanned over Q(v) by its intersection with C for any
subset P ⊆ X+ such that P + (

∑
i N i′) ⊆ P . In particular, this property

holds for N [6≤ σ∗] and N [6< σ∗], where σ∗ is the highest weight of (Λσ)∗.
Applying this result to the case of the based module (M∗, B∗) and taking
orthogonals, we obtain Property (a).

Property (a) proves that the restriction of p defines a bijection from B[σ]
onto a basis of the Q(v)-vector space M [≤ σ]/M [< σ]. To check that the pair
(M [≤ σ]/M [< σ], p(B[σ])) satisfies all the axioms of a dual-based module,
it suffices to use duality as in the proof of Property (a) and to refer to the
definition of based modules in §27.1.2 of [Lu2]. Property (b) is proved.

Choose any x in B. We can find σ ∈ X+ such that x ∈ M [≤ σ] and such
that σ is minimal for this property with respect to the order ≤. Since B is a
basis of M , the element x does not belong to the span of

⋃
τ<σ(B∩M [≤ τ ]).

By Property (a), one deduces that x does not belong to M [< σ] and therefore
that x belongs to B[σ]. We have proved that B is the union of its subsets
B[σ], and it remains us to show that these sets B[σ] are pairwise disjoint.
Suppose that B[σ] and B[τ ] share a certain element x. Then M [≤ σ] and
M [≤ τ ] intersect non-trivially. This implies that σ − τ belongs to the root
lattice

∑
i Z i′, and thus there exists a weight ρ less than or equal to σ and

τ such that M [≤ σ]∩M [≤ τ ] = M [≤ ρ]. Since x belongs to M [≤ ρ] but not
to M [< σ], we cannot have ρ < σ. Therefore ρ = σ, and similarly ρ = τ .
Therefore σ = τ , which completes the proof of Property (c).
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Finally Property (d) is a consequence of the proof of Proposition 27.1.7
in [Lu2], and Property (e) follows by dualizing the construction given in
§27.3 and Theorem 27.3.2 of [Lu2]. �

It is of course possible to extend the notion of (dual-) based module to
the case of an infinite-dimensional U-module which is graded with finite-
dimensional graded components. In this case, the basis is required to be
compatible with the decomposition of the module as the direct sum of its
graded components.

2.4. The basis of H. By §§24.3 and 27.3.4 in [Lu2], each module ωΛλ⊗Λλ

has a canonical basis, with which it forms a based module. By Proposi-
tion 27.3.5 (a) in [Lu2], the map tλ : ωΛλ+µ ⊗ Λλ+µ → ωΛµ ⊗ Λµ is a
morphism of based modules.

Each module Hλ = (ωΛλ ⊗ Λλ)∗ comes therefore with the dual basis Bλ,
so that the pair (Hλ, Bλ) is a dual-based module. By Lemma 3(a), the left
multiplication by δλ defines an injective morphism of dual-based modules
from (Hµ, Bµ) to (Hλ+µ, Bλ+µ).

In particular, we get an injective map from Bµ to Bλ+µ. By Lemma 3(b)
these maps form a directed system of injective maps between sets, and we
denote its limit1 by B∞ = lim−→Bλ. We denote the canonical injective map
Bλ → B∞ by ιλ. By Proposition 27.2.2 in [Lu2], this directed system
is compatible with the decompositions Bλ =

⊔
σ∈X+ Bλ[σ], which yields a

similar decomposition B∞ =
⊔

σ∈X+ B∞[σ].

Lemma 5. Given x ∈ B∞, there is a dominant integral weight ε(x) such
that {λ ∈ X+ | x ∈ ιλ(Bλ)} = ε(x) + X+.

Proof. By duality, the assertion is equivalent to the following fact: For any
λ, µ, ν ∈ X+ such that λ 4 ν and µ 4 ν and any y in the canonical
basis of ωΛν ⊗ Λν , the non-vanishing of both tλ(y) and tµ(y) implies that
of tsup(λ,µ)(y), where sup(·, ·) is the supremum in the distributive lattice
(X+,4). In turn, this fact is a direct consequence of Proposition 25.1.10
in [Lu2] and Lemma 2. �

Lemma 6. The set Bλ[0] is reduced to the element δλ.

Proof. The space Hλ[0] = HomU(ωΛλ ⊗ Λλ, Q(v)) has dimension at most
one, since ωΛλ⊗Λλ is generated by a single element, namely ξ−λ⊗ηλ. There-
fore Bλ[0] has at most one element and it suffices to show that δλ ∈ Bλ. We
observe that the kernel of δλ is (ωΛλ⊗Λλ)[> 0], which by Proposition 27.1.8
in [Lu2] is spanned over Q(v) by its intersection with the canonical basis of
ωΛλ ⊗ Λλ. Therefore δλ vanishes on all elements of this canonical basis but
one. The exception is the vector ξ−λ ⊗ ηλ: It belongs to the canonical basis

1This limit B∞ is, in a certain sense, the basis dual to the canonical basis of the
subspace U̇10 of Lusztig’s modified quantized enveloping algebra, see Chap. 23 of [Lu2].
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by Theorem 24.3.3 in [Lu2] and δλ evaluates to 1 on it. This shows that δλ

belongs to the basis dual to the canonical basis of ωΛλ ⊗ Λλ, that is to say
δλ belongs to Bλ. �

The direct sum of the dual-based modules (Hλ, Bλ) will be denoted by
(H,B). Lemma 6 tells that B[0] = {δλ | λ ∈ X+} and Proposition 4(a)
implies that the pair (H[0], B[0]) is a dual-based module. By Lemma 3(a),
for any λ ∈ X+, the left multiplication by δλ is an injective morphism from
the dual-based module (H,B) into itself.

2.5. A filtration of H and the freeness theorem for its associated
graded. The dual-based module (H,B) is filtered by the family of sub-
modules (H[≤ σ], B ∩ H[≤ σ]), the indexing set being the poset (X+,≤).
The associated graded dual-based module is

⊕
σ∈X+(grσ(H),B[σ]), where

grσ(H) = H[≤ σ]/H[< σ] and B[σ] is the image of B[σ] =
⊔

λ∈X+ Bλ[σ]
under the canonical surjection p : H[≤ σ] → grσ(H).

We view H as the regular left H-module. The subspace H[0] acts by
morphisms of U-modules; therefore its action stabilizes each isotypical com-
ponent of H and induces an action on any grσ(H).

We now fix a dominant integral weight σ. We define

B[σ]prim = {ι−1
ε(x)(x) | x ∈ B∞[σ]} =

⊔
λ∈X+

{x ∈ Bλ[σ] | ε(ιλ(x)) = λ},

and we call B[σ]prim its image under the canonical surjection p. We denote
by Kσ the Q(v)-vector subspace spanned in grσ(H) by B[σ]prim.

Proposition 7.
(a) The action of δλ on grσ(H) induces an injective morphism from the

dual-based module (grσ(H),B[σ]) into itself.
(b) The family of sets (δλ · B[σ]prim)λ∈X+ form a partition of B[σ].
(c) The pair (Kσ,B[σ]prim) is a dual-based module.

Proof. Assertion (a) follows from the fact that the left multiplication by δλ

is an injective morphism from the dual-based module (H,B) into itself.
As for Assertion (b), we consider an element x ∈ Bµ[σ]. Let ν = ε(ιµ(x)).

By Lemma 5, λ = µ− ν belongs to X+ and there exists y ∈ Bν [σ] such that
ιν(y) = ιµ(x). By construction, y ∈ B[σ]prim and p(x) is the image of p(y)
under the action of δλ. This proves that B[σ] =

⋃
λ∈X+(δλ · B[σ]prim). A

similar reasoning based on Lemma 5 and on Assertion (a) shows that the
union is disjoint.

To prove Assertion (c), it is enough to show that for all dominant integral
weight λ, the pair (Kσ∩grσ(Hλ),B[σ]prim∩grσ(Hλ)) is a dual-based module.
This is trivial for λ = 0. The case of a general λ will be proved by induction
on

∑
i〈i, λ〉. Assume that λ 6= 0 is given. By the induction hypothesis, we

can assume that the pair (Kσ∩grσ(Hµ),B[σ]prim∩grσ(Hµ)) is a dual-based
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module for all µ ∈ X+ such that µ ≺ λ. Assertion (b) then says that the
pair

( ⊕
µ∈X+, µ≺λ

δλ−µ · (Kσ ∩ grσ(Hµ)),
⊔

µ∈X+, µ≺λ

δλ−µ · (B[σ]prim ∩ grσ(Hµ))
)

is a sub-dual-based module of (grσ(Hλ),B[σ] ∩ grσ(Hλ)) and that

B[σ]prim ∩ grσ(Hλ)

=
(
B[σ] ∩ grσ(Hλ)

)
\

 ⊔
µ∈X+, µ≺λ

δλ−µ · (B[σ]prim ∩ grσ(Hµ))

 .

Now Assertion (c) follows from Proposition 4(d). �

We now have three dual-based modules (grσ(H),B[σ]), (H[0], B[0]), and
(Kσ,B[σ]prim). By Proposition 4(e), the pair (H[0] ⊗ Kσ, B[0] ⊗ B[σ]prim)
is a dual-based module.

Theorem 8. The action of H[0] on grσ(H) gives rise to an isomorphism
from (H[0]⊗Kσ, B[0]⊗ B[σ]prim) onto (grσ(H),B[σ]).

Proof. Since U acts trivially on H[0], the U-linear action of H[0] on grσ(H)
induces a morphism of U-modules from H[0]⊗grσ(H) to grσ(H). By Propo-
sition 7 (a) and (b), this morphism restricts to a bijection from B[0]⊗B[σ]prim

onto B[σ]. The theorem follows. �

3. Specialization to the classical case.

3.1. Specialization of U-modules. Let A be the ring Z[v, v−1]. The field
k is an A-algebra on which v acts as the identity. For any A-module AT ,
we denote by kT the k-module k ⊗A AT obtained by base ring change.

We call g the Lie algebra of the group G and we choose Chevalley gener-
ators E1, . . . , E`, F1, . . . , F`, H1, . . . , H` in it.

In §3.1.13 of [Lu2] (see also Theorem 4.5 in [Lu1]), Lusztig defines an
A-form AU of U. Formulas in §§3.1.5 and 3.3.3 of [Lu2] show that AU
inherits from U the structure of a Hopf algebra over A. Therefore kU is a
Hopf algebra over k. Furthermore, since the quantized Serre relations are
verified by the simple root vectors in AU, there is a natural morphism of
Hopf algebras c : U(g) → kU. Thanks to c, every kU-module has a natural
structure of a U(g)-module.

We use the standard strategy to specialize a finite-dimensional U-module
M : We first choose a Q(v)-basis B of M such that the A-submodule AM
spanned by B in M is stable under the action of AU, and then kM is a U(g)-
module. So what we really specialize is the pair (M,B). Thanks to Con-
dition (b) in Definition 27.1.2 of [Lu2], based modules satisfy the required
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condition to be specializable. One can also construct new specializable pairs
by standard procedures like dualization, tensor product, or twisting with
ω, and then the specialization commutes with these constructions. We ex-
tend this framework to infinite-dimensional U-modules provided that they
are graded with finite-dimensional graded components and that their bases
consist of homogeneous elements.

Let λ ∈ X+. In Theorem 14.4.11 of [Lu2], Lusztig constructs a Q(v)-basis
B(Λλ) of Λλ so that (Λλ,B(Λλ)) is a based module. Lusztig shows in §33.1.2
of [Lu2] that the specialized module k(Λλ) is a simple highest weight module
with highest weight λ. The basis B(Λλ) endows k(Λλ) with a preferred
highest weight vector kηλ. Take another µ ∈ X+. By Proposition 25.1.2
in [Lu2], the map iλ,µ : Λλ+µ → Λλ⊗Q(v)Λµ sends theA-submodule spanned
by B(Λλ+µ) in Λλ+µ into the A-submodule spanned by B(Λλ) ⊗ B(Λµ)
in Λλ ⊗Q(v) Λµ. It therefore specializes to the morphism of U(g)-modules
k(iλ,µ) : k(Λλ+µ) → k(Λλ)⊗k k(Λµ) that sends kηλ+µ to kηλ ⊗ kηµ.

Similarly, the U-module ωΛλ comes with a canonical basis ωB(Λλ). There-
fore it can be specialized to the U(g)-module k(ωΛλ), which is a simple lowest
weight module with lowest weight −λ and lowest weight vector kξ−λ. The
specialization of ωiλ,µ : ωΛλ+µ → ωΛµ ⊗Q(v)

ωΛλ is the morphism of U(g)-
modules k(ωiλ,µ) : k(ωΛλ+µ) → k(ωΛµ) ⊗k k(ωΛλ) that sends kξ−λ−µ to
kξ−µ ⊗ kξ−λ.

The family (k(Λσ))σ∈X+ affords a complete set of pairwise non-isomorphic
finite-dimensional simple U(g)-modules. Given a finite-dimensional U(g)-
module M and a dominant integral weight σ, we denote its isotypical com-
ponent of type k(Λσ) by M [σ]. Given P ⊆ X+, we denote the subspace⊕

σ∈P M [σ] by M [P ].

Proposition 9. Let (M,B) be a dual-based module and kM its specializa-
tion. Then for any σ ∈ X+, the dual-based modules (M [≤ σ], B ∩M [≤ σ])
and (M [< σ], B ∩M [< σ]) specialize to (kM)[≤ σ] and (kM)[< σ], respec-
tively. In particular (M [0], B ∩M [0]) specializes to (kM)[0].

Proof. We will only prove the case of (M [≤ σ], B ∩ M [≤ σ]). One can
enumerate the weights in ≤ σ as a finite sequence τ1, . . . , τn such that
τi ≤ τj ⇒ i ≤ j. The dual-based module (M [≤ σ], B ∩M [≤ σ]) is then fil-
tered by the composition series

(
M [{τ1, . . . , τi}], B ∩M [{τ1, . . . , τi}]

)
0≤i≤n

.
As U-modules, the quotient modules are isotypical of type Λτi and specialize
therefore to isotypical modules of type k(Λτi), by the dual version of Propo-
sition 27.1.7 in [Lu2]. Thus the specialization of (M [≤ σ], B ∩M [≤ σ]) has
a filtration with quotients isomorphic to k(Λτ1), . . . , or k(Λτn), which shows
that k(M [≤ σ]) ⊆ (kM)[≤ σ]. A similar reasoning shows that the special-
ization of M/M [≤ σ] has a filtration with quotients isomorphic to modules
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of the form k(Λτ ) with τ 6≤ σ, whence(
(kM)/ k(M [≤ σ])

)
[≤ σ] =

(
k(M/M [≤ σ])

)
[≤ σ] = 0.

Therefore the equality k(M [≤ σ]) = (kM)[≤ σ] holds. �

3.2. Specialization of H. We are now in a position where we can specialize
the U-module H, the multiplication map m : H ⊗Q(v) H → H, and the
freeness result from Theorem 8.

We first observe that by Theorem 24.3.3 in [Lu2], the A-lattice spanned
in Hλ by the basis Bλ is the same as the A-lattice spanned by the basis dual
to the basis ωB(Λλ)⊗B(Λλ) of ωΛλ ⊗Q(v) Λλ. Therefore the multiplication
map m sends the A-submodule spanned in H ⊗Q(v) H by B ⊗ B into the
A-submodule spanned in H by B. It gives rise to a multiplication map
km : kH ⊗k kH → kH.

Proposition 10. The specialization kH is the U(g)-module⊕
λ∈X+

(
k(Λλ)∗ ⊗k k(ωΛλ)∗

)
.

The multiplication map km is given by Formula (1) in which the maps (iλ,µ)∗

and (ωiλ,µ)∗ are replaced by their specializations k(iλ,µ)∗ and k(ωiλ,µ)∗.

We now fix a dominant integral weight σ. By Proposition 9, the isotypical
component (kH)[σ] is naturally isomorphic to the specialization of the dual-
based module (grσ(H),B[σ]). The specialization k(Kσ) of (Kσ,B[σ]prim) is
then seen as a U(g)-submodule of (kH)[σ]. By Theorem 8 and Proposition 9,
we get the following result.

Theorem 11. The map km induces an isomorphism of U(g)-modules from
(kH)[0]⊗k k(Kσ) onto (kH)[σ].

3.3. The Cartan filtration on A(G). To complete the proof of Theo-
rem 1, it only remains to relate the specialized algebra kH to the algebra
A(G). We first describe this latter.

Let M be a rational G-module. Then for any v ∈ M and f ∈ M∗, the
function on G

cM
f,v : g 7→ 〈f, g · v〉

is regular. The map from M∗ ⊗k M to A(G) which sends f ⊗ v to cM
f,v is

a morphism of G-modules; it is injective if M is simple. By definition, its
image is the coefficient space C(M) of the module M . Then the Peter-Weyl
decomposition

A(G) =
⊕

λ∈X+

C(k(Λλ))
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holds. The filtration of A(G) indexed by the poset (X+,≤) and given by
the submodules

Aλ(G) =
⊕

µ∈X+, µ≤λ

C(k(Λµ))

is a filtration of algebra. The associated graded is

gr(A(G)) =
⊕

λ∈X+

grλ(A(G)),

where

grλ(A(G)) = Aλ(G)/
∑

µ<λ Aµ(G) ' C(k(Λλ)) ' k(Λλ)∗ ⊗k k(Λλ).

For any λ, µ ∈ X+, there is a unique morphism pλ,µ : k(Λλ) ⊗k k(Λµ) →
k(Λλ+µ) of U(g)-modules such that the composition pλ,µ ◦ k(iλ,µ) is the
identity of k(Λλ+µ). Then the multiplication of the algebra gr(A(G)) is
defined by the family of maps

 C(k(Λλ))⊗k C(k(Λµ)) → C(k(Λλ+µ))

k(Λλ)∗ ⊗k k(Λλ)⊗k k(Λµ)∗ ⊗k k(Λµ) → k(Λλ+µ)∗ ⊗k k(Λλ+µ)

f ⊗ x⊗ g ⊗ y 7→ k(iλ,µ)∗ (g ⊗ f)⊗ pλ,µ(x⊗ y)

 .

For any λ ∈ X+, the U(g)-module k(ωΛλ) is simple with lowest weight
−λ and lowest weight vector kξ−λ, therefore there is a unique isomorphism
hλ : k(Λλ) → k(ωΛλ)∗ of U(g)-modules such that 〈hλ(kηλ), kξ−λ〉 = 1.

Lemma 12. For any λ, µ ∈ X+, the relation k(ωiλ,µ)∗◦(hλ⊗k hµ) = hλ+µ◦
pλ,µ holds.

Proof. Both members of the equality to be proved are U(g)-linear maps
from k(Λλ)⊗k k(Λµ) to k(ωΛλ+µ)∗ ' k(Λλ+µ). Since the latter is simple and
has multiplicity one in the former, both members are equal up to a scalar.
To complete the proof, it therefore suffices to check that both linear forms
(hλ+µ ◦ pλ,µ)(kηλ ⊗ kηµ) and [k(ωiλ,µ)∗ ◦ (hλ ⊗k hµ)] (kηλ ⊗ kηµ) take the
value 1 when evaluated on the vector kξ−λ−µ. �

Let ϕ be the map from gr(A(G)) to kH defined by the family of maps grλ(A(G)) → k(Hλ)

k(Λλ)∗ ⊗k k(Λλ) → k(Λλ)∗ ⊗k k(ωΛλ)∗

f ⊗ x 7→ f ⊗ hλ(x)

 .

Lemma 12 implies directly the following statement.

Proposition 13. The map ϕ is a U(g)-linear isomorphism of algebras.
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Theorem 11 therefore translates immediately to a similar statement for
gr(A(G)). Since the U(g)-module A(G) is not only filtered but also graded,
we can lift the submodule

⊕
σ∈X+ ϕ−1

(
k(Kσ)

)
of gr(A(G)) to a submodule

E of A(G). Then the multiplication map in A(G) restricts to an isomorphism
of vector spaces from C(G) ⊗k E onto A(G), since the graded counterpart
of this restriction

gr(A(G))[0]⊗k

(⊕
σ∈X+ ϕ−1

(
k(Kσ)

))
→

⊕
σ∈X+ gr(A(G))[σ]

is itself bijective. This concludes the proof of Theorem 1.

Remark. The author does not understand the relation between the point
of view presented in this paper and the extension by Donkin [Do] of Richard-
son’s work to the case where the ground field has a positive characteristic.
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for a three-months long invitation at the University of California at Berkeley.
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