Pacific Journal of Mathematics

WEIGHTED BERGMAN SPACES ON BOUNDED SYMMETRIC DOMAINS

SALEM BEN SAÏD

Volume 206 No. 1

September 2002

WEIGHTED BERGMAN SPACES ON BOUNDED SYMMETRIC DOMAINS

SALEM BEN SAÏD

To Professor Jacques Faraut on his sixtieth birthday

Let \mathcal{D} be a bounded symmetric domain of tube type and \underline{G} its group of holomorphic automorphisms. In this paper, we describe explicitly the Plancherel Theorem of weighted Bergman spaces on \mathcal{D} under the action of certain symmetric subgroups of \underline{G} .

1. Introduction.

Let \underline{G} be a noncompact connected real semi-simple Lie group with finite center and Lie algebra $\underline{\mathfrak{g}}$. Let θ be a Cartan involution of \underline{G} and $\underline{K} = \{g \in \underline{G} \mid \theta(g) = g\}$. We use the same letter θ to denote the differential of θ . Then, we have a direct sum decomposition $\underline{\mathfrak{g}} = \underline{\mathfrak{k}} \oplus \underline{\mathfrak{p}}$ in eigenspaces with respect to θ . We assume that \underline{G} is hermitian, then there exists an element Z_0 in the center $\mathfrak{c}(\underline{\mathfrak{k}})$ of $\underline{\mathfrak{k}}$ such that $\mathfrak{c}(\underline{\mathfrak{k}}) = \mathbb{R}Z_0$.

Let σ be an involutive automorphism of \underline{G} . We may assume that σ commutes with θ and $\underline{\mathfrak{g}} = \underline{\mathfrak{h}} \oplus \underline{\mathfrak{q}}$ is the decomposition of the Lie algebra $\underline{\mathfrak{g}}$ with respect to σ . Since $\sigma^2 = \operatorname{id}$, there are two exclucive possibilites. Either $\sigma(Z_0) = Z_0$ and σ acts holomorphically on the symmetric domain $\mathcal{D} := \underline{G}/\underline{K}$, or $\sigma(Z_0) = -Z_0$ and σ acts anti-holomorphically on \mathcal{D} . In this paper we consider the case where σ is holomorphic. The case where σ is anti-holomorphic is considered by Yu. A. Neretin (cf. [22], [23]). See also [8] and [30].

Let $\mathcal{H}^2_{\ell}(\mathcal{D})$ be the ordinary Bergman space of \mathcal{D} where \mathcal{D} is of tube type. For $\nu > \ell - 1$, we consider a weighted Bergman space $\mathcal{H}^2_{\nu}(\mathcal{D})$ of holomorphic functions on \mathcal{D} . The universal covering $\underline{\widetilde{G}}$ of \underline{G} can be realized as the set of pairs (g, φ) with $g \in \underline{G}$ and φ a holomorphic function on \mathcal{D} where $e^{\varphi(z)} =$ $\det(Dg(z))$. Here Dg(z) denote the differential of the map $z \mapsto g \cdot z$. The group $\underline{\widetilde{G}}$ acts in $\mathcal{H}^2_{\nu}(\mathcal{D})$ by

$$(U_{\nu}(\widetilde{g})f)(z) = e^{\nu\varphi(z)}f(g \cdot z), \qquad \widetilde{g}^{-1} = (g,\varphi).$$

The representation U_{ν} is a unitary and irreducible representation.

Let p be the universal map of $\underline{\widetilde{G}}$ in \underline{G} , and let G be a symmetric subgroup of \underline{G} . In this work we study the decomposition of the restriction of U_{ν} to the subgroup $\widetilde{G} := p^{-1}(G)$ of $\underline{\widetilde{G}}$. By [15] (see also [16], [17]) the restriction $U_{\nu}|_{\widetilde{G}}$ is decomposed multiplicity-free and discretely into irreducible representations $(\pi_{\mu}, \mathcal{H}_{\mu})$ of \widetilde{G} such that $\mathcal{H}_{\mu} \subset \mathcal{H}^{2}_{\nu}(\mathcal{D})$.

Let S be the Shilov boundary of D. The action of the group G on S admits open orbits. We consider one of the orbits which is a causal symmetric space G/H of compact type. Moreover G/H is a symmetric Makarevič space. The geometry and analysis of the domain D and the Makarevič space G/H can be described using Jordan algebras.

To study the decomposition of $\mathcal{H}^2_{\nu}(\mathcal{D})$, we consider a *G*-invariant domain Ξ in the complexification $G_{\mathbb{C}}/H_{\mathbb{C}}$ of G/H introduced by J. Hilgert, B. Ørsted and G. Ólafsson (cf. [14]). A geometric descripition of the domain Ξ is given by W. Bertram. The domain Ξ can be realized as $\mathcal{D} \setminus \Sigma$ where Σ is an analytic set (cf. [3]).

We consider a covering $\widetilde{\Xi}$ of Ξ with infinite order. We show that there is a unitary isomorphism of $\mathcal{H}^2_{\nu}(\mathcal{D})$ onto a weighted Bergman space $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$. It is a Hilbert space of holomorphic functions on $\widetilde{\Xi}$, which satisfy a monodromy condition and are square integrable with respect to a *G*-invariant measure on Ξ .

To describe explicitly the decomposition of $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ into irreducible subspaces we study the holomorphic discrete series of the universal covering \widetilde{G} . Our approach is based on the spherical Laplace transform associated with the ordered symmetric space G^c/H dual of G/H. See [1] for $G/H \simeq U(p,q)$ and [2] for G/H of Cayley type.

This paper is organized as follows: In Section 2, we give a geometric descripition of the covering $\tilde{\Xi}$ of Ξ using the theory of Jordan algebras. In Section 3, we study the Bergman space $\mathcal{H}^2_{\nu}(\tilde{\Xi})$ and its reproducing kernel and we establish a unitary isomorphism of $\mathcal{H}^2_{\nu}(\tilde{\Xi})$ onto $\mathcal{H}^2_{\nu}(\mathcal{D})$. To describe explicitly the spectrum of $\mathcal{H}^2_{\nu}(\tilde{\Xi})$ and to express its reproducing kernel as series of spherical functions associated with the ordered symmetric spaces G^c/H , we study in Section 4 the holomorphic discrete series of \tilde{G} . In particular, we obtain a necessary condition for π_{μ} to appear in the Plancherel formula. In Section 5, we compute explicitly the L^2 -norm of matrix coefficient associated with an *H*-spherical unitary highest weight representation. Then, we can state an explicit Plancherel Theorem. The case $G = \underline{K}$ is due to W. Schmid (cf. [28]). See also [11], [12], [26] and [29].

2. Geometric realization of the covering Ξ .

Let \mathbb{V} be a Euclidean Jordan algebra, and let Ω be the associated symmetric cone. We denote the dimension of \mathbb{V} by n, the rank by r, and the unit element

by e. A Euclidean Jordan algebra is said to be simple if it has no nontrivial ideal (cf. [12], Chapter II).

Let \mathcal{D} be the unit disc of $\mathbb{V}_{\mathbb{C}} := \mathbb{V} + i\mathbb{V}$ with respect to the spectral norm

 $\mathcal{D} := \left\{ z \in \mathbb{V}_{\mathbb{C}} \mid e - z \, \Box \, \overline{z} \gg 0 \right\},\$

where $z \square w := L(zw) + [L(z), L(w)]$. Here L(z) denotes the endomorphism of $\mathbb{V}_{\mathbb{C}}$ defined by L(z)w = zw.

Let \underline{G} be the group of holomorphic automorphisms of \mathcal{D} and let \underline{K} be the isotropy subgroup of 0 in \underline{G} . It is a maximal compact subgroup of \underline{G} . The Lie algebra \mathfrak{g} of \underline{G} is consists of vector fields of the form

$$X(z) = w + Tz - P(z)\overline{w},$$

where $w \in \mathbb{V}_{\mathbb{C}}$, $T \in \mathfrak{k} := \operatorname{Lie}(\underline{K})$ and $P(z) := 2L(z)^2 - L(z^2)$. The application P is called a quadratic representation associated with $\mathbb{V}_{\mathbb{C}}$. We identify a vector field X with the triplet (w, T, \overline{w}) .

Let α be an involutive automorphism of the Jordan algebra \mathbb{V} . Denote also α its \mathbb{C} -linear extention to $\mathbb{V}_{\mathbb{C}}$. The Jordan algebra \mathbb{V} and its complexification $\mathbb{V}_{\mathbb{C}}$ decompose into eigenspaces with respect to the involution α

$$\mathbb{V} = \mathbb{V}^+ \oplus \mathbb{V}^-, \quad \mathbb{V}_{\mathbb{C}} = \mathbb{V}_{\mathbb{C}}^+ \oplus \mathbb{V}_{\mathbb{C}}^-.$$

We say that the pair (\mathbb{V}, α) is irreducible if it is not possible to write

$$(\mathbb{V}, \alpha) = (\mathbb{V}_1 \oplus \mathbb{V}_2, \alpha_1 \oplus \alpha_2).$$

We show that if (\mathbb{V}, α) is irreducible then either \mathbb{V} is simple, or $\mathbb{V} = \mathbb{V}_{\circ} \times \mathbb{V}_{\circ}$ where \mathbb{V}_{\circ} is a simple Euclidean Jordan algebra and $\alpha(x, y) = (-y, -x)$. We note that \mathbb{V}^+ is either simple or a direct sum of two simple algebras.

Let $\{c_1, \ldots, c_r\}$ be a Jordan frame of \mathbb{V} . It is a complete system of orthogonal primitive idempotent elements. The algebra $R := \bigoplus_{j=1}^r \mathbb{R}c_j$ is a maximal

associative subalgebra of \mathbb{V} . Assume α is given such that $\alpha(R) = R$, then $R = R^+ \oplus R^-$ is the decomposition of R into eigenspaces with respect to α . We note $r^+ := \dim R^+$.

Theorem 2.1 (cf. [4]). Let \mathbb{V} be a Euclidean Jordan algebra and let α be an involutive automorphism of \mathbb{V} .

- (1) The rank of the Euclidean Jordan algebra \mathbb{V}^+ is equal to r^+ .
- (2) Either $R = R^+$ and $r = r^+$, or $r = 2r^+$ and $\dim R^+ = \dim R^-$.

Let

$$\underline{G}^{(-\alpha)} := \left\{ g \in \underline{G} \mid (-\alpha) \circ g \circ (-\alpha) = g \right\},\$$

and let G be its connected identity component. In particular if $\alpha = id_{\mathbb{V}}$ then $G = \underline{K}$.

The Lie algebra \mathfrak{g} of G is consists of vector fields X on $\mathbb{V}_{\mathbb{C}}$ such that $(-\alpha) \circ X \circ (-\alpha) = X$. Then \mathfrak{g} is isomorphic to the set of triplets

$$\left\{ (w,T,\overline{w}) \mid w \in \mathbb{V}_{\mathbb{C}}^{-}, \ T \in \underline{\mathfrak{k}} \ \text{and} \ \alpha \circ T \circ \alpha = T \right\}.$$

We write, for $z \in \mathbb{V}_{\mathbb{C}}$, $j(z) := z^{-1}$ the inverse of z in the Jordan algebra $\mathbb{V}_{\mathbb{C}}$, and τ the conjugation of $\mathbb{V}_{\mathbb{C}}$ with respect to the real form \mathbb{V} . The application $\theta : g \mapsto (-j\tau) \circ g \circ (-j\tau)$ is a Cartan involution of the Lie algebra \mathfrak{g} (cf. [3]). Then

$$\begin{split} & \mathfrak{k} := \mathfrak{g}^{\theta} = \left\{ (0, T, 0) \mid T \in \underline{\mathfrak{k}} \text{ and } \theta \circ T \circ \theta = T \right\}, \\ & \mathfrak{p} := \mathfrak{g}^{-\theta} = \left\{ (w, 0, \overline{w}) \mid w \in \mathbb{V}_{\mathbb{C}}^{-} \right\}. \end{split}$$

Let H be the stabilizer of the base point ie in G,

$$H:=\left\{g\in G \ \mid \ g\cdot (ie)=ie\right\}.$$

Proposition 2.1. The pair (G, H) is a symmetric pair.

Proof. Let σ be the involution of G defined by

$$\sigma(g) = (-j) \circ g \circ (-j),$$

which commutes with the Cartan involution θ defined before. The differential of σ , also denoted by σ , is given by

$$\sigma(w, T, \overline{w}) = (-\overline{w}, -T', -w),$$

where T' denote the adjoint of T with respect to the scalar product on \mathbb{V} defined by the trace. By definition of H, its Lie algebra \mathfrak{h} is given by

$$\mathfrak{h} = \left\{ (iw, T, iw) \mid w \in \mathbb{V}^-, \ T \in \mathrm{Der}(\mathbb{V}^+) \right\},\$$

where $\operatorname{Der}(\mathbb{V}^+)$ is the derivation algebra of \mathbb{V}^+ . Then

 $\mathfrak{h} = \mathfrak{g}^{\sigma} := \left\{ X \in \mathfrak{g} \mid \sigma(X) = X \right\}.$

The pseudo-Riemannian symmetric space G/H is the open orbit $G \cdot ie$ in the Shilov boundary of \mathcal{D} . It is a compactly causal symmetric space. Moreover G/H is a Makarevič symmetric space (cf. [3], [21]). With respect to the involution σ , the Lie algebra \mathfrak{g} decomposes as $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}$ where $\mathfrak{q} := \mathfrak{g}^{-\sigma} = \{(w, iL(v), w) \mid w \in \mathbb{V}^-, v \in \mathbb{V}^+\}$.

The Lie algebra $\underline{\mathfrak{g}}$ is semisimple and hermitien. By a theorem of Vinberg and Kostant, there is a regular <u>*G*</u>-invariant cone (i.e., convex, closed, proper, and with nonempty interior) in $\underline{\mathfrak{g}}$. Let C_{\max} be a maximal regular <u>*G*</u>-invariant cone in \mathfrak{g} containing (0, iI, 0). By [25],

$$\Gamma(C_{\max}) := \underline{G} \exp(iC_{\max}) = \left\{ g \in \underline{G}_{\mathbb{C}} \mid g \cdot \overline{\mathcal{D}} \subset \mathcal{D} \right\}.$$

In the complexified space $G_{\mathbb{C}}/H_{\mathbb{C}}$ of G/H we consider the complex domain

$$\Xi := \Gamma(C^0) \cdot ie$$

where C^0 is the interior of $C := i (C_{\max} \cap \mathfrak{g})$. (This domain is introduced by J. Hilgert, B. Ørsted, and G. Ólafsson in [14].)

The domain Ξ can be realized as $\mathcal{D} \setminus \Sigma$ where Σ is the analytic set given by

(1)
$$\Sigma = \{ z \in \mathcal{D} \mid \det(P(z + \alpha z)) = 0 \},\$$

where the notation "det" denotes the determinant with respect to \mathbb{V} (cf. [3]).

The domain Ξ can also be realized as a subset of the imaginary tangent bundle of G/H

$$\Xi \simeq G \times C^{\mathfrak{q}} / \sim,$$

where $C^{\mathfrak{q}} := C^0 \cap i\mathfrak{q}$, and $G \times C^{\mathfrak{q}} / \sim$ is the quotient of $G \times C^{\mathfrak{q}}$ by the equivalence relation: $(g_1, X_1) \sim (g_2, X_2)$ if and only if there exists $h \in H$ such that

(2)
$$g_2 = g_1 h$$
 and $X_2 = \operatorname{Ad}(h^{-1})X_1$,

(cf. **[14**]).

The open set Ξ is connected since it is homeomorphic to $\mathcal{D} \setminus \Sigma$, observing that \mathcal{D} is connected and $\operatorname{codim}_{\mathbb{R}}(\Sigma) = 2$.

Let

$$\widetilde{\Xi} := \left\{ (z,\zeta) \in \Xi \times \mathbb{C} \mid e^{\frac{2n}{r+\zeta}} = \det(P(z+\alpha z)) \right\}.$$

Note that $\frac{2n}{r^+}$ is an integer.

Theorem 2.2. The set $\widetilde{\Xi}$ is a connected covering of infinite order of the domain Ξ .

Proof. Let p be the map defined by

$$p: \widetilde{\Xi} \longrightarrow \Xi,$$
$$(z, \zeta) \mapsto z.$$

Then p is surjective. In fact for $z \in \Xi$, we have $\det(P(z + \alpha z)) \neq 0$, then there exists $\zeta \in \mathbb{C}$ such that $e^{\frac{2n}{r^+}\zeta} = \det(P(z + \alpha z))$. Let $z_0 \in \Xi$, we can find an open neighbourhood U of z_0 such that $p^{-1}(U)$ is homeomorphic to $U \times \mathbb{Z}$. In fact, since p is surjective, there exists $(z_0, \zeta_0) \in \widetilde{\Xi}$ such that $p(z_0, \zeta_0) = z_0$. We consider a determination of $\log \left(\det(P(z + \alpha z)) \right)$ in the neighbourhood U of z_0 , we can define a homeomorphism of $U \times \mathbb{Z}$ in $p^{-1}(U)$ as

$$(z,m) \mapsto (z, \log (\det(P(z+\alpha z))) + 2\pi i m).$$

Hence $\widetilde{\Xi}$ is a covering of infinite order of Ξ .

Let $\{e_1, e_2, \dots, e_{r^+}\}$ be a Jordan frame of \mathbb{V}^+ . An element z of the form $z = \sum_{j=1}^{r^+} z_j e_j$ belongs to Ξ if and only if $0 < |z_j| < 1$. Let

$$z(t) = \sum_{j=1}^{r^+ - 1} e_j + e^{2\pi i t} e_{r^+} \in \overline{\Xi},$$

and

$$z_0 = \sum_{j=1}^{r^+} z_j e_j \in \Xi.$$

The curve $\varphi(t) := z(t)z_0$ belongs to Ξ and satisfies $\varphi(0) = \varphi(1) = z_0$. Let $\tilde{\varphi}$ be the lifting of φ to $\tilde{\Xi}$,

$$\begin{split} \widetilde{\varphi} &: [0,1] \longrightarrow \widetilde{\Xi}, \\ t &\mapsto (\varphi(t), \zeta(t)), \end{split}$$

Using the fact that $e_j = c_j$ if $r = r^+$ and $e_j = c_j + c_{j+r^+}$ if $r = 2r^+$, for all $1 \le j \le r^+$, we deduce that

$$e^{\frac{2n}{r^+}\zeta(t)} = \det(P(z(t) + \alpha z(t)))$$
$$= C(z_1, \dots, z_{r^+}) \left(e^{2\pi i t}\right)^{\frac{2n}{r^+}}$$

where $C(z_1, \ldots, z_{r^+})$ is a nonzero constant depending on z_1, \ldots, z_{r^+} . There exists $\hbar \in \mathbb{C}^*$ such that $C(z_1, \ldots, z_{r^+}) = e^{\hbar}$ and $\frac{2n}{r^+}(\zeta(t) - 2\pi i t) = \hbar + 2\pi i \kappa(t)$. Here $\kappa(t)$ is an integer valued continuous function on [0, 1], therefore constant. Thus $\zeta(1) - \zeta(0) = 2\pi i$ and if $\widetilde{\varphi}(0) = (z_0, \zeta_0)$, then $\widetilde{\varphi}(1) = (z_0, \zeta_0 + 2\pi i)$. Thus if z_0 is an element of $\Xi \cap \bigoplus_{j=1}^{r^+} \mathbb{C}e_j$ and if (z_0, ζ_0^1) and (z_0, ζ_0^2) are two points of $\widetilde{\Xi}$, there exists a curve $\widetilde{\varphi}$ such that $\widetilde{\varphi}(0) = (w_0, \zeta_0^1)$ and $\widetilde{\varphi}(1) = (z_0, \zeta_0^2)$.

Let (z_1, ζ_1) and (z_2, ζ_2) be two points of $\widetilde{\Xi}$. Since Ξ is connected, there exists a curve φ_1 (resp. φ_2) such that

$$\varphi_1(0) = z_0, \quad \varphi_1(1) = z_1 \quad (\text{resp. } \varphi_2(0) = z_0, \quad \varphi_2(1) = z_2).$$

Let $\widetilde{\varphi_1}$ (resp. $\widetilde{\varphi_2}$) be the lifting of φ_1 (resp. φ_2) to $\widetilde{\Xi}$ such that

$$\widetilde{\varphi_1}(0) = (z_0, \zeta_0^1) \qquad \widetilde{\varphi_1}(1) = (z_1, \zeta_1)$$

$$\widetilde{\varphi_2}(0) = (z_0, \zeta_0^2) \qquad \widetilde{\varphi_2}(1) = (z_2, \zeta_2).$$

Using the fact that $z_0 \in \Xi \cap \bigoplus_{j=1}^{r^+} \mathbb{C}e_j$, we deduce that $\widetilde{\Xi}$ is connected. \Box

Let

$$\top_{\alpha}(z) = \det(P(z + \alpha z)).$$

With respect to Lebesgue measure, the restriction to Ξ of the $G_{\mathbb{C}}$ -invariant measure of $G_{\mathbb{C}}/H_{\mathbb{C}}$ is given by

$$d\xi = \frac{d\lambda(z)}{|\top_{\alpha}(z)|}.$$

Let

The realization of the domain Ξ inside the imaginary tangent bundle of G/H will be used below which permits to show an integral formula.

Let \mathfrak{a} be a Cartan subalgebra in $\mathfrak{k} \cap \mathfrak{q}$. Let Δ be the root system $\Delta(\mathfrak{g}_{\mathbb{C}}, i\mathfrak{a})$, and \mathfrak{a}^+ a positive Weyl chamber. Let Δ^+ be the positive root system with respect to $i\mathfrak{a}^+$.

Theorem 2.3. For an integrable function f on Ξ ,

$$\int_{\Xi} f(\xi) d\xi = c_0 \int_G \int_{C^+} f\left(g \exp(X) \cdot ie\right) \prod_{\beta \in \Delta^+} (\operatorname{sh} \langle \beta, 2X \rangle)^{m_\beta} dg dX,$$

where $C^+ := C^0 \cap i\mathfrak{a}^+$ and $m_\beta = \dim(\mathfrak{g}_\beta)$.

Proof. Let $Z := Z_H(i\mathfrak{a})$ be the centralizer subgroup of $i\mathfrak{a}$ in H. The map

$$\varphi: \quad G/Z \times C^+ \quad \longrightarrow \Xi, \\ (g \cdot Z, X) \quad \mapsto g \exp(X) \cdot ie$$

is a diffeomorphism onto its open image. In fact, let $g_1 \exp(X_1) \cdot ie$ and $g_2 \exp(X_2) \cdot ie$ be two elements of Ξ such that $g_1 \exp(X_1) \cdot ie = g_2 \exp(X_2) \cdot ie$. Since the group G acts on $G/Z \times C^+$ (resp. Ξ) by

$$g_0 \cdot (g \cdot Z, X) = (g_0 g \cdot Z, X), \quad \Big(\operatorname{resp.} g_0 \cdot (g \exp(X) \cdot ie) = g_0 g \exp(X) \cdot ie \Big),$$

we may assume that $g_1 = 1$. But since X_1 and X_2 are regular and in the same positive Weyl chamber, by the equivalence relation (2), we deduce that $X_1 = X_2$. Thus establishing injectivity.

We will compute the differential of φ . For this we consider the commutative diagram defined by

$$\begin{array}{cccc} G \times C^+ & \stackrel{\Phi}{\longrightarrow} & G^{\mathbb{C}} \\ \phi & & & & & \\ \phi & & & & & \\ G/Z \times C^+ & \stackrel{\psi}{\longrightarrow} & & & & & \\ G^{\mathbb{C}}/H^{\mathbb{C}} \end{array}$$

$$\begin{array}{cccc} (g,X) & \stackrel{\Phi}{\longrightarrow} & g\exp(X) \\ \phi & & & \downarrow \Psi \\ (g \cdot Z,X) & \stackrel{\psi}{\longrightarrow} & g\exp(X) \cdot H_{\mathbb{C}}. \end{array}$$

Then $d(\psi \circ \phi)(1, X) = d(\Psi \circ \Phi)(1, X)$.

Let λ_g (resp. Λ_g) be the left translation by g in G (resp. $G_{\mathbb{C}}/H_{\mathbb{C}}$), then for $(Y, U) \in \mathfrak{g} \times i\mathfrak{a}$,

$$\begin{split} &\mathrm{d}(\Psi\circ\Phi)(1,X)(Y,U) \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \mathop{}_{|t=0} \Psi\Big(\exp(tY)\exp(X+tU)\Big) \\ &= \mathrm{d}\Psi(\exp(X)).\mathrm{d}\lambda_{\exp(X)}(1).\left(e^{-\mathrm{ad}(X)}.Y + \frac{1-e^{-\mathrm{ad}(X)}}{\mathrm{ad}(X)}.U\right) \\ &= \mathrm{d}\Lambda_{\exp(X)}\Psi(1).\mathrm{d}\Psi(1).\left(e^{-\mathrm{ad}(X)}.Y+U\right), \end{split}$$

where $d\Psi(1)$ sends $\mathfrak{g}_{\mathbb{C}}$ onto $\mathfrak{q}_{\mathbb{C}}$. Note $P_{\mathfrak{q}_{\mathbb{C}}}$ the projection of $\mathfrak{g}_{\mathbb{C}}$ onto $\mathfrak{q}_{\mathbb{C}}$ along $\mathfrak{h}_{\mathbb{C}}$, then

$$P_{\mathfrak{q}_{\mathbb{C}}}\left(e^{-\operatorname{ad}(X)}Y+U\right)$$

$$=\frac{e^{-\operatorname{ad}(X)}Y+U-e^{\operatorname{ad}(X)}\sigma(Y)+U}{2}$$

$$=\frac{e^{-\operatorname{ad}(X)}Y-e^{\operatorname{ad}(X)}\sigma(Y)}{2}+U$$

$$=\operatorname{sh}\left(-\operatorname{ad}(X)\right)\left(\frac{Y+\sigma(Y)}{2}\right)+\operatorname{ch}\left(\operatorname{ad}(X)\right)\left(\frac{Y-\sigma(Y)}{2}\right)+U.$$

Using the fact that $\sigma(\mathfrak{g}_{\beta}) = \mathfrak{g}_{-\beta}$, the Lie algebra \mathfrak{g} can be written as

$$\mathfrak{g} = \mathfrak{z} \oplus \sum_{\beta \in \triangle^+} (1 + \sigma) \mathfrak{g}_{\beta} \oplus \mathfrak{a} \oplus \sum_{\beta \in \triangle^+} (1 - \sigma) \mathfrak{g}_{\beta},$$

where $\mathfrak{z} := \operatorname{Lie}(Z)$. Then for all $Y \in \mathfrak{g}$ and $Y_{\beta} \in \mathfrak{g}_{\beta}$,

$$P_{\mathfrak{q}_{\mathbb{C}}}\left(e^{-\mathrm{ad}(X)}Y+U\right) = \mathrm{sh}\left(-\beta(X)\right)\left(Y_{\beta}+\sigma(Y_{\beta})\right)+\mathrm{ch}\left(\beta(X)\right)\left(Y_{\beta}-\sigma(Y_{\beta})\right)+U.$$

Let ω be the volume form on Ξ which defines an invariant Haar measure on Ξ . Again, the volume form $\varphi^* \omega$ on $G/Z \times C^+$ is given by

$$\varphi^*\omega = c_0 \prod_{\beta \in \triangle^+} (\operatorname{sh} 2\beta(X))^{m_\beta} \,\omega_1 \otimes \omega_2,$$

where ω_1 is a volume form on G/Z which defines an invariant measure, and ω_2 is a volume form on $i\mathfrak{a}$ which defines a Lebesgue measure. Using the fact that Z is compact, the integral formula holds.

3. Weighted Bergman spaces and reproducing kernels.

In this section we introduce the Bergman space $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ associated with the covering $\widetilde{\Xi}$. We establish a unitary isomorphism of $\mathcal{H}^2_{\mu}(\mathcal{D})$ on $\mathcal{H}^2_{\mu}(\widetilde{\Xi})$. Then we compute the explicit expression of the reproducing kernel of $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$.

For a real ν , let $\mathcal{O}_{\nu}(\widetilde{\Xi})$ be the space of holomorphic functions F on Ξ which satisfy

$$F(z,\zeta+2\pi i) = e^{2\pi i \frac{r}{2r+}\nu} F(z,\zeta).$$

This condition will be called a monodromy condition. Remark that the function $au_{\alpha} \frac{r}{4n} \nu$ belongs to $\mathcal{O}_{\nu}(\widetilde{\Xi})$. For $\nu > \frac{2n}{r} - 1$, let $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ be the Hilbert space of functions $F \in \mathcal{O}_{\nu}(\widetilde{\Xi})$

such that

$$||F||_{\nu}^{2} := \int_{\Xi} |F(\widetilde{\xi})|^{2} p_{\nu}(\xi) d\xi < \infty,$$

where

$$p_{\nu}(\xi) = \det(B(\xi, \overline{\xi}))^{\frac{r}{2n}\nu - 1} |\top_{\alpha}(\xi)|^{-\frac{r}{2n}\nu + 1},$$

and B(z, w) is the Bergman operator defined by $B(z, w) := id_{\mathbb{V}_{\mathbb{C}}} - 2z \Box w +$ P(z)P(w).

Proposition 3.1. Let z and w be two invertible elements of $\mathbb{V}_{\mathbb{C}}$. Thus

$$\det(B(z,w)) = \Delta(z)^{\frac{2n}{r}} \Delta(z^{-1} - w)^{\frac{2n}{r}},$$

where Δ is the determinant polynomial associated with \mathbb{V} .

Proof. By definition $\det(B(z, w)) = \det(\operatorname{id}_{\mathbb{V}_{\mathbb{C}}} - 2z \square w + P(z)P(w))$. According to [18] Proposition 4.13,

$$z \ \square \ w = P(w^{-1}, z)P(w),$$

where $P(z, w) = \frac{1}{2} \Big(P(z+w) - P(z) - P(w) \Big).$ Then
 $\mathrm{id}_{\mathbb{V}_{\mathbb{C}}} - 2z \ \square \ w + P(z)P(w) = \mathrm{id}_{\mathbb{V}_{\mathbb{C}}} - 2P(w^{-1}, z)P(w) + P(z)P(w).$

Moreover

$$P(w^{-1} - z) = P(w)^{-1} + 2P(w^{-1}, -z) + P(z)$$

= $P(w^{-1}) - 2P(w^{-1}, z) + P(z).$

Hence we deduce the following equalities

$$-2P(w^{-1}, z)P(w) = P(w^{-1} - z)P(w) - P(z)P(w) - \mathrm{id}_{V_{\mathbb{C}}},$$

and

$$\mathrm{id}_{\mathbb{V}_{\mathbb{C}}} - 2z \ \square \ w + P(z)P(w) = P(w^{-1} - z)P(w).$$

Then, we have

$$\det(\mathrm{id}_{\mathbb{V}_{\mathbb{C}}} - 2z \ \square \ w + P(z)P(w)) = \det(P(w^{-1} - z))\det(P(w)),$$

where $\det(P(w)) = \Delta(w)^{\frac{2n}{r}}$. Finally

$$\det(B(z,w)) = \Delta(w)^{\frac{2n}{r}} \Delta(w^{-1} - z)^{\frac{2n}{r}} = \Delta(z)^{\frac{2n}{r}} \Delta(z^{-1} - w)^{\frac{2n}{r}}.$$

The universal covering \widetilde{G} of G can be realized as the set of pairs (g, φ) with $g \in G$ and φ a holomorphic function on \mathcal{D} defined by

$$e^{\varphi(z)} = \det(Dg(z)),$$

where Dg(z) is the differential of the map $z \mapsto g \cdot z$. The product on \widetilde{G} is given by

$$(g_1,\varphi_1)\cdot(g_2,\varphi_2)=(g_1g_2,\varphi_3),$$

where $\varphi_3(z) = \varphi_1(g_2 \cdot z) + \varphi_2(z)$. For $\tilde{g} = (g, \varphi) \in \tilde{G}$, and $\kappa \in \mathbb{R}$, we will write

$$\det(Dg(z))^{\kappa} := e^{\kappa\varphi(z)}.$$

Let $\widetilde{\Gamma(C)} := \widetilde{G} \widetilde{\exp}(C)$ be the semigroup associated with the covering \widetilde{G} where $\widetilde{\exp} : \mathfrak{g} \to \widetilde{G}$. We denote by $\widetilde{\Gamma(C^0)}$ the interior of $\widetilde{\Gamma(C)}$. The linear action of \widetilde{G} on the space $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ is given by

$$(\pi_0(\widetilde{g})F)(\widetilde{\xi}) = F(g \cdot \widetilde{\xi}), \qquad \qquad \widetilde{g}^{-1} = (g, \varphi),$$

where $g \cdot \widetilde{\xi} = (g \cdot \xi, \zeta')$ and $e^{\frac{2n}{r^+}\zeta'} = \det(P(g \cdot \xi + \alpha(g \cdot \xi)))$ (cf. [19] Lemma 5.1).

The representation π_0 extends to a continuous representation of $\Gamma(-C)$ and a holomorphic one of $\Gamma(-C^0)$ (cf. [25]).

We recall that the Bergman space $\mathcal{H}^{2}_{\nu}(\mathcal{D})$ is the Hilbert space of holomorphic functions f on \mathcal{D} such that

$$||f||^{2} = \int_{\mathcal{D}} |f(z)|^{2} \det \left(B(z,\overline{z})\right)^{\frac{r}{2n}\nu-1} d\lambda(z) < \infty,$$

where λ denote the Lebesgue measure (cf. [12]). The action of \widetilde{G} on $\mathcal{H}^2_{\nu}(\mathcal{D})$ is given by

$$(\pi_{\nu}(\widetilde{g})f)(z) = e^{\frac{r}{2n}\nu\varphi(z)}f(g\cdot z), \qquad \qquad \widetilde{g}^{-1} = (g,\varphi).$$

The unitary representation π_{ν} extends to a continuous representation of $\widetilde{\Gamma(-C)}$ and a holomorphic one of $\widetilde{\Gamma(-C^0)}$.

Let \mathcal{A}_{ν} be the operator given by

$$\begin{aligned} \mathcal{A}_{\nu} : & \mathcal{H}^{2}_{\nu}(\mathcal{D}) & \longrightarrow \mathcal{O}_{\nu}(\widetilde{\Xi}), \\ f & \mapsto \mathcal{A}_{\nu}(f) = \top_{\alpha} \frac{r}{4n} \nu f. \end{aligned}$$

Since $op_{\alpha} \frac{r}{4n}^{\nu} \in \mathcal{O}_{\nu}(\widetilde{\Xi})$, the operator \mathcal{A}_{ν} is well defined.

Theorem 3.1. The operator \mathcal{A}_{ν} is a unitary isomorphism of $\mathcal{H}^2_{\nu}(\mathcal{D})$ onto $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ intertwining the representations π_{ν} and π_0 .

Proof. Since Σ is an analytic set of measure zero and $d\xi = \frac{d\lambda(z)}{|\top_{\alpha}(z)|}$,

$$\begin{aligned} \|\mathcal{A}_{\nu}(f)\|_{\nu}^{2} &= \int_{\Xi} |\mathcal{A}_{\nu}(f)(\tilde{\xi})|^{2} p_{\nu}(\xi) d\xi \\ &= \int_{\Xi} |f(\xi)|^{2} |\top_{\alpha}(\tilde{\xi})|^{\frac{r}{2n}\nu} \det(B(\xi,\overline{\xi}))^{\frac{r}{2n}\nu-1} \frac{d\xi}{|\top_{\alpha}(\tilde{\xi})|^{\frac{r}{2n}\nu-1}} \\ &= \int_{\mathcal{D}} |f(z)|^{2} \det(B(z,\overline{z}))^{\frac{r}{2n}\nu-1} d\lambda(z) = \|f\|^{2}. \end{aligned}$$

If f belongs to $\mathcal{H}^2_{\nu}(\mathcal{D})$ then $\mathcal{A}_{\nu}(f) \in \mathcal{O}_{\nu}(\Xi)$ and

$$\int_{\Xi} |\mathcal{A}_{\nu} f(\tilde{\xi})|^2 \ p_{\nu}(\xi) d\xi < \infty.$$

Hence the image of \mathcal{A}_{ν} is containd in $\mathcal{H}^{2}_{\nu}(\widetilde{\Xi})$ and \mathcal{A}_{ν} is isometric.

Moreover \mathcal{A}_{ν} is surjective. In fact, let $F \in \mathcal{H}^{2}_{\nu}(\widetilde{\Xi})$, then in particular $F \in \mathcal{O}_{\nu}(\widetilde{\Xi})$. Since $\det(P(\widetilde{z} + \alpha \widetilde{z}))^{-\frac{r}{4n}\nu} \in \mathcal{O}_{-\nu}(\widetilde{\Xi})$, the function

$$f(z) := \top_{\alpha}(\widetilde{z})^{-\frac{r}{4n}\nu} F(\widetilde{z}), \qquad \qquad \widetilde{z} = (z,\zeta) \in \widetilde{\Xi},$$

is holomorphic on $\Xi = \mathcal{D} \setminus \Sigma$. Moreover, the function f belongs to $\mathcal{H}^2_{\nu}(\mathcal{D})$. In fact

$$\begin{split} \|f\|^2 &= \int_{\mathcal{D}} |F(\widetilde{z})|^2 \, |\top_{\alpha}(z)|^{-\frac{r}{2n}\nu} \det(B(z,\overline{z}))^{\frac{r}{2n}\nu-1} d\lambda(z) \\ &= \int_{\Xi} |F(\widetilde{\xi})|^2 |\top_{\alpha}(\xi)|^{-\frac{r}{2n}\nu+1} \det(B(\xi,\overline{\xi}))^{\frac{r}{2n}\nu-1} d\xi = \|F\|_{\nu}^2 < \infty. \end{split}$$

Then f is a holomorphic function on $\mathcal{D} \setminus \Sigma$ and belongs to $L^2_{\nu}(\mathcal{D})$. Hence f extends to a holomorphic function on \mathcal{D} . This is the content of the following lemma.

Lemma 3.2 (cf. [6], [27]). Let U be a domain in \mathbb{C}^n and let A be an analytic set such that $\operatorname{codim}_{\mathbb{R}}(A) \geq 1$. If $f \in \mathcal{O}(U \setminus A)$ and if $f \in L^2(U)$, then f extends to a holomorphic function on U.

It remains to show that \mathcal{A}_{ν} intertwining the representations π_0 and π_{ν} . In fact it follows from [3] 1.3 (9) that $\top_{\alpha}(g \cdot \tilde{\xi})^{\frac{r}{4n}\nu} = e^{\frac{r}{2n}\nu\varphi(\xi)}\top_{\alpha}(\tilde{\xi})^{\frac{r}{4n}\nu}$. Hence

$$\mathcal{A}_{\nu}(\pi_{\nu}(\widetilde{g})f)(\widetilde{\xi}) = \top_{\alpha}(\widetilde{\xi})^{\frac{r}{4n}\nu} e^{\frac{r}{2n}\nu\varphi(\xi)}f(g\cdot\xi) \qquad \left(\widetilde{g}^{-1} = (g,\varphi)\right)$$
$$= e^{-\frac{r}{2n}\nu\varphi(\xi)}\top_{\alpha}(g\cdot\widetilde{\xi})^{\frac{r}{4n}\nu} e^{\frac{r}{2n}\nu\varphi(\xi)}f(g\cdot\xi)$$
$$= (\pi_{0}(\widetilde{g})\mathcal{A}_{\nu}f)(\widetilde{\xi}).$$

П

Proposition 3.3. The reproducing kernel of the Bergman space $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ is equal to

$$K_{\nu}(\widetilde{\xi}_{1},\widetilde{\xi}_{2}) = c_{\nu} \top_{\alpha}(\widetilde{\xi}_{1})^{\frac{r}{4n}\nu} \det(B(\xi_{1},\overline{\xi}_{2}))^{-\frac{r}{2n}\nu} \overline{\top_{\alpha}(\widetilde{\xi}_{2})}^{\frac{r}{4n}\nu}$$

where c_{ν} is the positive constant

(4)
$$c_{\nu} = \frac{1}{\pi^n} \prod_{j=1}^r \frac{\Gamma\left(\nu - (j-1)\frac{n-r}{r(r-1)}\right)}{\Gamma\left(\nu - \frac{n}{r} - (j-1)\frac{n-r}{r(r-1)}\right)}.$$

The definition of $\overline{\top_{\alpha}(\tilde{\xi}_2)}^{\frac{r}{4n}\nu}$ is similar to that given on (3).

Proof. The reproducing kernel of $\mathcal{H}^2_{\nu}(\mathcal{D})$ is given by

$$K_{\nu}^{\mathcal{D}}(z, z') = c_{\nu} \det(B(z, \overline{z}'))^{-\frac{r}{2n}\nu}.$$

From the definition of \mathcal{A}_{ν} , the reproducing kernel of $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ is equal to

$$K_{\nu}(\widetilde{\xi},\widetilde{\xi}') = \top_{\alpha}(\widetilde{\xi})^{\frac{r}{4n}\nu} K_{\nu}^{\mathcal{D}}(\xi,\xi') \overline{\top_{\alpha}(\widetilde{\xi}')}^{\frac{r}{4n}\nu}$$
$$= c_{\nu} \top_{\alpha}(\widetilde{\xi})^{\frac{r}{4n}\nu} \det(B(\xi,\overline{\xi}'))^{-\frac{r}{2n}\nu} \overline{\top_{\alpha}(\widetilde{\xi}')}^{\frac{r}{4n}\nu}.$$

4. Holomorphic discrete series of \tilde{G} .

Recall that $\{e_1, \ldots, e_{r^+}\}$ is the Jordan frame of R^+ and $\mathfrak{k} \cap \mathfrak{q} = \{(0, iL(v), 0) | v \in \mathbb{V}^+\}.$

Let \mathfrak{a} be the Cartan subalgebra in $\mathfrak{k} \cap \mathfrak{q}$ defined by

$$\mathfrak{a} = \left\{ \left(0, i \sum_{j=1}^{r^+} t_j L(e_j), 0 \right) \mid t_j \in \mathbb{R} \right\}.$$

We denote by \triangle the root system $\triangle(\mathfrak{g}_{\mathbb{C}}, i\mathfrak{a}), \triangle^+$ the positive system with respect to the positive Weyl chamber $(i\mathfrak{a})^+$ defined by

(5)
$$(i\mathfrak{a})^+ = \left\{ \left(0, \sum_{j=1}^{r^+} t_j L(e_j), 0\right) \mid 0 < t_1 < \dots < t_{r^+} \right\}.$$

Let $X_0 := (0, I, 0) \in \mathfrak{g}_{\mathbb{C}}$. The eigenvalues of $\operatorname{ad}(X_0)$ are 1,0, and -1. Let $\Delta_0 := \{\alpha \in \Delta^+ \mid \alpha(X_0) = 0\}$ and $\Delta_1 := \{\alpha \in \Delta^+ \mid \alpha(X_0) = 1\}$. Then $\Delta^+ = \Delta_0 \cup \Delta_1$. The roots belonging to Δ_0 are called compact and the roots belonging to Δ_1 noncompact. Let $\rho := \frac{1}{2} \sum_{\alpha \in \Delta^+} m_\alpha \alpha$ be one half of the positive roots weighted by the dimension m_α of the root spaces. For the description and computation of ρ we refer to [4]. See also [8].

Let π be a unitary representation of the Lie group G on a Hilbert space \mathcal{H} , and let C be an invariant and regular cone in $i\mathfrak{g}$. The representation π is called C-positive if for all $X \in C$ and for all \mathcal{C}^{∞} vector v,

$$\frac{\mathrm{d}}{\mathrm{d} t} \Big|_{t=0} \langle \pi(\exp(tX)) v \, | \, v \, \rangle \le 0.$$

Let \mathcal{R} be the set of the weights $\mu = (\mu_1, \mu_2, \dots, \mu_{r^+}) \in \mathbb{R}^{r^+}$ such that

$$\mu_i - \mu_{i+1} \in \mathbb{N}, \qquad 1 \le i \le r^+ - 1.$$

(If \mathbb{V}^+ is a direct sum of two simple algebras with ranks p and q such that $p + q = r^+ (= r)$, then $i \neq p$.)

For $\mu \in \mathcal{R}$ and β a noncompact positive root. By [14], the "Harish-Chandra" condition $\langle \rho - \mu, \beta \rangle \leq 0$ can be written as

 $\begin{array}{ll} (\star) \quad \mathbb{V}^+ \text{ is simple} & \mu_{r^+} > \frac{n}{2r} - \frac{d+1}{8} & \text{if} & r = r^+, \ \left(d := \frac{2(n-r)}{r(r-1)} \right) \\ & \mu_{r^+} > \frac{n}{r} - \frac{1}{2} & \text{if} & r = 2r^+. \\ (\star\star) \quad \mathbb{V}^+ \text{ is not simple} & \mu_1 + \mu_{r^+} > -2dp & \text{where} & r = r^+. \end{array}$

If $\mu \in \mathcal{R}$ and satisfies the "Harish-Chandra" condition, then we can associate to μ a unitary and *C*-positive representation $(\pi_{\mu}, \mathcal{W}_{\mu})$ of \widetilde{G} with highest weight μ . This representation extends to a continuous representation of $\widetilde{\Gamma(C)}$ which is holomorphic on $\widetilde{\Gamma(C)}$.

Let
$$A := \exp \mathfrak{a}$$
, and $\mathfrak{g}_{+}^{\mathbb{C}} := \sum_{\beta \in \Delta^{+}} \mathfrak{g}_{\beta}^{\mathbb{C}}$.

Definition 4.1. A holomorphic function Φ in $\widetilde{\Xi}$ will be called a conical function if there exists a continuous character χ_{μ} of A such that

$$\mathcal{I}(a)\Phi = \chi_{\mu}(a)\Phi, \quad (a \in A),$$

$$\mathcal{I}\mathcal{I}(X)\Phi = 0, \quad (X \in \mathfrak{g}^{\mathbb{C}}_{+},)$$

where $(\mathcal{I}(g)F)(\widetilde{\xi}) = F(g^{-1} \cdot \widetilde{\xi}).$

For all $\mathbf{s} = (s_1, s_2, \dots, s_r) \in \mathbb{C}^r$ and z in $\mathbb{V}_{\mathbb{C}}$, we write

$$\Delta_{\mathbf{s}}(z) := \Delta_1(z)^{s_1 - s_2} \Delta_2(z)^{s_2 - s_3} \dots \Delta_r(z)^{s_r},$$

where Δ_j is the principal minor of order j (cf. [12]).

For $\mu = (\mu_1, \mu_2, \dots, \mu_{r^+})$, let,

$$\Phi_{\mu}(\widetilde{z}) := \Delta_{\mu}\left(\frac{\widetilde{z} + \alpha(\widetilde{z})}{2}\right).$$

The function Φ_{μ} satisfies the monodromy condition.

Proposition 4.2. The function Φ_{μ} is conical, and any conical function is proportional to Φ_{μ} .

The proof is similar to that given for Proposition XI.2.1 in [12].

Note that $\mathcal{W}^{\infty}_{\mu}$ (resp. $\mathcal{W}^{-\infty}_{\mu}$) is the vector space of \mathcal{C}^{∞} (resp. distribution) vectors of \mathcal{W}_{μ} , and $(\mathcal{W}^{-\infty}_{\mu})^H$ the vector space of *H*-invariant distribution vectors of \mathcal{W}_{μ} . Let \mathcal{R}_H be the subset of highest weight $\mu \in \mathcal{R}$ such that $(\mathcal{W}^{-\infty}_{\mu})^H \neq \{0\}$.

For $\mu \in \mathcal{R}_H$, we denote ψ_{μ} an *H*-invariant distribution vector. For all element $w \in \mathcal{W}_{\mu}$, the holomorphic mapping $\mathcal{F} : \mathcal{W}_{\mu} \longrightarrow \mathcal{O}(\widetilde{\Xi}), \quad w \mapsto \mathcal{F}(w)(\widetilde{\xi}) := \langle \pi_{\mu}(\widetilde{\gamma}_1^{-1}) \, w | \psi_{\mu} \rangle$ where $\widetilde{\xi} = \widetilde{\gamma} \cdot H$, is a continuous embedding. Then the representation π_{μ} is realized on a Hilbert space \mathcal{H}_{μ} of holomorphic functions on $\widetilde{\Xi}$. In the case where $w = v_{\mu}$, a normalized highest weight vector, we denote $\mathcal{F}_{\mu}(\widetilde{\xi}) := \langle \pi_{\mu}(\widetilde{\gamma}^{-1})v_{\mu} | \psi_{\mu} \rangle$. The function \mathcal{F}_{μ} is a conical function.

Let $\mathcal{R}_{\nu,H}$ be the highest weight subset of \mathcal{R}_H such that $\mathcal{F}_{\mu} \in \mathcal{O}_{\nu}(\widetilde{\Xi})$.

Proposition 4.3. The function \mathcal{F}_{μ} satisfies the monodromy condition, i.e., $\mathcal{F}_{\mu} \in \mathcal{O}_{\nu}(\widetilde{\Xi})$, if and only if

$$\mu_i \in \mathbb{Z} + \frac{\nu}{2}, \quad (1 \le i \le r^+) \quad if \ r = r^+$$

and

 $\mu_i \in \mathbb{Z} + \nu$, $(1 \le i \le r^+)$ if $r = 2r^+$.

Proof. Since \mathcal{F}_{μ} is conical, then it is proportional to Φ_{μ} . If \mathbb{V}^+ is simple, then \top_{α} is proportional to the Jordan determinant Δ of \mathbb{V}^+ . In fact, \top_{α} is homogeneous of degree 2n and Δ is homogeneous of degree r^+ , then $\top_{\alpha}(\widetilde{z}) = \Delta(\widetilde{z} + \alpha(\widetilde{z}))^{\frac{2n}{r^+}}$ and $\mathcal{F}_{\mu} \in \mathcal{O}_{\nu}(\widetilde{\Xi})$ if and only if $\mu_{r^+} \in \mathbb{Z} + \frac{r}{2r^+}\nu$. Using the fact that $\mu_i - \mu_{i+1} \in \mathbb{N}$, the result holds for \mathbb{V}^+ simple.

If \mathbb{V}^+ is a direct sum of two simple Jordan algebras \mathbb{V}_1^+ of rank p and \mathbb{V}_2^+ of rank q such that $p+q=r^+(=r)$, then there exist $z_1 \in \mathbb{V}_{1,\mathbb{C}}^+$ and $z_2 \in \mathbb{V}_{2,\mathbb{C}}^+$ such that $z + \alpha(z) = z_1 + z_2$ and $\top_{\alpha}(\widetilde{z}) = \Delta^{(1)}(\widetilde{z}_1)^{\frac{2n}{r}} \Delta^{(2)}(\widetilde{z}_2)^{\frac{2n}{r}}$ where $\Delta^{(1)}$ (resp. $\Delta^{(2)}$) is the Jordan determinant of \mathbb{V}_1^+ (resp. \mathbb{V}_2^+). Hence $\mathcal{F}_{\mu} \in \mathcal{O}_{\nu}(\widetilde{\Xi})$

if and only if $\mu_p \in \mathbb{Z} + \frac{\nu}{2}$ and $\mu_r \in \mathbb{Z} + \frac{\nu}{2}$. The assertion follows from the fact that $\mu_i - \mu_{i+1} \in \mathbb{N}$ for all $i \neq p$.

Remark. In [1] we consider the case $G/H \simeq U(p,q)$ and we establish another isomorphism between $\mathcal{H}^2_{\nu}(\mathcal{D})$ and $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$. The correspondence between the present isomorphism \mathcal{A}_{ν} and the one used in [1] is given by $f \mapsto \det(A)^{\frac{\nu}{2}} \det(D)^{-\frac{\nu}{2}} f(z)$ for all $z = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathcal{D}$. This correspondence explains the shift between the highest weight μ shown in [1] and the present form of μ .

Since ν is very large $\left(\nu > \frac{2n}{r} - 1\right)$, the representation π_{μ} satisfies the Harish-Chandra condition for all $\mu \in \mathcal{R}_{\nu,H}$.

Let

$$C_{\mu}(\nu) = \int_{\Xi} |\langle \pi_{\mu}(\widetilde{\gamma}^{-1}) v_{\mu} | \psi_{\mu} \rangle|^2 p_{\nu}(\xi) d\xi.$$

Proposition 4.4. For $\mu \in \mathcal{R}_{\nu,H}$, the Hilbert space \mathcal{H}_{μ} belongs to $\mathcal{H}_{\nu}^{2}(\Xi)$ if and only if $C_{\mu}(\nu)$ is finite.

In this case we denote $\mu \in \mathcal{R}'_{\nu,H}$.

Proof. This is proved in [1] Proposition 4.2.

Hence the Plancherel Theorem can be written as:

Theorem 4.1 (cf. [13]). The Bergman space $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ is decomposed multiplicity-free and discretely into irreducible Hilbert subspaces,

$$\mathcal{H}^2_{\nu}(\widetilde{\Xi}) = \bigoplus_{\mu \in \mathcal{R}'_{\nu,H}} \mathcal{H}_{\mu}.$$

Moreover, the reproducing kernel can be written as

$$K_{\nu}(\widetilde{\xi}_{1},\widetilde{\xi}_{2}) = \sum_{\mu \in \mathcal{R}_{\nu,H}^{\prime}} \frac{1}{C_{\mu}(\nu)} \langle \pi_{\mu}(\widetilde{\gamma}_{2}^{\sharp}\widetilde{\gamma}_{1})^{-1} \psi_{\mu} | \psi_{\mu} \rangle.$$

The series converges uniformly on compact subsets of $\widetilde{\Xi} \times \widetilde{\Xi}$.

5. Computation of the constant $C_{\mu}(\nu)$.

Let \mathcal{M} be a differentiable manifold. A causal structure on \mathcal{M} is a field of cones $\mathcal{M} \ni x \mapsto C_x \subset T_x \mathcal{M}$. The cones C_x are assumed to be closed, convex, proper, and with nonempty interior. Furthermore the cones C_x depend smoothly on x. A piecewise \mathcal{C}^1 curve $\gamma : [0,1] \longrightarrow \mathcal{M}$ is said to be causal if for all t, the derivative $\dot{\gamma}(t)$ belongs to the cone $C_{\gamma(t)}$. The causal structure is said to be global if there exists no nontrivial closed causal curve.

In that case one defines a partial ordering on \mathcal{M} in the following way: One writes $x \leq y$ if there exists a causal curve from x to y.

Let \mathfrak{g} be the Lie algebra defined in Section 2. Let σ be an involutive automorphism of g that commutes with the Cartan involution θ where g = $\mathfrak{k} \bigoplus^{\theta} \mathfrak{p}$, and $\mathfrak{g} = \mathfrak{h} \bigoplus^{\sigma} \mathfrak{q}$.

Let $G^c := (G^{(\alpha)})_0$ where $G^{(\alpha)} = \{ q \in G \mid \alpha \circ q \circ \alpha = q \}$ and the subscript 0 means the identity component. The group G^c is the group of holomorphic automorphisms of the tube domain T_{Ω^+} associated with the involution α defined by

$$T_{\Omega^+} := \mathbb{V}^- + \Omega^+ = \left\{ x + y \mid x \in \mathbb{V}^-, \quad y \in \Omega^+ \right\}$$

where $\Omega^+ := \mathbb{V}^+ \cap \Omega$ and Ω is the symmetric cone associated with \mathbb{V} . (If \mathbb{V} and \mathbb{V}^+ are simple, the cone Ω^+ coincides with the open cone associated with the Jordan algebra \mathbb{V}^+ .) The group G^c is the *c*-dual group of *G*. We consider on $\mathcal{M} := G^c/H$ the causal structure defined by the field of cones

$$C_x = -\overline{\Omega}.$$

The noncompactly causal symmetric space \mathcal{M} is an ordered symmetric space. By [3], the intersection $\mathcal{M} \cap \mathbb{V}$ is a union of connected components of the set $\{x \in \mathbb{V} \mid \det B_{\alpha}(x, x) \neq 0\}$ where $B_{\alpha}(x, y) := B(x, \alpha y)$ and B(x, y)is the Bergman operator. In particular

$$(\mathcal{M} \cap \mathbb{V})_0 = \{ x \in \mathbb{V} \mid \det B_\alpha(x, x) \neq 0 \}_0.$$

Let $\mathfrak{g}^c = \operatorname{Lie}(G^c)$ (the *c*-dual algebra of \mathfrak{g}). We denote also by σ the \mathbb{C} -linear extention of σ to the complexified algebra $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} . The involution $\theta^c := \theta \sigma_{|\mathfrak{g}^c|}$ is a Cartan involution of \mathfrak{g}^c . Let \mathfrak{a} be a maximal abelian subspace in $\mathfrak{p}^c \cap i\mathfrak{q}$ where $\mathfrak{p}^c := (\mathfrak{g}^c)^{\theta^c}$ (note that $i\mathfrak{a}$ is a maximal abelian subspace in $\mathfrak{k} \cap \mathfrak{q}$, \triangle the root system for the pair ($\mathfrak{g}^c, \mathfrak{a}$), and let \triangle^+ be the positive root system with respect to the positive Weyl chamber \mathfrak{a}^+ (see (5)).

Let

$$\begin{split} \mathfrak{n} &:= \bigoplus_{\beta \in \Delta^+} \mathfrak{g}_{\beta}^c, \quad \overline{\mathfrak{n}} := \bigoplus_{\beta \in -\Delta^+} \mathfrak{g}_{\beta}^c, \\ N &:= \exp \mathfrak{n}, \quad \overline{N} := \exp \overline{\mathfrak{n}}, \quad A := \exp \mathfrak{a}. \end{split}$$

Let $x_0 := e H$ be the base point of G^c/H . The map

 $N \times A \longrightarrow \mathcal{M}, \quad (n, a) \mapsto na \cdot x_0,$

is a diffeomorphism of $N \times A$ onto its open image $NA \cdot x_0$. For all x = $n \exp(X) \cdot x_0$ $(X \in \mathfrak{a})$, we write X = A(x). We denote $a_H(x) := \exp A(x)$.

Let \mathcal{M}^+ be the subset of \mathcal{M} defined by

$$\mathcal{M}^+ := \left\{ x \in \mathcal{M} \mid x \ge x_0 \right\},\,$$

called the future of x_0 . By [9], $\mathcal{M}^+ \subset NA \cdot x_0$.

The spherical Laplace transform of an H-invariant function f is defined by

$$\widehat{f}(\lambda) = \int_{\mathcal{M}^+} f(x) a_H(x)^{-\lambda} dx, \qquad \lambda \in \mathfrak{a}_{\mathbb{C}}^*.$$

Using the following integral formula,

(6)
$$\int_{\mathcal{M}^+} f(x)dx = \int_{-\mathfrak{a}^+} \int_H f(h\exp(X) \cdot x_0)dh \prod_{\beta \in -\Delta^+} (\operatorname{sh} \langle \beta, X \rangle)^{m_\beta} dX,$$

the spherical Laplace transform can be written as

$$\widehat{f}(\lambda) = c \int_{-\mathfrak{a}^+} f(\exp(X) \cdot x_0) \varphi_{\lambda}(\exp(X)) \prod_{\beta \in -\Delta^+} (\operatorname{sh} \langle \beta, X \rangle)^{m_{\beta}} dX,$$

where φ_{λ} is the spherical function of the ordered symmetric space \mathcal{M} , defined in the interior S^0 of $S := \{g \in G^c \mid g \cdot x_0 \geq x_0\} \subset NAH$,

$$\varphi_{\lambda}(g) = \int_{H} a_{H}(hg)^{-\lambda} dh$$

(cf. [10]). The *c*-function of the symmetric space \mathcal{M} , which we denote by $c_{\mathcal{M}}$, is defined by the integral

$$c_{\mathcal{M}}(\lambda) = \int_{\overline{N} \cap HAN} a_{H}(\overline{n})^{-(\lambda+\rho)} d\overline{n}.$$

Remark. From Theorem 2.3 and the integral formula (6), we obtain

$$\int_{\Xi} f(\xi) d\xi = c_0 \int_{G/H} \int_{\mathcal{M}^+} f(g \cdot ix^{\frac{1}{2}}) d\dot{g} dx.$$

This integral formula is a generalization of that given in Proposition X.3.4 of [12] where $G = \underline{K}$.

Let $\mathcal{W}^{\omega}_{\mu}$ (resp. $\mathcal{W}^{-\omega}_{\mu}$) be the space of analytic (resp. hyperfunction) vectors of \mathcal{W}_{μ} . By [5] Theorem 1.1, $(\mathcal{W}^{-\omega}_{\mu})^{H} = (\mathcal{W}^{-\infty}_{\mu})^{H}$ where $(\mathcal{W}^{-\omega}_{\mu})^{H}$ is the subspace of *H*-invariant hyperfunction vectors of $\mathcal{W}^{-\omega}_{\mu}$. Moreover, if the representation $(\pi_{\mu}, \mathcal{W}_{\mu})$ satisfies the Harish-Chandra condition, the linear form

$$L_{\mu}(f) = \int_{H} \langle \pi_{\mu}(h) f | v_{\mu} \rangle \, dh, \qquad f \in \mathcal{W}_{\mu}^{\omega}$$

defines an *H*-invariant hyperfunction vector (cf. [20]). Using the fact that $\dim (\mathcal{W}_{\mu}^{-\infty})^H \leq 1$, and we deduce that if ψ_{μ} is an *H*-invariant distribution vector, there exist a constant c_0 such that

(7)
$$\langle f|\psi_{\mu}\rangle = c_0 L_{\mu}(f), \qquad f \in \mathcal{W}^{\infty}_{\mu}.$$

In particular if $f = v_{\mu}$ then

$$\langle v_{\mu}|\psi_{\mu}\rangle = c_0 \int_H \langle \pi_{\mu}(h)v_{\mu}|v_{\mu}\rangle dh$$

Using the integral formula for all functions $f \in L^1(H)$,

$$\int_{H} f(h)dh = \int_{\overline{N} \cap HAN} f(h(\overline{n}))a_{H}(\overline{n})^{-2\rho}d\overline{n},$$

(cf. [24]), we deduce that

$$\begin{split} L_{\mu}(v_{\mu}) &= \int_{\overline{N}\cap HAN} \langle \pi_{\mu}(h(\overline{n}))v_{\mu}|v_{\mu}\rangle a_{H}(\overline{n})^{-2\rho}d\overline{n} \\ &= \int_{\overline{N}\cap HAN} \langle \pi_{\mu}(a_{H}(\overline{n})^{-1}\overline{n})v_{\mu}|v_{\mu}\rangle a_{H}(\overline{n})^{-2\rho}d\overline{n} \quad \left(\pi_{\mu}(n(\overline{n}))v_{\mu} = v_{\mu}\right) \\ &= \int_{\overline{N}\cap HAN} \langle \pi_{\mu}(\overline{n})v_{\mu}|v_{\mu}\rangle a_{H}(\overline{n})^{-2\rho-\mu}d\overline{n} \\ &= \int_{\overline{N}\cap HAN} \langle v_{\mu}|\pi_{\mu}(\overline{n})^{*}v_{\mu}\rangle a_{H}(\overline{n})^{-2\rho-\mu}d\overline{n} \\ &= \int_{\overline{N}\cap HAN} a_{H}(\overline{n})^{-(2\rho+\mu)}d\overline{n} \\ &= c_{\mathcal{M}}(\mu+\rho). \end{split}$$

That implies,

(8)
$$c_0 = \frac{\langle v_\mu | \psi_\mu \rangle}{c_{\mathcal{M}}(\mu + \rho)}.$$

Lemma 5.1. For all $\gamma \in \Gamma(C)$,

$$\langle \pi_{\mu}(\gamma^{-1})\psi_{\mu}|\psi_{\mu}\rangle = \frac{|\langle\psi_{\mu}|v_{\mu}\rangle|^2}{c_{\mathcal{M}}(\mu+\rho)} \varphi_{-\mu}(\gamma^{-1}).$$

Proof. By [10], for all $\gamma \in \Gamma(C^0) \cap G^c$ there exist $\overline{n} \in \overline{N}, a_H(\gamma) \in A$, and $h \in H$, such that $\gamma = \overline{n}a_H(\gamma)h$. Hence for $\gamma \in \Gamma(C^0) \cap G^c$,

$$\langle \pi_{\mu}(\gamma^{-1})\psi_{\mu}|v_{\mu}\rangle = a_{H}(\gamma^{-1})^{\mu}\langle\psi_{\mu}|v_{\mu}\rangle$$

The equalities (7) and (8) yield

$$\begin{aligned} \langle \pi_{\mu}(\gamma^{-1})\psi_{\mu}|\psi_{\mu}\rangle &= \frac{\langle v_{\mu}|\psi_{\mu}\rangle}{c_{\mathcal{M}}(\mu+\rho)} \int_{H} \langle \pi_{\mu}(h\gamma^{-1})\psi_{\mu}|v_{\mu}\rangle dh \\ &= \frac{\langle v_{\mu}|\psi_{\mu}\rangle}{c_{\mathcal{M}}(\mu+\rho)} \int_{H} a_{H}(h\gamma^{-1})^{\mu} \langle \psi_{\mu}|v_{\mu}\rangle dh \\ &= \frac{|\langle \psi_{\mu}|v_{\mu}\rangle|^{2}}{c_{\mathcal{M}}(\mu+\rho)} \varphi_{-\mu}(\gamma^{-1}). \end{aligned}$$

Now the assertion follows from the fact that the function $\gamma \mapsto \langle \pi_{\mu}(\gamma^{-1})\psi_{\mu}|\psi_{\mu}\rangle$ is holomorphic on $\Gamma(C^0)$ and coincides with $\frac{|\langle \psi_{\mu}|v_{\mu}\rangle|^2}{c_{\mathcal{M}}(\mu+\rho)} \varphi_{-\mu}(\gamma^{-1})$ in $\Gamma(C^0) \cap G^c$. Let $(\pi_{\mu}, \mathcal{W}_{\mu})$ be an *H*-spherical unitary highest weight representation of \widetilde{G} such that $(\pi_{\mu}, \mathcal{W}_{\mu})$ belongs to the relative discrete series, and

$$\int_{G/H} |\langle \pi_{\mu}(g)v_{\mu}|\psi_{\mu}\rangle|^2 d\dot{g} = \frac{1}{\delta_{\mu}}$$

where δ_{μ} is the relative formal dimension calculated in [20], $\delta_{\mu} = d_{\mu} \cdot c_{\mathcal{M}}(\mu + \rho)$, with $d_{\mu} = \prod_{\beta \in \Delta^+} \frac{\langle \mu + \rho, \beta \rangle}{\langle \rho, \beta \rangle}$ the formal dimension of the representation π_{μ} .

Theorem 5.1. Let P_{ν} be the *G*-invariant function such that $P_{\nu}(\exp(2X) \cdot ie) := p_{\nu}(\exp(X) \cdot ie)$. The weight $\mu \in \mathcal{R}'_{\nu,H}$ if and only if the spherical Laplace transform $\widehat{P}_{\nu}(-\mu)$ is finite. Moreover

$$C_{\mu}(\nu) = \frac{1}{\delta_{\mu}} \,\widehat{P}_{\nu}(-\mu),$$

where δ_{μ} is the relative formal dimension.

Proof. We assume that the *H*-invariant distribution vector ψ_{μ} is normalized by $\langle \psi_{\mu} | v_{\mu} \rangle = 1$. By the integral formula of Theorem 2.3 and the fact that p_{ν} is *G*-invariant, we deduce that

$$\begin{aligned} C_{\mu}(\nu) &= \int_{\Xi} |\langle \pi_{\mu}(\gamma^{-1})v_{\mu}|\psi_{\mu}\rangle|^2 \ p_{\nu}(\xi)d\xi \\ &= \int_{G} \int_{C^{+}} |\langle \pi_{\mu}(\gamma^{-1})v_{\mu}|\psi_{\mu}\rangle|^2 \ p_{\nu}(\exp(X) \cdot ie) \prod_{\beta \in \Delta^{+}} \operatorname{sh} \ (2\beta(X))^{m_{\beta}} \ dgdX \\ &= \frac{1}{d_{\mu}} \int_{C^{+}} \|\pi_{\mu}(\exp(X))\psi_{\mu}\|^2 \ p_{\nu}(\exp(X) \cdot ie) \prod_{\beta \in \Delta^{+}} \operatorname{sh} \ (2\beta(X))^{m_{\beta}} \ dX. \end{aligned}$$

According to the last lemma, this yields

$$\begin{split} &\int_{\Xi} |\langle \pi_{\mu}(\gamma)\psi_{\mu}|v_{\mu}\rangle|^2 p_{\nu}(\xi)d\xi \\ &= \frac{1}{\delta_{\mu}} \int_{C^+} p_{\nu}(\exp(X) \cdot ie)\varphi_{-\mu}(\exp(2X)) \prod_{\beta \in \Delta^+} \mathrm{sh} \ (2\beta(X))^{m_{\beta}} \, dX \\ &= \frac{1}{\delta_{\mu}} \widehat{P}_{\nu}(-\mu). \end{split}$$

For any $x \in \mathbb{V}$ we have $x = x^+ + x^-$, where $x^+ := \frac{x + \alpha(x)}{2} \in \mathbb{V}^+$ and $x^- := \frac{x - \alpha(x)}{2} \in \mathbb{V}^-$. We denote $x := (x^+, x^-)$.

Let \mathcal{J} be the bounded set in \mathbb{V} defined by

$$\mathcal{J} = \left\{ x = (x^+, x^-) \in \mathbb{V} \mid x^+ \in \Omega, \ x^+ + x^- \in e - \overline{\Omega} \right\} \subset \left(\mathbb{V}^+ \cap \Omega \right) \times \left((e + \mathbb{V}^-) \cap \Omega \right).$$

Proposition 5.2. The set \mathcal{J} coincides with

$$\Big\{x \in \mathcal{M} \mid x \ge x_0\Big\},$$

the future of x_0 .

Proof. Let $\varphi : [0,1] \longrightarrow \mathbb{V}$ be the curve defined by

$$\varphi(t) = tx + (1-t)e,$$

where $\varphi(0) = e$ and $\varphi(1) = x$. Since Ω is convex,

$$\varphi(t) + \alpha(\varphi(t)) = t(x + \alpha(x)) + (1 - t)2e \in \Omega.$$

Thus $\varphi(t) \in \mathcal{M}$ for all $t \in [0, 1]$. Moreover $\dot{\varphi}(t) = x - e \in -\overline{\Omega} \simeq C^c$, where

$$C^{c} = \left\{ (v, 0, -\alpha(v)) \mid v \in \overline{\Omega} \right\} \subset \mathfrak{g}^{c},$$

the regular cone in \mathfrak{g}^c such that $C^c \cap \mathfrak{p}^c \neq \emptyset$, where $\mathfrak{p}^c = \{(v, L(w), -v) \mid v \in \mathbb{V}^+, w \in \mathbb{V}^-\}$ (cf. [3], p. 26). Then, φ is a nontrivial causal curve in \mathcal{M} from x to x_0 and x belongs to the future of x_0 .

Conversely, let $\varphi : [a, b] \longrightarrow \mathcal{M}$ be a causal curve. Assume that there exists t > a such that $\varphi(t) \notin \mathcal{M} \cap \mathbb{V}$ and

$$\kappa = \inf \left\{ t \in [a, b] \mid \varphi(t) \notin \mathcal{M} \cap \mathbb{V} \right\}.$$

Since $\mathcal{M} \cap \mathbb{V}$ is open in \mathcal{M} , then $\varphi(t) \in \mathcal{M} \cap \mathbb{V}$ if $t < \kappa$ and $\varphi(t) \notin \mathcal{M} \cap \mathbb{V}$ if not. Hence

$$\lim_{\substack{t \to \kappa \\ t < \kappa}} \|\varphi(t)\| = \infty.$$

Moreover the curve $\varphi : [a, \kappa[\longrightarrow \mathbb{V}]$ is causal with respect to the causal structure defined by the cone $-\overline{\Omega}$. Then, $\varphi(t) \in e - \overline{\Omega}$ and for all $t \in [a, \kappa[, \varphi(t)]$ belongs to the connected component of x_0 in $\mathcal{M} \cap \mathbb{V}$ given by

$$\left\{ x \in \mathbb{V} \mid x + \alpha(x) \in \Omega \right\}.$$

Hence for all $t \in [a, \kappa[, \varphi(t) \in \mathcal{J} \text{ such that } \mathcal{J} \text{ is a bounded set. This leads to contradiction.}$

Lemma 5.3. Let $\mathbf{s} \in \mathbb{C}^{r^+}$ and $x = n \exp A(x) \cdot x_0 \in NA \cdot x_0$. To identify $\mathfrak{a}_{\mathbb{C}}$ with \mathbb{C}^{r^+} we have

$$e^{\langle \mathbf{s}|A(x)\rangle} = \Delta_{\mathbf{s}}\left(\frac{x+\alpha(x)}{2}\right).$$

Proof. The function $x \mapsto \Delta_{\mathbf{s}}\left(\frac{x + \alpha(x)}{2}\right)$ is *N*-invariant. Then, for all $x = n \exp A(x) \cdot x_0$,

$$\Delta_{\mathbf{s}}\left(\frac{x+\alpha(x)}{2}\right) = \Delta_{\mathbf{s}}(\exp A(x) \cdot x_0).$$

Since $A(x) \in \mathfrak{a}_{\mathbb{C}}$, there exists $(t_1, t_2, \ldots, t_{r^+}) \in \mathbb{C}^{r^+}$ such that $A(x) = \sum_{j=1}^{r^+} t_j L(e_j)$, and $\exp A(x) \cdot x_0 = \sum_{j=1}^{r^+} e^{t_j} e_j$. Here $\{e_j\}_{1 \leq j \leq r^+}$ is the Jordan frame of R^+ . Thus for all $\mathbf{s} = (s_1, \ldots, s_{r^+})$, we deduce that

$$\Delta_{\mathbf{s}}\left(\frac{x+\alpha(x)}{2}\right) = \Delta_{\mathbf{s}}\left(\sum_{j=1}^{r^+} e^{t_j} e_j\right) = \prod_{j=1}^{r^+} e^{t_j s_j} = e^{\langle \mathbf{s} | A(x) \rangle}.$$

To give an explicit formula of the spherical Laplace transform $\widehat{P}_{\nu}(-\mu)$ and an explicit description of the spectrum $\mathcal{R}'_{\nu,H}$, we recall some notations.

The Gindikin gamma function of the symmetric cone Ω is defined by the following integral, generalizing the classical Siegel integral

$$\Gamma_{\Omega}(\mathbf{s}) = \int_{\Omega} e^{-\operatorname{tr}(x)} \Delta_{\mathbf{s}-\frac{n}{r}}(x) dx$$
$$= \prod_{j=1}^{r} \Gamma\left(s_j - \frac{d}{2}(j-1)\right), \qquad d := \frac{2(n-r)}{r(r-1)}$$

for $\mathbf{s} = (s_1, \dots, s_r)$ where $\Re s_j > (j-1)\frac{d}{2}$ for $j = 1, \dots, r$.

The Gindikin beta function of the symmetric cone Ω is defined by the following integral

$$\mathcal{B}_{\Omega}(\mathbf{s}, \mathbf{m}) = \int_{\Omega \cap (e-\Omega)} \Delta_{\mathbf{s}-\frac{n}{r}}(x) \Delta_{\mathbf{m}-\frac{n}{r}}(e-x) dx$$
$$= \frac{\Gamma_{\Omega}(\mathbf{s})\Gamma_{\Omega}(\mathbf{m})}{\Gamma_{\Omega}(\mathbf{s}+\mathbf{m})}.$$

Case (I). \mathbb{V}^+ is a simple Jordan algebra.

Let $n^{\pm} := \dim(\mathbb{V}^{\pm})$, and $\Gamma_{\Omega^{+}}$ (resp. $\mathcal{B}_{\Omega^{+}}$) be the Gindikin gamma (resp. beta) function of the symmetric cone $\Omega^{+} := \Omega \cap \mathbb{V}^{+}$ of \mathbb{V}^{+} .

Lemma 5.4. For $\lambda \in \mathbb{C}$ such that $\Re(\lambda) > \frac{n}{r} - 1$,

$$\int_{(-e+\Omega)\cap\mathbb{V}^-} \Delta(e+v)^{\frac{r}{r^+}\lambda-\frac{n}{r^+}} dv = \frac{\Gamma_{\Omega}(\lambda)}{\Gamma_{\Omega^+}\left(\frac{r}{r^+}\lambda\right)}.$$

Proof. With respect to the decomposition of the Jordan algebra \mathbb{V} as $\mathbb{V} = \mathbb{V}^+ \oplus \mathbb{V}^-$, the Gindikin gamma function of the symmetric cone Ω can be written as

$$\Gamma_{\Omega}(\lambda) = \int_{\Omega} e^{-tr(x)} \Delta(x)^{\lambda - \frac{n}{r}} dx$$

=
$$\int_{\Omega^+} e^{-tr(x^+)} \left[\int_{\{x^- \mid x^+ + x^- \in \Omega\}} \Delta(x^+ + x^-)^{\lambda - \frac{n}{r}} dx^- \right] dx^+.$$

Moreover $x^+ + x^- = P((x^+)^{\frac{1}{2}})(e+v)$, where P is the quadratic representation and $v = P((x^+)^{-\frac{1}{2}})x^-$. Hence

$$\begin{split} \Gamma_{\Omega}(\lambda) &= \int_{\Omega^+} e^{-tr(x^+)} \Delta(x^+)^{\frac{r}{r^+}\lambda - \frac{n}{r^+} + \frac{n^-}{r^+}} dx^+ \int_{(-e+\Omega)\cap\mathbb{V}^-} \Delta(e+v)^{\frac{r}{r^+}\lambda - \frac{n}{r^+}} dv \\ &= \Gamma_{\Omega^+} \left(\frac{r}{r^+}\lambda\right) \int_{(-e+\Omega)\cap\mathbb{V}^-} \Delta(e+v)^{\frac{r}{r^+}\lambda - \frac{n}{r^+}} dv. \end{split}$$

This proves that

$$\int_{(-e+\Omega)\cap\mathbb{V}^-} \Delta(e+v)^{\frac{r}{r^+}\lambda-\frac{n}{r^+}} dv = \frac{\Gamma_{\Omega}(\lambda)}{\Gamma_{\Omega^+}\left(\frac{r}{r^+}\lambda\right)}.$$

Proposition 5.5. For $\mu = \left(m_1 + (r/2r^+)\nu, \dots, m_{r^+} + (r/2r^+)\nu\right)$, the spherical Laplace transform $\widehat{P}_{\nu}(-\mu)$ is finite if and only if

$$m_1 \ge m_2 \ge \cdots \ge m_{r^+} \ge 0.$$

Moreover

$$\widehat{P}_{\nu}(-\mu) = c_0 \Gamma_{\Omega} \left(\nu - \frac{n}{r} \right) \frac{\Gamma_{\Omega^+} \left(\mu - \nu \frac{r}{2r^+} + \frac{n^+}{r^+} \right)}{\Gamma_{\Omega^+} \left(\mu + \nu \frac{r}{2r^+} - \frac{n^-}{r^+} \right)},$$

where c_0 is a positive constant.

Proof. By Proposition 3.1 and for all $x = n \exp A(x) \cdot x_0$, the function p_{ν} is given by

$$p_{\nu}(x) = \det\left(P(x+\alpha(x))\right)^{-\frac{r}{2n}\nu+1} \Delta(e-x^2)^{\nu-\frac{2n}{r}}.$$

Since $A(x) \in \mathfrak{a}_{\mathbb{C}}$, there exists $(t_1, \ldots, t_{r^+}) \in \mathbb{C}^{r^+}$ such that $A(x) = \sum_{j=1}^{r^+} t_j L(e_j)$, and

$$\exp\left(\frac{A(x)}{2}\right) \cdot x_0 = \sum_{j=1}^{r^+} e^{\frac{t_j}{2}} e_j$$

Let $x = \sum_{j=1}^{r^+} e^{t_j} e_j$ and $u = \sum_{j=1}^{r^+} e^{\frac{t_j}{2}} e_j$. Using the fact that p_{ν} is *G*-invariant, we deduce that

$$p_{\nu}(u) = \Delta(x^{+})^{-\nu \frac{r}{2r^{+}} + \frac{n}{r^{+}}} \Delta(e - x)^{\nu - \frac{2n}{r}} = P_{\nu}(x).$$

For $x \in \mathbb{V}$, let $d\delta(x)$ be the *G*-invariant measure on \mathcal{M} , where its restriction to $\mathcal{M} \cap \mathbb{V}$ is equal to $d\delta(x) = \Delta(x^+)^{-\frac{n}{r^+}} dx^+ dx^-$. Using Lemma 5.3, the spherical Laplace transformation of P_{ν} can be written as

$$\begin{split} \widehat{P}_{\nu}(-\mu) &= \int_{x \ge x_{0}} e^{\langle \mu, A(x) \rangle} P_{\nu}(x) d\delta(x) \\ &= \int_{\Omega^{+} \cap (e - \Omega^{+})} \int_{\{x^{-} | e - x^{+} - x^{-} \in \Omega\}} \Delta_{\mu}(x^{+}) \Delta(x^{+})^{-\nu \frac{r}{2r^{+}} + \frac{n}{r^{+}}} \\ &\quad \cdot \Delta(e - x)^{\nu - \frac{2n}{r}} \Delta(x^{+})^{-\frac{n}{r^{+}}} dx^{+} dx^{-} \\ &= \int_{\Omega^{+} \cap (e - \Omega^{+})} \Delta_{\mu - \nu \frac{r}{2r^{+}}}(x^{+}) \\ &\quad \cdot \left[\int_{\{x^{-} | e - x^{+} - x^{-} \in \Omega\}} \Delta(e - x^{+} - x^{-})^{\nu - \frac{2n}{r}} dx^{-} \right] dx^{+}. \end{split}$$

Using the last lemma, and the fact that $e - x^+ - x^- = P((e - x^+)^{\frac{1}{2}})(e - v)$ where $v = P((e - x^+)^{-\frac{1}{2}})x^-$, we obtain

$$\begin{split} \widehat{P}_{\nu}(-\mu) &= \int_{\Omega^{+} \cap (e-\Omega^{+})} \Delta_{\mu-\nu\frac{r}{2r^{+}}}(x^{+})\Delta(e-x^{+})^{\nu\frac{r}{r^{+}}-\frac{2n}{r^{+}}+\frac{n^{-}}{r^{+}}}dx^{+} \\ &\cdot \int_{(e-\Omega) \cap \mathbb{V}^{-}} \Delta(e-\nu)^{\nu\frac{r}{r^{+}}-\frac{2n}{r^{+}}}dv \\ &= \frac{\Gamma_{\Omega}\left(\nu-\frac{n}{r}\right)}{\Gamma_{\Omega^{+}}\left(\nu\frac{r}{r^{+}}-\frac{n}{r^{+}}\right)}\mathcal{B}_{\Omega^{+}}\left(\mu-\nu\frac{r}{2r^{+}}+\frac{n^{+}}{r^{+}},\nu\frac{r}{r^{+}}-\frac{n}{r^{+}}\right), \end{split}$$

such that $\mu_j - \nu \frac{r}{2r^+} + \frac{n^+}{r^+} > (j-1) \frac{n^+ - r^+}{r^+(r^+ - 1)}$ for $1 \le j \le r^+$. By the fact that $\mu_j = m_j + \nu \frac{r}{2r^+}$, where $m_j \in \mathbb{Z}$ and $\mu_j - \mu_{j+1} \in \mathbb{N}$, this condition will be written as

$$m_1 \ge m_2 \ge \dots \ge m_{r^+} \ge 0.$$

It follows from Proposition 5.5 that the spectrum of the Bergman space $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ is given by

$$\mathcal{R}_{\nu,H}' = \left\{ \mu = \left(m_1 + (r/2r^+)\nu, \ m_2 + (r/2r^+)\nu, \dots, m_{r^+} + (r/2r^+)\nu \right) \right|$$
$$m_1 \ge m_2 \ge \dots \ge m_{r^+} \ge 0 \right\}.$$

Recall that the constant $c_{\nu} = \frac{1}{\pi^n} \frac{\Gamma_{\Omega}(\nu)}{\Gamma_{\Omega}\left(\nu - \frac{n}{r}\right)}$ (see (4)), the reproducing

kernel $K_{\nu}(\widetilde{\xi}_1, \widetilde{\xi}_2)$ can be written as

$$\begin{aligned} & \top_{\alpha}(\widetilde{\xi}_{1})^{\frac{r}{4n}\nu} \det(B(\xi_{1},\overline{\xi}_{2}))^{-\frac{r}{2n}\nu} \overline{\top_{\alpha}(\widetilde{\xi}_{2})}^{\frac{r}{4n}\nu} \\ & = \sum \frac{c_{0}d_{\mu}}{\Gamma_{\Omega}(\nu)} \frac{\Gamma_{\Omega^{+}}\left(\mathbf{m}+\nu\frac{r}{r^{+}}-\frac{n^{-}}{r^{+}}\right)}{\Gamma_{\Omega^{+}}\left(\mathbf{m}+\frac{n^{+}}{r^{+}}\right)} \varphi_{-\mu}\left((\widetilde{\gamma}_{2}^{\sharp}\widetilde{\gamma}_{1})^{-1}\right), \end{aligned}$$

for all $\tilde{\xi}_1 = \tilde{\gamma}_1 \cdot H$ and all $\tilde{\xi}_2 = \tilde{\gamma}_2 \cdot H$ in $\tilde{\Xi}$. The summation index runs over the integers of type $\mathbf{m} := (m_1, m_2, \dots, m_{r^+})$ such that $m_1 \geq \cdots \geq m_{r^+} \geq 0$. We use $\mathbf{m} \geq 0$ to denote the summation index. The function

$$\nu \mapsto \top_{\alpha}(\widetilde{\xi}_{1})^{\frac{r}{4n}\nu} \det(B(\xi_{1},\overline{\xi}_{2}))^{-\frac{r}{2n}\nu} \overline{\top_{\alpha}(\widetilde{\xi}_{2})}^{\frac{r}{4n}\nu}$$

is holomorphic on $\mathbb C$ and coincides with

$$\sum_{\mathbf{m}\geq 0} \frac{c_0 d_{\mu}}{\Gamma_{\Omega}(\nu)} \frac{\Gamma_{\Omega^+} \left(\mathbf{m} + \nu \frac{r}{r^+} - \frac{n^-}{r^+}\right)}{\Gamma_{\Omega^+} \left(\mathbf{m} + \frac{n^+}{r^+}\right)} \varphi_{-\mu} \left((\widetilde{\gamma}_2^{\sharp} \widetilde{\gamma}_1)^{-1} \right),$$

for $\nu \in \left]\frac{2n}{r} - 1, +\infty\right[$, therefore these two functions coincide everywhere. The following theorem holds.

Theorem 5.2. Assume α is given such that \mathbb{V}^+ is a simple algebra. Then for all $\nu \in \mathbb{C}$ such that $\Re(\nu) > \frac{n}{r} - 1$,

$$\begin{aligned} & \top_{\alpha}(\widetilde{\xi}_{1})^{\frac{r}{4n}\nu} \det(B(\xi_{1},\overline{\xi}_{2}))^{-\frac{r}{2n}\nu} \overline{\top_{\alpha}(\widetilde{\xi}_{2})}^{\frac{r}{4n}\nu} \\ &= \sum_{\mathbf{m}\geq 0} \frac{c_{0}d_{\mu}}{\Gamma_{\Omega}(\nu)} \frac{\Gamma_{\Omega^{+}}\left(\mathbf{m}+\nu\frac{r}{r^{+}}-\frac{n^{-}}{r^{+}}\right)}{\Gamma_{\Omega^{+}}\left(\mathbf{m}+\frac{n^{+}}{r^{+}}\right)} \varphi_{-\mu}\left((\widetilde{\gamma}_{2}^{\sharp}\widetilde{\gamma}_{1})^{-1}\right). \end{aligned}$$

The series converges uniformly on compact subsets of $\widetilde{\Xi} \times \widetilde{\Xi}$.

An application (Makarevič symmetric spaces of Cayley type). Let \mathbb{V} be a simple Euclidean Jordan algebra of dimension n and rank r. The bounded symmetric domain associated with $\mathbb{V}_{\mathbb{C}} \times \mathbb{V}_{\mathbb{C}}$ is the bidisc $\mathcal{D} \times \mathcal{D}$ where \mathcal{D} is the unit disc of $\mathbb{V}_{\mathbb{C}}$. Let α be the involution on $\mathcal{D} \times \mathcal{D}$ defined by $\alpha(z, w) =$ (-w, -z). In this case, the domain Ξ is realized as $\mathcal{D} \times \mathcal{D} \setminus \Sigma$ where

$$\Sigma = \{(z, w) \in \mathcal{D} \times \mathcal{D} \mid \Delta(z - w) = 0\},\$$

and Δ is the determinant polynomial associated with \mathbb{V} (see (1)). Let

$$\left\{z, w; z', w'\right\} := \frac{\Delta(z'-z)\Delta(w-w')}{\Delta(z-w)\Delta(z'-w')}$$

be the cross-ratio of four points z, w, z', and w' of $\mathbb{V}_{\mathbb{C}}$. This definition generalizes the classical cross-ratio-matrix and satisfies the *G*-invariance property $\left\{g \cdot z, g \cdot w; g \cdot z', g \cdot w'\right\} = \left\{z, w; z', w'\right\}$. The reproducing kernel of the Bergman space $\mathcal{H}^2_{\nu}(\widetilde{\Xi})$ is equal to

$$K_{\nu}(\widetilde{z}_1,\widetilde{w}_1;\widetilde{z}_2,\widetilde{w}_2) = c_{\nu}^2 \left\{ \widetilde{z}_1,\widetilde{w}_1;\overline{\widetilde{z}_2}^{-1},\overline{\widetilde{w}_2}^{-1} \right\}^{\nu},$$

for $(\widetilde{z}_1, \widetilde{w}_1)$ and $(\widetilde{z}_2, \widetilde{w}_2)$ in $\widetilde{\Xi}$.

Using Theorem 5.2, we deduce a formula of a complex power of a crossratio of four points,

$$\left\{\widetilde{z}_{1},\widetilde{w}_{1};\overline{\widetilde{z}_{2}}^{-1},\overline{\widetilde{w}_{2}}^{-1}\right\}^{\nu} = \sum_{\mathbf{m}\geq 0} \frac{c_{0} d_{\mu}}{\Gamma_{\Omega}(\nu)^{2}} \frac{\Gamma_{\Omega}\left(\mathbf{m}+2\nu-\frac{n}{r}\right)}{\Gamma_{\Omega}\left(\mathbf{m}+\frac{n}{r}\right)} \varphi_{-\mu}\left((\widetilde{\gamma}_{2}^{\sharp}\widetilde{\gamma}_{1})^{-1}\right),$$

for all $(\tilde{z}_1, \tilde{w}_1) = \tilde{\gamma}_1 \cdot H$ and all $(\tilde{z}_2, \tilde{w}_2) = \tilde{\gamma}_2 \cdot H$. We remark that this formula is a generalization of that given in Theorem 3.1 of [7].

Let \mathcal{W} be the Wallach set

$$\mathcal{W} = \left\{0, \frac{n-r}{r(r-1)}, \dots, \frac{n}{r} - 1\right\} \cup \left]\frac{n}{r} - 1, +\infty\right[,$$

(cf. [12] p. 268), and let $\mathcal{K}_{\nu}(\tilde{z}_1, \tilde{w}_1; \tilde{z}_2, \tilde{w}_2) := \{\tilde{z}_1, \tilde{w}_1; \overline{\tilde{z}_2}^{-1}, \overline{\tilde{w}_2}^{-1}\}^{\nu}$. The kernel \mathcal{K}_{ν} is of positive type on $\tilde{\Xi} \times \tilde{\Xi}$ if and only if ν belongs to \mathcal{W} . Then \mathcal{K}_{ν} is a reproducing kernel of some Hilbert space $\mathcal{H}_{\nu}(\tilde{\Xi})$. In particular if $\nu > \frac{2n}{r} - 1$, $\mathcal{H}_{\nu}(\tilde{\Xi}) = \mathcal{H}_{\nu}^2(\tilde{\Xi})$.

We note that $\frac{n}{r} \in \frac{1}{2}\mathbb{N}$. In [12], J. Faraut and A. Korányi showed that the analytic continuation Bergman space $\mathcal{H}_{\frac{n}{r}}(\mathcal{D} \times \mathcal{D}) (\simeq \mathcal{H}_{\frac{n}{r}}(\widetilde{\Xi})$ by Theorem 3.1) coincides with the Hardy space $H^2(\mathcal{D} \times \mathcal{D})$. It is a Hilbert space of holomorphic functions f on $\mathcal{D} \times \mathcal{D}$ such that

$$\sup_{0 < r_1, r_2 < 1} \int_{\mathcal{S} \times \mathcal{S}} |f(r_1 u_1, r_2 u_2)|^2 d\sigma(u_1) d\sigma(u_2) < \infty,$$

where \mathcal{S} is the Shilov boundary of \mathcal{D} .

Using the same notations as in Section 3, the covering \widetilde{G} of order 2 of G acts on $H^2(\mathcal{D} \times \mathcal{D})$ by the representation $\widetilde{\pi}_{\frac{n}{r}} := \pi_{\frac{n}{r}} \otimes \pi_{\frac{n}{r}} :$ for $f \in H^2(\mathcal{D} \times \mathcal{D})$ and $\widetilde{g}^{-1} = (g, \varphi) \in \widetilde{G}$,

$$(\widetilde{\pi}_{\frac{n}{r}}(\widetilde{g})f)(z,w) = \left(\frac{\Delta(g \cdot z - g \cdot w)}{\Delta(z - w)}\right)^{\frac{n}{r}} f(g \cdot z, g \cdot w).$$

Using [4] Theorem 3.2.1, we can deduce that the representation $\tilde{\pi}_{\frac{n}{r}}$ decomposes into a discrete sum of irreducible unitary representations π_{μ} of \tilde{G} with highest weights

$$\mu = \left(m_1 + \frac{n}{r}, m_2 + \frac{n}{r}, \dots, m_r + \frac{n}{r}\right)$$

such that $m_1 \geq m_2 \geq \cdots \geq m_r \geq 0$. In particular, the decomposition of the Hardy space $H^2(\mathcal{D} \times \mathcal{D})$ holds. Hence, we find the decomposition of $H^2(\mathcal{D} \times \mathcal{D})$ shown in [7] when $\frac{n}{r}$ belongs to \mathbb{N} .

Case (II): \mathbb{V}^+ is a direct sum of two simple algebras.

Let \mathbb{V}^+ be a direct sum of two simple algebras \mathbb{V}_1^+ of rank p and \mathbb{V}_2^+ of rank q such that $p+q=r^+$ (=r). Let $n_1=p+\frac{1}{2}dp(p-1)$ denote the dimension of \mathbb{V}_1^+ , and $n_2=q+\frac{1}{2}dq(q-1)$ the dimension of \mathbb{V}_2^+ . Then the involution α is given by $\alpha = P(w)$, where $w = c_1 + c_2 + \cdots + c_p - c_{p+1} - c_{p+2} - \cdots - c_r$. The cone Ω^+ is a direct sum of Ω_1^+ and Ω_2^+ , where $\Omega_1^+ := \Omega^+ \cap \mathbb{V}_1^+$ and $\Omega_2^+ := \Omega^+ \cap \mathbb{V}_2^+$.

For $\mathbf{s} \in \mathbb{C}^p$ (resp. \mathbb{C}^q), we write $\Delta_{\mathbf{s}}^{(1)}$ (resp. $\Delta_{\mathbf{s}}^{(2)}$) for the generalized power function associated with Ω_1^+ (resp. Ω_2^+).

Using the same techniques as in Lemma 5.4, we show that for all $\lambda \in \mathbb{C}$ such that $\Re(\lambda) > \frac{n}{r} - 1$,

(9)
$$\int_{(-e+\Omega)\cap\mathbb{V}^-} \Delta(e+v)^{\lambda-\frac{n}{r}} dv = \frac{\Gamma_{\Omega}(\lambda)}{\Gamma_{\Omega_1^+} \left(\lambda - \frac{n^+}{r} + \frac{n_1}{p}\right) \Gamma_{\Omega_2^+} \left(\lambda - \frac{n^+}{r} + \frac{n_2}{q}\right)}.$$

Here $\Gamma_{\Omega_1^+}$ (resp. $\Gamma_{\Omega_2^+}$) denotes the Gindikin gamma function associated with the symmetric cone Ω_1^+ (resp. Ω_2^+).

Proposition 5.6. For all $\mu = (m_1 + (\nu/2), \dots, m_p + (\nu/2); m_{p+1} + (\nu/2), \dots, m_r + (\nu/2)) := (\underline{\mu}_1; \underline{\mu}_2)$, the spherical Laplace transform $\widehat{P}_{\nu}(-\mu)$ is finite if and only if

$$m_1 \ge \cdots \ge m_p \ge 0, \quad m_{p+1} \ge \cdots \ge m_r \ge 0.$$

Moreover

$$\begin{aligned} \widehat{P}_{\nu}(-\mu) &= c_0 \, \Gamma_{\Omega} \Big(\nu - \frac{n}{r} \Big) \\ & \cdot \frac{\Gamma_{\Omega_1^+} \Big(\underline{\mu}_1 - \frac{\nu}{2} + \frac{n_1}{p} \Big) \Gamma_{\Omega_2^+} \Big(\underline{\mu}_2 - \frac{\nu}{2} + \frac{n_2}{q} \Big)}{\Gamma_{\Omega_1^+} \Big(\underline{\mu}_1 + \frac{\nu}{2} - \frac{n^+}{r} - \frac{n}{r} + \frac{2n_1}{p} \Big) \Gamma_{\Omega_2^+} \Big(\underline{\mu}_2 + \frac{\nu}{2} - \frac{n^+}{r} - \frac{n}{r} + \frac{2n_2}{q} \Big)}, \end{aligned}$$

where c_0 is a positive constant.

Proof. As proved in Proposition 5.5, we have

$$\begin{split} \widehat{P}_{\nu}(-\mu) &= \int_{\Omega_{1}^{+}\cap(e-\Omega_{1}^{+})} \Delta_{\underline{\mu}_{1}-\frac{\nu}{2}}^{(1)}(x_{1}^{+}) \ \Delta^{(1)}(e-x_{1}^{+})^{\nu+\frac{n^{-}}{r}-\frac{2n}{r}} dx_{1}^{+} \\ &\int_{\Omega_{2}^{+}\cap(e-\Omega_{2}^{+})} \Delta_{\underline{\mu}_{2}-\frac{\nu}{2}}^{(2)}(x_{2}^{+}) \ \Delta^{(2)}(e-x_{2}^{+})^{\nu+\frac{n^{-}}{r}-\frac{2n}{r}} dx_{2}^{+} \\ &\int_{(e-\Omega)\cap\mathbb{V}^{-}} \Delta(e-v)^{\nu-\frac{2n}{r}} dv \\ &= \mathcal{B}_{\Omega_{1}^{+}}\Big(\underline{\mu}_{1}-\frac{\nu}{2}+\frac{n_{1}}{p},\nu-\frac{n^{+}}{r}-\frac{n}{r}+\frac{n_{1}}{p}\Big) \\ &\mathcal{B}_{\Omega_{2}^{+}}\Big(\underline{\mu}_{2}-\frac{\nu}{2}+\frac{n_{2}}{q},\nu-\frac{n^{+}}{r}-\frac{n}{r}+\frac{n_{2}}{q}\Big) \\ &\int_{(e-\Omega)\cap\mathbb{V}^{-}} \Delta(e-v)^{\nu-\frac{2n}{r}} dv. \end{split}$$

Then the assertion follows from formula (9).

Let $\mathbf{m} := (\mathbf{m}_1, \mathbf{m}_2) = (m_1, \ldots, m_p; m_{p+1}, \ldots, m_r)$. We use $\mathbf{m} \ge 0$ to denote $m_1 \ge \cdots \ge m_p \ge 0$; $m_{p+1} \ge \cdots \ge m_r \ge 0$. We apply the similar arguments as in Theorem 5.2, the following theorem holds.

Theorem 5.3. Assume α is given such that \mathbb{V}^+ is a direct sum of two simple algebras. Then for all $\nu \in \mathbb{C}$ such that $\Re(\nu) > \frac{n}{r} - 1$,

r .

$$\begin{aligned} & \top_{\alpha}(\widetilde{\xi}_{1})^{\frac{r}{4n}\nu} \det(B(\xi_{1},\overline{\xi}_{2}))^{-\frac{r}{2n}\nu} \overline{\top_{\alpha}(\widetilde{\xi}_{2})}^{\frac{4n}{4n}\nu} \\ &= \sum_{\mathbf{m}\geq 0} \frac{c_{0}d_{\mu}}{\Gamma_{\Omega}(\nu)} \\ & \cdot \frac{\Gamma_{\Omega_{1}^{+}}\left(\mathbf{m}_{1}+\nu-\frac{n^{+}}{r}-\frac{n}{r}+\frac{2n_{1}}{p}\right)\Gamma_{\Omega_{2}^{+}}\left(\mathbf{m}_{2}+\nu-\frac{n^{+}}{r}-\frac{n}{r}+\frac{2n_{2}}{q}\right)}{\Gamma_{\Omega_{1}^{+}}\left(\mathbf{m}_{1}+\frac{n_{1}}{p}\right)\Gamma_{\Omega_{2}^{+}}\left(\mathbf{m}_{2}+\frac{n_{2}}{q}\right)}\varphi_{-\mathbf{m}-\frac{\nu}{2}} \\ & \left((\widetilde{\gamma}_{2}^{\sharp}\widetilde{\gamma}_{1})^{-1}\right). \end{aligned}$$

The series converges uniformly on compact subsets of $\widetilde{\Xi} \times \widetilde{\Xi}$.

Remark. If p = 0 or q = 0, then $\alpha = id_{\mathbb{V}}$ (the compact case). The last series can be written as

$$\Delta(e-z)^{-\nu} = c_0 \sum_{\mathbf{m} \ge 0} d_{\mathbf{m}} \frac{(\nu)_{\mathbf{m}}}{(\frac{n}{r})_{\mathbf{m}}} \varphi_{\mathbf{m}}(z),$$

with $\mathbf{m} = (m_1, m_2, \ldots, m_r)$. Here $(\mathbf{s})_{\mathbf{m}}$ denote $(\mathbf{s})_{\mathbf{m}} = \frac{\Gamma_{\Omega}(\mathbf{s} + \mathbf{m})}{\Gamma_{\Omega}(\mathbf{s})}$, for all $\mathbf{s} \in \mathbb{C}^r$ and $\mathbf{m} \in \mathbb{N}^r$. Hence, we find the generalized binomial formula shown in [12]. See also [2].

We present here the table of Makarevič symmetric space G/H, and its dual symmetric space G^c/H .

V	G/H	G^c/H
1) $\operatorname{Herm}(n,\mathbb{C})$	U(p,q) (p+q=n)	$GL(n,\mathbb{C})/U(p,q)$
	$SO^*(2n)/SO(n,\mathbb{C})$	$SO(n,n)/O(n,\mathbb{C})$
	$Sp(4n,\mathbb{R})/Sp(2n,\mathbb{C})$	$Sp(n,n)/Sp(2n,\mathbb{C})$
2) Sym (n, \mathbb{R})	U(p,q)/O(p,q)	$GL(n,\mathbb{R})/O(p,q)$
	$Sp(2n,\mathbb{R})$	$Sp(2n,\mathbb{C})/Sp(2n,\mathbb{R})$
3) Herm (n, \mathbb{H})	U(2p,2q)/Sp(p,q)	$U^*(2n)/Sp(p,q)$
	$SO^*(2n)$	$SO(2n,\mathbb{C})/O^*(2n)$
4) $\mathbb{R} \times \mathbb{R}^{n-1}$	SO(p) imes SO(2,q)/	$SO(1, p-1) \times SO(1, q+1)/$
	$SO(p-1) \times SO(1,q)$	$SO(p-1) \times SO(1,q)$
5) $\operatorname{Herm}(3, \mathbb{O})$	$E_6 \times U(1)/F_4$	$E_6 \times \mathbb{R}^+ / F_4$
	$E_{6(-14)} \times U(1)/F_{4(-20)}$	$E_{6(-14)} \times \mathbb{R}^+ / F_{4(-20)}$
	SU(6,2)/Sp(3,1)	$SU^{*}(8)/Sp(3,1)$
$\mathbb{V} \times \mathbb{V}$, where \mathbb{V} is	$\underline{Cayley \ type}$	
either of the type	$SU(n,n)/SL(n,\mathbb{C})\times\mathbb{R}^*_+$	$SU(n,n)/SL(n,\mathbb{C})\times\mathbb{R}^*_+$
(1), 2), 3), 4), or 5).	$Sp(2n,\mathbb{R})/GL(n,\mathbb{R})$	$Sp(2n,\mathbb{R})/GL(n,\mathbb{R})$
	$SO^*(4n)/SL(n,\mathbb{H})\times\mathbb{R}^*_+$	$SO^*(4n)/SL(n,\mathbb{H})\times\mathbb{R}^*_+$
	$SO(2,n)/SO(1,n-1) \times \mathbb{R}^*_+$	$SO(2,n)/SO(1,n-1) \times \mathbb{R}^*_+$
	$E_{7(-25)}/E_{6(-26)} \times \mathbb{R}^*_+$	$E_{7(-25)}/E_{6(-26)} \times \mathbb{R}^*_+$

Acknowledlement. I am very grateful to my supervisor Jacques Faraut who helped and encouraged me with his advice and many fruitful discussions.

References

- S. Ben Saïd, Espaces de Bergman pondérés et série discrète holomorphe de U(p,q), J. Funct. Anal., **173** (2000), 154-181, MR 2001g:43011, Zbl 0957.43008.
- [2] _____, Espaces de Bergman Pondérés sur un Domaine Symétrique Borné, Thèse, Universié Paris VI (2000).
- W. Bertram, Algebraic structures of Makarevič spaces I, Transformation Groups, 3 (1998), 3-32, MR 99c:32047, Zbl 0894.22004.
- W. Bertram and J. Hilgert, Hardy spaces and analytic continuation of Bergman spaces, Bull. Soc. Math. France, 126 (1998), 435-482, MR 2000a:32012, Zbl 0920.22006.
- [5] J.L. Brylinski and P. Delorme, Vecteur distributions H-invariants pour les séries principales généralisées d'espaces symétriques réductifs et prolongement méromorphe d'intégrales d'Eisenstein, Invent. Math., 109 (1992), 619-664, MR 93m:22016, Zbl 0785.22014.
- [6] B. Chabat, Introduction à l'Analyse Complexe, Editions MIR, 1990, MR 91k:30002, Zbl 0732.32001.
- M. Chadli, Noyau de Cauchy-Szegö d'un espace symétrique de type Cayley, Ann. Inst. Fourier, 48 (1998), 97-132, MR 99b:22022, Zbl 0920.43008.
- [8] G. van Dijk and M. Pevzner, *Berezin kernels on tube domains*, J. Funct. Anal., 181 (2001), 189-208, MR 2002c:32032, Zbl 0970.43003.
- J. Faraut, Fonctions sphériques sur un espace symétrique de type Cayley, Contemp. Math., 191 (1995), 41-55, MR 97c:43012, Zbl 0847.53039.
- [10] J. Faraut, J. Hilgert and G. Ólafsson, Spherical functions on ordered symmetric spaces, Ann. Inst. Fourier, 44 (1994), 927-966, MR 96a:43012, Zbl 0810.43003.
- [11] J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 88 (1990), 64-89, MR 90m:32049, Zbl 0718.32026.
- [12] _____, Analysis on Symmetric Cones, Oxford University Press, 1994, MR 98g:17031, Zbl 0841.43002.
- [13] J. Hilgert and B. Krötz, Weighted Bergman spaces associated with causal symmetric spaces, Manuscripta Math., 99 (1999), 151-180, MR 2000g:22019, Zbl 0961.32008.
- [14] J. Hilgert, G. Olafsson and B. Ørsted, Hardy spaces on affine symmetric spaces, J. Reine Angew. Math., 415 (1991), 189-218, MR 92h:22030, Zbl 0716.43006.
- [15] T. Kobayashi, Multiplicity free branching laws for unitary highest weight modules, in 'Proceedings of Symposium on representation theory held at Saga', Kyushu (1997), 9-17.
- [16] _____, Discrete decomposability of the restriction of $A_q(\lambda)$ with respect to reductive subgroups, Invent. Math., **131** (1997), 229-256, MR 99k:22021, Zbl 0907.22016.
- [17] _____, Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups, J. Funct. Anal., 152 (1998), 100-135, MR 99c:22012, Zbl 0937.22008.
- [18] K. Koufany, Semi-groupe de Lie Associé à une Algèbre de Jordan Euclidienne, Thèse, Université de Nancy, 1993.
- [19] K. Koufany and B. Ørsted, Hardy spaces on two-sheeted covering semigroups, J. Lie Theory, 7 (1997), 245-267, MR 98k:22060, Zbl 0884.22006.

- [20] B. Krötz, Formal dimension for semisimple symmetric spaces, Compositio Math., 125 (2001), 155-191, MR 2002b:22024, Zbl 0968.22012.
- [21] B.O. Makarevič, Open symmetric orbits of reductive groups in symmetric R-spaces, Math. USSR Sbornik, 20 (1973), 406-418, MR 50 #1170, Zbl 0285.53041.
- [22] Yu.A. Neretin, Matrix analogues of the B-function, and Plancherel formula for Berezin kernel representations, Sb. Math., 191 (2000), 683-715, MR 2001k:33030, Zbl 0962.33002.
- [23] _____, On separation of spectra in anlysis of Berezin kernels, Funct. Anal. Appl., 34 (2000), 197-207, MR 2001m:32012, Zbl 0967.22007.
- [24] G. Olafsson, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math., 90 (1987), 605-629, MR 89d:43011, Zbl 0665.43004.
- [25] G.I. Ol'shanski, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funct. Anal. Appl., 15 (1981), 275-285, MR 83e:32032, Zbl 0503.22011.
- [26] B. Ørsted, Composition series for analytic continuations of holomorphic discrete series representations of SU(n, n), Trans. Amer. Math. Soc., 260 (1980), 563-573, MR 81g:22020, Zbl 0439.22017.
- [27] M. Pevsner, Espace de Bergman d'un semi-groupe complexe, C.R. Acad. Sci. Paris, I (1996), 635-640, MR 97b:22015, Zbl 0843.22002.
- [28] W. Schmid, Die randwerte holomorpher funktionen auf hermitischen räumen, Invent. Math., 9 (1969), 61-80, MR 41 #3806, Zbl 0219.32013.
- [29] M. Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka J. Math., 10 (1973), 441-475, MR 54 #616, Zbl 0313.32042.
- [30] G. Zhang, Berezin transform on line bundles over bounded symmetric domains, J. Lie Theory, 10 (2000), 111-126, MR 2002d:32035, Zbl 0946.43007.

Received December 7, 2000 and revised August 20, 2001.

DEPARTMENT OF MATHEMATICS OKLAHOMA STATE UNIVERSITY 401 MATHEMATICAL SCIENCES STILLWATER, OK 74078 *E-mail address:* ssaid@math.okstate.edu