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Let D be a bounded symmetric domain of tube type and
G its group of holomorphic automorphisms. In this paper,
we describe explicitly the Plancherel Theorem of weighted
Bergman spaces on D under the action of certain symmetric
subgroups of G.

1. Introduction.

Let G be a noncompact connected real semi-simple Lie group with finite
center and Lie algebra g. Let 6 be a Cartan involution of G and K =
{g € G| 6(9) =g}. We use the same letter 6 to denote the differential of 6.
Then, we have a direct sum decomposition g = £ & p in eigenspaces with
respect to 6. We assume that G is hermitian, then there exists an element
Zy in the center ¢(£) of £ such that c¢(¢) = RZ,.

Let o be an involutive automorphism of G. We may assume that o com-
mutes with 6 and g = h & q is the decomposition of the Lie algebra g
with respect to o. Since 02 = id, there are two exclucive possibilites. FEi-
ther o(Zy) = Zy and o acts holomorphically on the symmetric domain
D:=G/K, or 0(Zy) = —Zp and o acts anti-holomorphically on D. In this
paper we consider the case where ¢ is holomorphic. The case where o is
anti-holomorphic is considered by Yu. A. Neretin (cf. [22], [23]). See also
[8] and [30].

Let H%(D) be the ordinary Bergman space of D where D is of tube type.
For v > £ —1, we consider a weighted Bergman space H2(D) of holomorphic
functions on D. The universal covering é of G can be realized as the set of
pairs (g, ) with g € G and ¢ a holomorphic function on D where e?(*) =
det(Dg(z)). Here Dg(z) denote the differential of the map z +— g - z. The

group G acts in H2(D) by
U @)(z) =D fg-2), G =(9,9).

The representation U, is a unitary and irreducible representation.
Let p be the universal map of G in G, and let G be a symmetric sub-
group of G. In this work we study the decomposition of the restriction of
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U, to the subgroup G := p~1(G) of G. By [15] (see also [16], [17]) the re-
striction U,,‘ & is decomposed multiplicity-free and discretely into irreducible

representations (m,, H,) of G such that H,, C H2(D).

Let S be the Shilov boundary of D. The action of the group G on § admits
open orbits. We consider one of the orbits which is a causal symmetric space
G /H of compact type. Moreover G/H is a symmetric Makarevi¢ space. The
geometry and analysis of the domain D and the Makarevi¢ space G/H can
be described using Jordan algebras.

To study the decomposition of H2(D), we consider a G-invariant domain =
in the complexification G¢/Hc of G/H introduced by J. Hilgert, B. Orsted
and G. Olafsson (cf. [14]). A geometric descripition of the domain Z is
given by W. Bertram. The domain = can be realized as D \ ¥ where X is
an analytic set (cf. [3]).

We consider a covering = of = with infinite order. We show that there is a
unitary isomorphism of H2(D) onto a weighted Bergman space H2(Z). It is
a Hilbert space of holomorphic functions on é, which satisfy a monodromy
condition and are square integrable with respect to a G-invariant measure
on Z.

To describe explicitly the decomposition of H?,(é) into irreducible sub-
spaces we study the holomorphic discrete series of the universal covering G.
Our approach is based on the spherical Laplace transform associated with
the ordered symmetric space G°/H dual of G/H. See [1] for G/H ~ U(p,q)
and [2] for G/H of Cayley type.

This paper is organized as follows: In Section 2, we give a geometric de-
scripition of the covering = of E using the theory of Jordan algebras. In
Section 3, we study the Bergman space HE(E) and its reproducing kernel
and we establish a unitary isomorphism of H2(Z) onto H2(D). To describe
explicitly the spectrum of Hg(i) and to express its reproducing kernel as
series of spherical functions associated with the ordered symmetric spaces
G¢/H, we study in Section 4 the holomorphic discrete series of G. In par-
ticular, we obtain a necessary condition for 7, to appear in the Plancherel
formula. In Section 5, we compute explicitly the L?-norm of matrix coeffi-
cient associated with an H-spherical unitary highest weight representation.
Then, we can state an explicit Plancherel Theorem. The case G = K is due

to W. Schmid (cf. [28]). See also [11], [12], [26] and [29].

2. Geometric realization of the covering =.

Let V be a Euclidean Jordan algebra, and let €2 be the associated symmetric
cone. We denote the dimension of V by n, the rank by 7, and the unit element
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by e. A Euclidean Jordan algebra is said to be simple if it has no nontrivial
ideal (cf. [12], Chapter II).
Let D be the unit disc of V¢ := V + ¢V with respect to the spectral norm

D:={zeVc|e—zo0z> 0},

where zow = L(zw) + [L(z), L(w)] Here L(z) denotes the endomorphism
of V¢ defined by L(z)w = zw.

Let G be the group of holomorphic automorphisms of D and let K be the
isotropy subgroup of 0 in G. It is a maximal compact subgroup of G. The
Lie algebra g of G is consists of vector fields of the form

X(z)=w+Tz— P(2)w,

where w € V¢, T € £ := Lie(K) and P(z) := 2L(z)?— L(2?). The application
P is called a quadratic representation associated with V¢. We identify a
vector field X with the triplet (w, T, w).

Let a be an involutive automorphism of the Jordan algebra V. Denote also
« its C-linear extention to V¢. The Jordan algebra V and its complexification
V¢ decompose into eigenspaces with respect to the involution «a

V=VfeV", Vc=V{eV.
We say that the pair (V, «) is irreducible if it is not possible to write
(V,a) = (Vi@ V2,01 @ az).

We show that if (V, «) is irreducible then either V is simple, or V =V, x V,
where V, is a simple Euclidean Jordan algebra and «o(z,y) = (—y, —z). We
note that V7 is either simple or a direct sum of two simple algebras.

Let {c1,...,¢} be a Jordan frame of V. It is a complete system of orthog-

T
onal primitive idempotent elements. The algebra R := @ Re; is a maximal
j=1
associative subalgebra of V. Assume « is given such that a(R) = R, then
R = R" @ R~ is the decomposition of R into eigenspaces with respect to a.
We note r* := dim R™.

Theorem 2.1 (cf. [4]). Let V be a Euclidean Jordan algebra and let o be
an involutive automorphism of V.
(1) The rank of the Euclidean Jordan algebra V7' is equal to rt.
(2) Either R=R" andr =7r", orr = 2r" and dim R* = dim R™.
Let
GCYi={ge@ | (~a)ogo(-a)=g},

and let G be its connected identity component. In particular if o = idy then
G=K.
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The Lie algebra g of G is consists of vector fields X on V¢ such that (—a) o
X o (—a) = X. Then g is isomorphic to the set of triplets

{(w,T)w) | we Vg, Tetand aoToa=T}.

We write, for z € V¢, j(2) := 27! the inverse of z in the Jordan algebra
V¢, and 7 the conjugation of V¢ with respect to the real form V. The
application 6 : g — (—j7) o go (—j7) is a Cartan involution of the Lie
algebra g (cf. [3]). Then

t:=¢"={(0,7,0) | T€tand o T ol =T},
p= 979 = {(w,O,w) ‘ w e V(K_I} :
Let H be the stabilizer of the base point ie in G,
H:={geG | g-(ie) =ie}.
Proposition 2.1. The pair (G, H) is a symmetric pair.
Proof. Let o be the involution of G defined by
o(g) = (=j)ogo(=j)
which commutes with the Cartan involution 8 defined before. The differen-
tial of o, also denoted by o, is given by

o(w, T,w) = (—w, =T, —w),
where T denote the adjoint of T with respect to the scalar product on V
defined by the trace. By definition of H, its Lie algebra b is given by
b= {(iw,T,iw) | we V", T € Der(V')},

where Der(V™) is the derivation algebra of V*. Then

h=g":={X€g | o(X)=X}.
O
The pseudo-Riemannian symmetric space G/H is the open orbit G - ie
in the Shilov boundary of D. It is a compactly causal symmetric space.
Moreover G/H is a Makarevi¢ symmetric space (cf. [3], [21]). With respect

to the involution o, the Lie algebra g decomposes as g = § @ q where q :=
g7 ={(w,iL(v),w) | we V™, veVF}.

The Lie algebra g is semisimple and hermitien. By a theorem of Vin-
berg and Kostant, there is a regular G-invariant cone (i.e., convex, closed,
proper, and with nonempty interior) in g. Let Cyax be a maximal regular

G-invariant cone in g containing (0,4I,0). By [25],
I'(Chax) = G exp(iCpax) = {g €eGe | g- DcC D} )
In the complexified space G¢/Hc of G/H we consider the complex domain
=Z:=T(CY) -ie
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where C? is the interior of C' := i (Cpax N g). (This domain is introduced
by J. Hilgert, B. Orsted, and G. Olafsson in [14].)

The domain E can be realized as D \ ¥ where ¥ is the analytic set given
by

(1) Y={z€D | det(P(z+ az)) =0},

where the notation “det” denotes the determinant with respect to V (cf. [3]).

The domain = can also be realized as a subset of the imaginary tangent
bundle of G/H

ExGxCY/ ~,
where C9 := CY Niq, and G x C9/ ~ is the quotient of G x C9 by the

equivalence relation: (g1, X1) ~ (g2, X2) if and only if there exists h € H
such that

(2) g2 =gih and X, =Ad(h 1)Xy,

(cf. [14)).
The open set = is connected since it is homeomorphic to D\ ¥, observing
that D is connected and codimg(X) = 2.

Let

[11

= {(z,C) €ZxC | et = det(P(z + az))} .
2

Note that “~ is an integer.
""+

Theorem 2.2. The set Z is a connected covering of infinite order of the
domain =.

Proof. Let p be the map defined by

[

p:
(2,
Then p is surjective. In fact for z € =, we have det(P(z + az)) # 0, then

there exists ¢ € C such that ert = det(P(z+ az)). Let zp € Z, we can find
an open neighbourhood U of zq such that p~*(U) is homeomorphic to U x Z.

In fact, since p is surjective, there exists (zg, (o) € = such that p(20,¢0) = 20

— 5
— Z

I
~—

We consider a determination of log (det(P (z+ az))) in the neighbourhood

U of 2z, we can define a homeomorphism of U x Z in p~(U) as
(z,m) — <z, log (det(P(z + az))) + 2m'm>.

Hence E is a covering of infinite order of =.
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Let {el, €2,...,6.+} be a Jordan frame of V*. An element z of the form

z= Zz]e] belongs to Z if and only if 0 < |2;| < 1. Let
j=1

rt—1

= Z ej +e*e, € F,
j=1

and

rt

20 = Z zje; € =.

j=1
The curve ¢(t) := z(t)zp belongs to = and satisfies p(0) = p(1) = 2zo. Let ¢
be the lifting of ¢ to =,

g:00,1 — E,
t = ((t), C(1))-

Using the fact that e; = ¢; if r =% and ej = ¢; + ¢4+ if r = 2rT, for all
1< j <rT, we deduce that

et — det(P(2(t) + az(t)))

L 2n
=C(21,. ..y 2p+) (e27r“t)r+ ,
where C(z1,...,2.+) is a nonzero constant depending on z1,..., z.+. There
2
exists h € C* such that C(z1,...,2.+) = e" and —:L (C(t) —2mit) = h +
r

27mik(t). Here k(t) is an integer valued continuous function on [0, 1], therefore
constant. Thus ((1) — ¢(0) = 27 and if p(0) = (z0,¢p), then p(1) =
s

(20, Co + 2mi). Thus if 2z is an element of N @D Ce; and if (29,¢}) and
j=1

(20, (?) are two points of =, there exists a curve ¢ such that $(0) = (wo, ¢})
and @(1) = (20, C3). B

Let (z1,¢1) and (z2,(2) be two points of Z. Since = is connected, there
exists a curve ¢ (resp. y2) such that

©1(0) =20, p1(1) =21 (resp. ¢2(0) =20, w2(l)=22).

Let @7 (resp. $3) be the lifting of o1 (resp. ¢2) to = such that

p1(0) = (20.G)  @1(1) = (21,01)
22(0) = (#0,65)  @2(1) = (22,C2)

-t
Using the fact that zg € 2N @Cej, we deduce that = is connected. O
j=1



WEIGHTED BERGMAN SPACES 45
Let
Ta(2) = det(P(z + az)).

With respect to Lebesgue measure, the restriction to = of the Gc-invariant
measure of G¢/Hc is given by

Let

(3) Ta(®)BY = ea¥",  Z=(2() €E.

The realization of the domain = inside the imaginary tangent bundle of
G/H will be used below which permits to show an integral formula.

Let a be a Cartan subalgebra in €Ng. Let A be the root system A(gc,ia),
and a' a positive Weyl chamber. Let AT be the positive root system with
respect to ia™.

Theorem 2.3. For an integrable function f on =,

JRGLEE /G /C F(gexp(X) -ie) T (sh (8, 2X)) " dgdX,

gent
where CT := C% Nia™ and mg = dim(gg).
Proof. Let Z := Zp(ia) be the centralizer subgroup of ia in H. The map

vo: G/ZxCt —E,
(9-2,X) ~— gexp(X)-ie

is a diffeomorphism onto its open image. In fact, let g; exp(X;) - ie and
g2 exp(X2)-ie be two elements of = such that g; exp(X7)-ie = g2 exp(X2)-ie.
Since the group G acts on G/Z x C" (resp. E) by

g0-(9-2,X) = (909 Z,X), (reSp- g0 - (gexp(X) -ie) = gogexp(X) - ie),

we may assume that gy = 1. But since X; and X» are regular and in the
same positive Weyl chamber, by the equivalence relation (2), we deduce that
X1 = Xo. Thus establishing injectivity.
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We will compute the differential of ¢. For this we consider the commuta-
tive diagram defined by

GxCt —— GC

¢l lq;

G/Zxc+t —Y  GC/HC

(9, X) —— gexp(X)

¢l qu
(9-Z,X) _v, gexp(X) - Hc.

Then d(yo¢)(1,X) =d(¥o ®)(1, X).
Let Ay (resp. Ay) be the left translation by g in G (resp. G¢/Hc), then
for (Y,U) € g x ia,
d(P o ®)(1,X)(Y,U)
d

=5 It:O\IJ(exp(tY) exp(X + tU))

—ad(x) 1- e—ad( :
= AW (X)) Mhespo) (1) | 240y 4 == v

— A gp(x) (1).dT(1). (e_ad(x).Y n U),

where dW¥(1) sends gc onto qc. Note Py, the projection of gc onto qc along
bc, then

Poc (¢7My + 1)

e~y 4 7 — AdX)g(v) + U

2
e—ad(X)y _ ead(X)U(Y) U

- 2

— sh (—ad(X)) (YJ“;(Y)) + ch (ad (X)) (Y_;(Y)> LU

Using the fact that o(gg) = g—g, the Lie algebra g can be written as

0=3© Y (l+o)gg@ad » (1-0)gg,
penTt BeENT
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where 3 := Lie(Z). Then for all Y € g and Y} € gg,
Pac (MY +U ) = sh (=B(X)) (Vs+0(¥p)+ch (B(X)) (Yg—o(¥5)+U.

Let w be the volume form on = which defines an invariant Haar measure on
E. Again, the volume form ¢*w on G/Z x C* is given by

prw=co [ (sh2B(X)™ wi®wy,
pent

where w; is a volume form on G/Z which defines an invariant measure, and
wy is a volume form on ia which defines a Lebesgue measure. Using the fact
that Z is compact, the integral formula holds. O

3. Weighted Bergman spaces and reproducing kernels.

In this section we introduce the Bergman space Hz(i) associated with the
covering =. We establish a unitary isomorphism of H2(D) on H2(Z). Then
we compute the explicit expression of the reproducing kernel of H2(Z).

(11

For a real v, let Oy(g) be the space of holomorphic functions F' on
which satisfy

F(z,¢+2mi) = 62M2TL+VF(Z, Q).
This conditi(gn will be called a monodromy condition. Remark that the
function T,3" belongs to O, (=).

For v > n 1, let H2(Z) be the Hilbert space of functions F € O,(2)

such that "

I7IZ = [ IF@P pule)ds < oo,
where

pu(€) = det(B(&, €)% | Ta(§) 2",

and B(z,w) is the Bergman operator defined by B(z,w) := idy, — 2zo0w +

P(2)P(w).

Proposition 3.1. Let z and w be two invertible elements of Ve. Thus
det(B(z,w)) = A(z) F A(z7! —w) 7,

where A is the determinant polynomial associated with V.

Proof. By definition det(B(z, w)) = det(idy, —2zo0w+P(z)P(w)). According
to [18] Proposition 4.13,

z o w=Pw ! 2)Pw),
where P(z,w) = %(P(z +w) — P(z) — P(w)). Then

idy. — 22 0 w+ P(2)P(w) = idy, — 2P(w™ !, 2) P(w) + P(z)P(w).
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Moreover

Pw™ —2) = Pw) ' +2Pw™ !, —2)+ P(z)

= Pw ) —2P(w™,2) + P(2).
Hence we deduce the following equalities
—2P(wL,2)P(w) = Pw" — 2)P(w) — P()P(w) — idy,

and

idy. — 22 o w+ P(2)P(w) = P(w™" — 2)P(w).
Then, we have

det(idy, — 22 o w + P(2)P(w)) = det(P(w™" — 2)) det(P(w)),

where det(P(w)) = A(w)QTn. Finally

2n -1 2n 2n

det(B(z,w)) = A(w) » A(w

The universal covering G of G can be realized as the set of pairs (9,9)
with ¢ € G and ¢ a holomorphic function on D defined by

e?) = det(Dy(z)),

where Dg(z) is the differential of the map z — g - z. The product on G is
given by

(91, 1) - (92, 92) = (9192, ¥3),

where @3(2) = 1(g2 - 2) + @2(2). For § = (9,¢) € G, and k € R, we will
write

det(Dg(2))"F := e"¥(?),
Let I’/(E’/) := G exp(C) be the semigroup associated with the covering G
where éxp : g — G. We denote by I'(C?) the interior of I'(C). The linear

—_
—

action of G on the space H2(Z) is given by

(mo(9)F)(§) = F(g- &), =99
where g-€ = (¢9-&,¢') and ert¢ = det(P(g-&+a(g-€))) (cf. [19] Lemma 5.1).

—_—

The representation 7y extends to a continuous representation of I'(—C)

P

and a holomorphic one of I'(—C?) (cf. [25]).
We recall that the Bergman space H2(D) is the Hilbert space of holomor-
phic functions f on D such that

12 = /D F()? det (B(2,2))3 "L dA(2) < o,
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where A denote the Lebesgue measure (cf. [12]). The action of G on H2(D)
is given by
(M (@) f)(z) = exn¥D f(g - 2), g =(9.9).

The unitary representation 7, extends to a continuous representation of

—_—~—

I'(—C) and a holomorphic one of T'(— CO)
Let A, be the operator given by

Ay: HH(D) — Ou(3),
e A =Tad f
Since T i7" € O,(Z), the operator A, is well defined.

Theorem 3.1. The operator A, is a unitary isomorphism of H2(D) onto
H2(Z) intertwining the representations m, and To.

Proof. Since ¥ is an analytic set of measure zero and d§ = |§l_)\((zz))|7
A = [IAD@F nle
ks L dg
= FOPITa(&)r" det(B(€,€)) " ——=>—
L OFTa@ s der(mie D)5~ Ly

- /D FEP det(B(z,2) 50 A (=) = ||/
If f belongs to H2(D) then A, (f) € O, (Z) and
/ |ALF ()P pu(€)dE < oo

Hence the image of A, is containd in H2 (E) and A, is isometric.
Moreover A, is surjective. In fact, let F € H2(Z), then in particular
F € 0,(2). Since det(P(Z + o))" 3" € O_,(Z), the function
f(2) = Ta(2) ™ F(3), F=(20)€E

is holomorphic on Z = D \ . Moreover, the function f belongs to H2(D).
In fact

I£1? = /D [FE) [Talz)| 72" det(B(z,2)) 25"~ dA(2)
= [ IF@OPITa(®] ¥+ det(B(&, €)' dé = | F|[} < oo.
Then f is a holomorphic function on D\ ¥ and belongs to L2(D). Hence f

extends to a holomorphic function on D. This is the content of the following
lemma.
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Lemma 3.2 (cf. [6], [27]). Let U be a domain in C" and let A be an ana-
lytic set such that codimg(A) > 1. If f € O(U \ A) and if f € L*(U), then
f extends to a holomorphic function on U.

It remains to show that A, intertwining the representations 7y and m,. In

fact it follows from [3] 1.3 (9) that T,(g - E)R” = 2O T, (€) " Hence

Am@HE = Ta@" 90500 (77 = (0.9)

= (mo(@)A)(E)-

Proposition 3.3. The reproducing kernel of the Bergman space HE(E) 8
equal to

r
~ anV

Ko(€1,6) = ¢, Tal€&) ™ det(B(1, &) 5" Ta(&) ",

where ¢, is the positive constant

1 F(V* (- 1%815)

(4) CV:wjzlr@—’;—(j—l)r@_l))‘

Ty
n

The definition of Ta(é)r is similar to that given on (3).

Proof. The reproducing kernel of H2(D) is given by
KP(z,2') = ¢, det(B(z,7')) 2",

From the definition of A,, the reproducing kernel of H2(Z) is equal to
Ty

KAEE) = Ta®" KP(€,&)Ta@)"

NHV

= Tl det(B(E, )5 To(@)

4. Holomorphic discrete series of G.

Recall that {e1, ..., e,+} is the Jordan frame of Rt and tNq = {(0,7L(v), 0)|

ve V]
Let a be the Cartan subalgebra in €N q defined by
t
a=< (0,4 tiL(e;),0| |t; €R
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We denote by A the root system A(gc,ia), A1 the positive system with
respect to the positive Weyl chamber (ia)™ defined by

(5) (i) = {(o,;th(ej),o) | 0<ti <<t }

Let Xy := (0,1,0) € gc. The eigenvalues of ad(Xp) are 1,0, and —1.
Let Ag:={a e AT | a(Xy) =0} and A :={a € AT | a(Xy) =1}. Then
AT = AgUAq. The roots belonging to A\ are called compact and the roots
belonging to Ay noncompact. Let p := %Zae&+ mqa be one half of the
positive roots weighted by the dimension m, of the root spaces. For the
description and computation of p we refer to [4]. See also [8].

Let 7 be a unitary representation of the Lie group G on a Hilbert space
‘H, and let C' be an invariant and regular cone in ig. The representation m
is called C-positive if for all X € C and for all C*> vector v,

d

ﬁ|t:0<”(eXP(tX)) v|v) <0.

Let R be the set of the weights = (1, p2, ..., fy+) € R"" such that
i — ti+1 € N, 1<i<rt -1

(If V* is a direct sum of two simple algebras with ranks p and ¢ such that
p+q=r*(=r), then i # p.)

For p € R and  a noncompact positive root. By [14], the “Harish-
Chandra” condition (p — u, 3) < 0 can be written as

(x) VT is simple Pt > 52— % if r=rt, (d = i%::g)))
MT+>;—% if r=2rt.

(xx) V* is not simple 1 + g+ > —2dp where r=r".

If p € R and satisfies the “Harish-Chandra” condition, then we can asso-
ciate to p a unitary and C-positive representation (7, W,,) of G with highest

weight p. This representation extends to a continuous representation of I'(C')

—_—

which is holomorphic on T'(C9).

Let A:=expa, anngr Zgﬁ
pent
Definition 4.1. A holomorphic function ® in = will be called a conical
function if there exists a continuous character x, of A such that

I(a)® = xula)®, (a€A),
dI(X)® = 0, (Xegt,)
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For all s = (s1,892,...,8) € C" and z in V¢, we write
Ag(2) == A1(2)°17°2 Ag(2)%27% .0 Ay(2)%,
where A; is the principal minor of order j (cf. [12]).
For po = (p, pi2y - -+, fhpt ), let,

0,3 = 8, (5.

The function ®, satisfies the monodromy condition.

Proposition 4.2. The function ®,, is conical, and any conical function is
proportional to ®,,.

The proof is similar to that given for Proposition XI.2.1 in [12].

Note that W (resp. W, *°) is the vector space of C* (resp. distribution)

vectors of W, and (W, ) the vector space of H-invariant distribution
vectors of W,,. Let Ry be the subset of highest weight y € R such that

(W, ) # {0}

For 1 € Ry, we denote 1, an H-invariant distribution vector. For all
element w € W,, the holomorphlc mapping F : W, — O( ), w

Fw)(€) = (mu (37 1) wlep,) where € =7 - H, is a continuous embedding.
Then the representation 7, is realized on a Hilbert space H,, of holomorphic

—_

functions on Z. In the case where w = v,, a normalized highest weight
vector, we denote .’Fu(g) = (m, (¥ 1)v, |¢y). The function F, is a conical
function. B

Let R, g be the highest weight subset of Ry such that F, € O,(2).

Proposition 4.3. The function F,, satisfies the monodromy condition, i.e.,
Fu € Oy (2), if and only if

weZ+Y, a<i<rt) if r=rt

2
and
wi €Z+v, (1<i<rh) if r=2r".

Proof. Since F, is conical, then it is proportional to ®,. If VT is simple,
then T, is proportional to the Jordan determinant A of V*. In fact, T,
is homogeneous of degree 2n and A is homogeneous of degree r™, then

~ 2n =\ . T
Ta(?2) = A(Z+ a(2))rF and F, € O,(E) if and only if p,+ € Z + preng
Using the fact that p; — u;11 € N, the result holds for V* simple.
If V* is a direct sum of two simple Jordan algebras Vi of rank p and V3

of rank ¢ such that p+¢ = r* (= r), then there exist zl € V+C and z9 € V;C

such that z + a(z) = 21 + 22 and T4(2) = Al ) A(2)<22) » where A(M)
(resp. A®) is the Jordan determinant of V; (resp V3). Hence 7, € O, 2)
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if and only if p, € Z + g and p, € Z + g The assertion follows from the
fact that p; — piy1 € N for all 4 # p. O

Remark. In [1] we consider the case G/H =~ U(p,q) and we establish

another isomorphism between H2(D) and H2(Z). The correspondence be-
tween the present isomorphism .4, and the one used in [1] is given by

f — det(A)z det(D)"2 f(z) for all z = [A B € D. This correspondence

C D
explains the shift between the highest weight 1 shown in [1] and the present
form of p.

2
Since v is very large (1/ > —n — 1) the representation 7, satisfies the
Harish-Chandra condition for all e R H.

Let
/ (a7 0| p(€)E.

Proposition 4.4. For u € R, p, the Hilbert space H,, belongs to H> (E) if
and only if C,,(v) is finite.

In this case we denote u € R;, -
Proof. This is proved in [1] Proposition 4.2. O
Hence the Plancherel Theorem can be written as:

Theorem 4.1 (cf. [13]). The Bergman space H2(Z) is decomposed multi-
plicity-free and discretely into irreducible Hilbert subspaces,

D "
/
H’GRV,H
Moreover, the reproducing kernel can be written as

51»52 Z C 7Tu 7271) ¢u|¢u>

uER

The series converges uniformly on compact subsets ofu x Z.

5. Computation of the constant C,(v).

Let M be a differentiable manifold. A causal structure on M is a field
of cones M 3 z — C, C T, M. The cones C, are assumed to be closed,
convex, proper, and with nonempty interior. Furthermore the cones C,
depend smoothly on z. A piecewise C! curve v : [0,1] — M is said to be
causal if for all ¢, the derivative ¥(t) belongs to the cone C, ;). The causal
structure is said to be global if there exists no nontrivial closed causal curve.
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In that case one defines a partial ordering on M in the following way: One
writes x < y if there exists a causal curve from x to y.

Let g be the Lie algebra defined in Section 2. Let o be an involutive
automorphism of g that commutes with the Cartan involution 6 where g =

e@’p. and g =@ a.
Let G¢ := (G(®)g where G = {g € G | a0 go a = g} and the subscript
0 means the identity component. The group G¢ is the group of holomorphic
automorphisms of the tube domain T+ associated with the involution «
defined by
Tor =V +Q"={z+y|lzeV, yeQ'}

where QF := VT N Q and Q is the symmetric cone associated with V. (If
V and VT are simple, the cone Q7 coincides with the open cone associated
with the Jordan algebra V*.) The group G¢ is the c-dual group of G. We
consider on M := G°/H the causal structure defined by the field of cones

C, = —A.

The noncompactly causal symmetric space M is an ordered symmetric
space. By [3], the intersection M NV is a union of connected components of
the set {x € V| det Bo(z, ) # 0} where By(z,y) := B(z,ay) and B(z,y)
is the Bergman operator. In particular

(MNV)g={z€V| det By(z,z) # 0},.

Let g¢ = Lie(G°) (the c-dual algebra of g). We denote also by o the
C-linear extention of ¢ to the complexified algebra gc of g. The involution
¢ := 00|4c is a Cartan involution of g°. Let a be a maximal abelian subspace

in p© N iq where p¢ := (g%)? (note that ia is a maximal abelian subspace in
£Nq), A the root system for the pair (g¢, a), and let AT be the positive root
system with respect to the positive Weyl chamber a* (see (5)).

Let
=P oy = D o
pent pe—-At
N:=expn, N:=expn, A:=expa.
Let zg := e H be the base point of G°/H. The map
NxA— M, (n,a)— na-xg,

is a diffeomorphism of N x A onto its open image NA - xg. For all x =
nexp(X) - zo (X € a), we write X = A(z). We denote ay(x) := exp A(z).
Let M™ be the subset of M defined by

Mt i={zeM|x >z},
called the future of zg. By [9], MT C NA - x.
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The spherical Laplace transform of an H-invariant function f is defined
by

= / f@)ap(z) Mz,  Xeak.
M+

Using the following integral formula,

(6) " f(x)da::/ﬁ/Hf(hexp( cxo)dh  J[ (sh(B,X))™ dX,

Be—A+t

the spherical Laplace transform can be written as

fA) =e¢ flexp(X) - z0) palexp(X)) [ (sh(8,X))™ dX,

—at Be—A+

where ), is the spherical function of the ordered symmetric space M, defined
in the interior S° of S:={g € G°| g 70 > z0 } C NAH,

ealg) = /H ap(hg) *dh

(cf. [10]). The c-function of the symmetric space M, which we denote by
cM, is defined by the integral

em(N) = /N . ap (M)~ AP dn.

Remark. From Theorem 2.3 and the integral formula (6), we obtain

JRGLEE /G o o St

This integral formula is a generalization of that given in Proposition X.3.4
of [12] where G = K.

Let W} (resp. W, ) be the space of analytic (resp. hyperfunction) vectors

of W,. By [5] Theorem 1.1, (WJ“’)H = (W;OO)H where (WJ“’)H is the
subspace of H-invariant hyperfunction vectors of W, ®. Moreover, if the
representation (m,,W,) satisfies the Harish-Chandra condition, the linear

form
Lu(f) = /H (B fv) b, f €W

defines an H-invariant hyperfunction vector (cf. [20]). Using the fact that

dim (W/j OO)H <1, and we deduce that if v, is an H-invariant distribution

vector, there exist a constant ¢y such that

(7) (flbu) = coLu(f), fe Wﬁo

In particular if f = v, then

(Vplton) = co /H<7Tu(h)”u’”u>dh-
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Using the integral formula for all functions f € L'(H),

/ fmdn= [ f(hm))an(m)dn,
H NNHAN

(cf. [24]), we deduce that
Ly(v) = /N ) ()

(mula (@) Ty an () 2dm - (m,(n(m)o, = v,)

NHAN

2\\2\\2\\2\\

<7ru( )Uu|vu>aH( ) 2o-rdn

NHAN
= (vl () V) an (ﬁ)_Qp_#alﬁ
NHAN
— ap (ﬁ)7(2p+/‘)dﬁ
NHAN
= cm(p+ p).
That implies,
(8) co = <Uu‘¢u> )
cm(p+p)

Lemma 5.1. For all v € T(C),

v 2
o) #H0)

Proof. By [10], for all v € T'(C°) N G¢ there exist m € N,ag(y) € A, and
h € H, such that v = nay (y)h. Hence for v € T'(C°) N G¢,

(Y ulvp) = amr (v (Wplvg).-
The equalities (7) and (8) yield

<7Tu(771)7/’u|¢u> =

- O B
(Wu(’Y 1)¢u|7/)u> = cMéL,u:p) /H< u(h’Y 1)¢u| u>dh

I B S,
= e

v 2
= i

Now the assertion follows from the fact that the function v (7, (v )¢, |1¥,.)

2
WAL o) mrienn
G*©. O

is holomorphic on I'(C?) and coincides with
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Let (7, W,) be an H-spherical unitary highest weight representation of
G such that (7,,)V,) belongs to the relative discrete series, and

1
| lmdaoutin Pdg = -
G/H “w

where ¢, is the relative formal dimension calculated in [20], 0, = dy-cam(p+

p), with d,, = H {utp. B)

the formal dimension of the representation
senr 00

Ty
Theorem 5.1. Let P, be the G-invariant function such that P,(exp(2X) -
ie) = p,(exp(X) - ie). The weight y € R;H if and only if the spherical
Laplace transform ﬁy(—u) is finite. Moreover

1 ~
Cu(’/) = 5. Py(—p),
o
where 0, is the relative formal dimension.

Proof. We assume that the H-invariant distribution vector 1),, is normalized
by (¢ulv,) = 1. By the integral formula of Theorem 2.3 and the fact that
py is G-invariant, we deduce that

Cu(v) = |<7TM('7_1)UM|¢M>‘2 pu(§)d

= [ 1m0 P pexn(x) ) T] sh (280" dgax

gent

= 7 [ Imexn Ol pesp() i) T sh (28(3))™ .

BeAt

According to the last lemma, this yields

/ [y (7 ) 200 (€

/ pv(exp(X) - ie)p_, (exp(2X)) H sh (26(X))™ dX
o+

5“ peA+
1 ~
=—P,
P,
O
For any x € V we have x = 2 + 2~, where 2+ := 50—#204(33) € V™ and
xT = 2 —alr) € V. We denote z := (zt,z7).

2
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Let J be the bounded set in V defined by
j:{x:(m+,x*)€V|x+€Q, e ee—ﬁ} C
(V+ rm) X ((HV‘) rm).
Proposition 5.2. The set J coincides with
{3: eEMl|z> 1:0},
the future of xg.
Proof. Let ¢ : [0,1] — V be the curve defined by
o(t) =tz + (1 —t)e,
where ¢(0) = e and ¢(1) = x. Since € is convex,
o(t) +a(e(t)) =tlx+ alz)) + (1 —t)2e €
Thus ¢(t) € M for all t € [0, 1]. Moreover ¢(t) =z — e € —Q >~ C°, where
¢ ={(v,0,~a@) |ve 0} c ¢,

the regular cone in g° such that C°Np° # 0, where p¢ = {(v, L(w), —v) | v €
V*+, w € V=} (cf. [3], p. 26). Then, ¢ is a nontrivial causal curve in M
from z to zg and x belongs to the future of zq.

Conversely, let ¢ : [a,b] — M be a causal curve. Assume that there
exists t > a such that ¢(t) ¢ M NV and

/@:inf{te [a, ] |gp(t)§éMﬂV}.

Since M NV is open in M, then ¢(t) e MNVift <k and p(t) g MNV
if not. Hence

lim fJp(®)]] = oo

—K

t<w
Moreover the curve ¢ : [a,k][— V is causal with respect to the causal
structure defined by the cone —Q. Then, p(t) € e — Q and for all ¢ € [a, &,
©(t) belongs to the connected component of zp in M NV given by

{x eVi]z+alx)e Q}
Hence for all t € [a, k[, ¢(t) € J such that J is a bounded set. This leads
to contradiction. U

Lemma 5.3. Let s € C" and © = nexp A(z) - xg € NA - zy. To identify
ac with C™" we have

elslA@) As<x+2a(m) )
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x4 a(x)

Proof. The function z — AS( 5

nexp A(x) - o,

) is N-invariant. Then, for all =

A(TE2E) — A(exp Ale) - x0).

Since A(z) € ac, there exists (t1,t2,...,t+) € C" such that A(z) =
Z;; tiL(ej), and exp A(x) - xg = Z;; e'ie;. Here {ej}ti<j<pr is the Jordan
frame of RT. Thus for all s = (s1,...,s,+), we deduce that

’f‘+ 7“""
A, <f6+2a<$)> — A S etie; | = [t = efsla@n,
p =1

O

To give an explicit formula of the spherical Laplace transform ﬁy(—u)
and an explicit descripition of the spectrum R/V 77> we recall some notations.

The Gindikin gamma function of the symme};ric cone {2 is defined by the
following integral, generalizing the classical Siegel integral

Fa(s) = /e‘tr(“’")Asn(m)dm
Q

d
for s = (s1,...,5,) where Rs; >(j—1)§ for j=1,...,r

The Gindikin beta function of the symmetric cone €2 is defined by the
following integral

Ba(s,m) = /Qﬂ( o As—n(2)Am-z(e — z)dx

Fo(s)T'o(m)
Fo(s+m) '

Case (I). V' is a simple Jordan algebra.
Let n* := dim(V*), and T+ (resp. B+ ) be the Gindikin gamma (resp. beta)
function of the symmetric cone QT := QN VT of V*.

Lemma 5.4. For A € C such that R(\) > o 1,
r

r _n F )\
/ A(e_i_v)rTA r+dv:ﬂ_
(et @)V g+ (r%/\)
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Proof. With respect to the decomposition of the Jordan algebra V as V =
V+ @V, the Gindikin gamma function of the symmetric cone €2 can be
written as

Fa(\) = /e_tr(w)A(:n)A_:d:L‘
Q

= / et’"(ﬁ)/ Azt + 7)Y\ v de™ | dat
Q+ {z= |zt4+2—€Q}

1
Moreover 2 + 2~ = P((z7)2)(e +v), where P is the quadratic representa-
1
—3

tion and v = P((z ™)™ 2)z~. Hence

Lo(N) = /Q+ e_t”(ﬁ)A(xJ“)ﬁ)‘_ﬁJr%dfr /( - Ale +v)F 7 do
r

=T+ —A / A(e +v) 7 A du.
. <7“+ ) (—e+Q)NV- (e+)

This proves that

ym r
/ Ale +0)7 i gy = — 12
(—e+Q)NV—

Tos (2)

O
Proposition 5.5. For pu= (ml +(r/2rM) .. omyr + (r/2r+)y>, the
spherical Laplace transform ﬁ,j(—u) 1s finite if and only if

my 2> mg > 2> Myt > 0.

Moreover
r nt
P (v T4 ™)
n + +
Py(~p) = el (v = = a1t
ar(HF Yort Tt

where ¢y is a positive constant.

Proof. By Proposition 3.1 and for all z = nexp A(x) - xg, the function p, is
given by

—g-v+1 9\ y_2n

pu(z) = det <P(x + a(:c))) Ale —z=)" .

Since A(z) € ac, there exists (t1,...,6+) € C" such that A(z) =

r+
2 j=1tiL(ej), and

rt L
exXp (A(;?)) Xy = Ze%ej.
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Let o = Y elie; and *ZT+%'U‘ the fact that p, is G
et v = > ;,€e7¢j and u = ) . e2e;. Using the fac at p, is G-
invariant, we deduce that

2n

FEAe—z)"" T = Py(a).

py(u) = A(x+)7y2:+
For z € V, let dé(x) be the G-invariant measure on M, where its restriction

to M NV is equal to dd(z) = A(zt) 7 datdz~. Using Lemma 5.3, the
spherical Laplace transformation of P, can be written as

P,(—p) = / ) WA P, (2)d5(z)
T>T0

- [ / A (a) A EE
Qtne—Qt) J{z—|le—zt—2—€Q}

-Ae — a;)”*zTnA(xﬂ_r%d:ﬁdm*

= Af,/r $+
/mm(e—m) wvie ()

. / Ale —xt —27)
{z—|e—zt—2z—€Q}

Using the last lemma, and the fact that e — 2+ — 3~ = P((e — 2+)2)(e — v)
where v = P((e — 27)"2)z~, we obtain

y—2n

rdr” | dxT.

P-n)= [ oo (@) A — )77 T 4ot
QtN(e—Qt) "

: / A(e—v)”#_f%dv
(e—=Q)NV—

n
I'a (Vﬁ ;) r nt r n

r (VT_H)BQ*@‘”w*w”w‘w)’
L

+ nt— T

r n r
V72r++r+>(j 1)r+(r+—1) for 1 < j <r7. By the fact

such that p; —

r
that p1; = m; + o where m; € Z and pj — pj11 € N, this condition will
r

be written as

myp > mg > > me+ > 0.
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It follows from Proposition 5.5 that the spectrum of the Bergman space
HZ(Z) is given by

/

Ron = {u = (ml + (r/2rty, mo+ (r/2r M), o mps + (r/2r+)y>}
mi>ma > > mys 20}.

Fa(v)

1
-
T

kernel Kl,(gl, 52) can be written as

Recall that the constant ¢, = (see (4)), the reproducing

Tol@)F det(B(61, &) F Tal@)
ol Fm(mﬂ%—g)
=25 2o W (GED Y,
Tor(m o+ 77)
T

for all 51 =71 - H and all 22 =79 -H in Z. The summation index runs over
the integers of type m := (my, mo, ..., m,+) such that m; > --- > m,+ > 0.
We use m > 0 to denote the summation index. The function

v Ta()in” det(B(61,6)) 5 Ta(&) ",

is holomorphic on C and coincides with
o+ (m + v E)
3o o o (G,

mso W) (m + *)

2n
for v € } — — 1,400 [, therefore these two functions coincide everywhere.

r
The following theorem holds.

Theorem 5.2. Assume « is given such that VT is a simple algebra. Then
for all v € C such that R(v) > n_ 1,
r

Tal@) Y det(B(6.8) F Tal@) "
=

cody, Lo (m i VrL+ _ ) Sy -
-3 — e (G Y.
m>0 FQ+ (m + 7—#)

Ta(v)

The series converges uniformly on compact subsets ofu x Z.
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An application (Makarevi¢ symmetric spaces of Cayley type). Let V be a
simple Euclidean Jordan algebra of dimension n and rank r. The bounded
symmetric domain associated with V¢ x V¢ is the bidisc D x D where D is
the unit disc of V. Let a be the involution on D x D defined by a(z,w) =
(—w, —z). In this case, the domain = is realized as D x D \ ¥ where

Y ={(z,w) e DxD|A(z —w) =0},

and A is the determinant polynomial associated with V (see (1)).
Let

{Z w: Z/ w/} — A(Z/ B Z)A(w - w/)
Y Az —w)A(2 —w')
be the cross-ratio of four points z,w, 2/, and w’ of V¢. This definition gener-
alizes the classical cross-ratio-matrix and satisfies the G-invariance property
{g cz,g-wig-2,g- w’} = {z,w;z',w’}. The reproducing kernel of the

—_
(=)

Bergman space H2(Z) is equal to
~ ~ o~ ~ 2 ~ ~ ‘T_l T_l v
KI/(Z].)wlvzauwQ):Cy {Zl,’lUl,Zg , W2 } 3

for (z1,w1) and (Z2,ws) in =
Using Theorem 5.2, we deduce a formula of a complex power of a cross-
ratio of four points,

Il'o(m+2 n

. =1 =—1\¥ cod Q( V_*)

{Zlaw1§22 » W2 } = E:Fg(ylgz T (m_}_n)r
Q =

m>0
r

e (G ),

for all (z1,w1) = 71 - H and all (23, we) = 72 H. We remark that this formula
is a generalization of that given in Theorem 3.1 of [7].
Let W be the Wallach set

W = {O,g,...,ﬁ—l}u}ﬁ—1,+oo[,
r(r—1) r r
(ct. [12] p. 268), and let K, (31, @r; 3o, @) = {21, @1;32 @2 }”. The
kernel IC, is of positive type on = x = if and only if v belongs to WW. Then
K, is a reproducing kernel of some Hilbert space H,(Z). In particular if
2 ~ ~
V> 7” — 1, Hy(B) = H2(2).
1
We note that — € iN. In [12], J. Faraut and A. Kordnyi showed that
r

the analytic continuation Bergman space Ha (D x D) (=~ Hn(é) by Theo-

rem 3.1) coincides with the Hardy space H2(D x D). It is a Hilbert space
of holomorphic functions f on D x D such that

sup / | (v, rus)|Pdo (u)do(uz) < oo,
0<ry,r2<1l JSxS
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where S is the Shilov boundary of D. N
Using the same notations as in Section 3, the covering G of order 2 of G
acts on H?(D x D) by the representation 7n := 7mn @7n : for f € H*(Dx D)

and ' = (g,¢) € G,

@0 = (S5 EZ5) gngw)

Using [4] Theorem 3.2.1, we can deduce that the representation 7= decom-

poses into a discrete sum of irreducible unitary representations m,, of G with
highest weights

n n n
M:(m1+7,m2+7,...,mr+—>
r r r

such that m; > moe > -+ > m, > 0. In particular, the decomposition of
the Hardy space H?(D x D) holds. Hence, we find the decomposition of

H?(D x D) shown in [7] when n belongs to N.
r

Case (I): VT is a direct sum of two simple algebras.

Let VT be a direct sum of two simple algebras Vf of rank p and VQL of rank
q such that p+q=r" (=7r). Let ny =p+ %dp(p — 1) denote the dimension
of V{7, and ny = ¢ + %dq(q —1) the dimension of V. Then the involution o
is given by o = P(w), where w =ci1+ca+ - 4+ ¢p — Cpy1 — Cpy2 — -+ — Gy
The cone QF is a direct sum of Qf and Q5 , where Q] := Q' N V{ and
Q; =0T N V;.
For s € CP (resp. C?), we write ALY (resp. Ag)) for the generalized power
function associated with Qf (resp. Q).

Using the same techniques as in Lemma 5.4, we show that for all A € C

such that R(\) > n 1,
T

9) / Ale+v) " dv = . o() . :
(—e+ )NV~ Tor (A —nt g f)rﬂg <>\ _nty 72)

Here L'y (resp. I‘Q;r) denotes the Gindikin gamma function associated with
the symmetric cone Qf (resp. QF).
Proposition 5.6. For all p = (m1 +(v/2),...,mp+ (v/2); mpy1+ (v/2),

) ,mr+(l//2)) i= (k3 1,), the spherical Laplace transform ﬁy(—u) is finite
if and only if
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Moreover

o= tao-?)

)

where ¢y 1S a positive constant.

Proof. As proved in Proposition 5.5, we have

Doy — (1) (1) v+ g 4
Puoy= [ AR A0 )

2 l,i_in
Lo AR A0 o) aaf
e 2 7
/( - Ale —v)’~ 7 dv
e nv—
By v om nton ™)
~Pef it Ty ’ r roop
+
v 19 n n n2
Bog (1 =5+ v = =5+

/ A(e—v)”_ZTndv.
(e—=)NV—

Then the assertion follows from formula (9). O

Let m := (m;,my) = (my,...,mp;Mpy1,...,my). We use m > 0 to
denote m; > --- > m, > 0; mpy1 > --- > m, > 0. We apply the similar

arguments as in Theorem 5.2, the following theorem holds.

Theorem 5.3. Assume o is given such that VT is a direct sum of two
simple algebras. Then for all v € C such that R(v) > 7 — 1,

Ta(€) det(B(€1,82)) 2" Ta(&2)
_ Cody
_ZFQ(V)

m>0

g (mu v =5 = 8 20 )Ty (ma - 5 — 24 22)
r r na Pmmy
Q+(m1+ ) Q <m2+ q>

(@),

The series converges uniformly on compact subsets ofu x Z.
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Remark. If p =0 or ¢ = 0, then o = idy (the compact case). The last
series can be written as

(V)m

Ale—2)"" =¢ Z dm 77— ¢m(2),
m>0 (F)m
T
with m = (my,ma,...,m,). Here (8)y denote (S)ym = QI(‘S?_S)m), for all
Q

s € C" and m € N". Hence, we find the generalized binomial formula shown
n [12]. See also [2].

We present here the table of Makarevi¢ symmetric space G/H, and its
dual symmetric space G¢/H.

\Y% G/H G°/H
1) Herm(n,C) Ulp,q) (p+q=n) GL(n,C)/U(p,q)
S0*(2n)/SO(n,C) SO(n,n)/O(n,C)
Sp(4n,R)/Sp(2n,C) Sp(n,n)/Sp(2n,C)
2) Sym(n,R) Ulp,q9)/O(p, q) GL(n,R)/O(p, q)
Sp(2n,R) Sp(2n,C)/Sp(2n,R)
3) Herm(n,H) U(2p,2q)/Sp(p, q) U*(2n)/Sp(p.q)
SO*(2n) SO(2n,C)/O*(2n)
4) Rx Rt SO(p) x SO(2,q)/ SO(1,p—1) x SO(1,q+1)/
SO(p—1) x SO(1,q) SO(p—1) x SO(1,q)
5) Herm(3,0) Es x U(1)/Fy Es x R* /Fy
Eg(—14) X U(1)/Fy(—20) Eg(—14) X R /Fy(_g0)
SU(6,2)/Sp(3,1) SU*(8)/Sp(3,1)
V x V, where V is Cayley type
either of the type || SU(n,n)/SL(n,C) x R SU(n,n)/SL(n,C) x R
1), 2), 3), 4), or 5). Sp(2n,R)/GL(n,R) Sp(2n,R)/GL(n,R)
SO*(4n)/SL(n,H) x R |  SO*(4n)/SL(n,H) x R*.
SO(2,n)/SO(1,n — 1) x R%| SO(2,1)/SO(1,n — 1) x R*.
Er(_25)/Es(—26) x R% Er(—a5)/Eg(—26) X R
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