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Let D be a bounded symmetric domain of tube type and
G its group of holomorphic automorphisms. In this paper,
we describe explicitly the Plancherel Theorem of weighted
Bergman spaces on D under the action of certain symmetric
subgroups of G.

1. Introduction.

Let G be a noncompact connected real semi-simple Lie group with finite
center and Lie algebra g. Let θ be a Cartan involution of G and K =
{g ∈ G | θ(g) = g} . We use the same letter θ to denote the differential of θ.
Then, we have a direct sum decomposition g = k ⊕ p in eigenspaces with
respect to θ. We assume that G is hermitian, then there exists an element
Z0 in the center c(k) of k such that c(k) = RZ0.

Let σ be an involutive automorphism of G. We may assume that σ com-
mutes with θ and g = h ⊕ q is the decomposition of the Lie algebra g

with respect to σ. Since σ2 = id, there are two exclucive possibilites. Ei-
ther σ(Z0) = Z0 and σ acts holomorphically on the symmetric domain
D := G/K, or σ(Z0) = −Z0 and σ acts anti-holomorphically on D. In this
paper we consider the case where σ is holomorphic. The case where σ is
anti-holomorphic is considered by Yu. A. Neretin (cf. [22], [23]). See also
[8] and [30].

Let H2
` (D) be the ordinary Bergman space of D where D is of tube type.

For ν > `−1, we consider a weighted Bergman space H2
ν(D) of holomorphic

functions on D. The universal covering G̃ of G can be realized as the set of
pairs (g, ϕ) with g ∈ G and ϕ a holomorphic function on D where eϕ(z) =
det(Dg(z)). Here Dg(z) denote the differential of the map z 7→ g · z. The
group G̃ acts in H2

ν(D) by

(Uν(g̃)f)(z) = eνϕ(z)f(g · z), g̃−1 = (g, ϕ).

The representation Uν is a unitary and irreducible representation.
Let p be the universal map of G̃ in G, and let G be a symmetric sub-

group of G. In this work we study the decomposition of the restriction of
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Uν to the subgroup G̃ := p−1(G) of G̃. By [15] (see also [16], [17]) the re-
striction Uν | eG is decomposed multiplicity-free and discretely into irreducible

representations (πµ,Hµ) of G̃ such that Hµ ⊂ H2
ν(D).

Let S be the Shilov boundary of D. The action of the groupG on S admits
open orbits. We consider one of the orbits which is a causal symmetric space
G/H of compact type. Moreover G/H is a symmetric Makarevič space. The
geometry and analysis of the domain D and the Makarevič space G/H can
be described using Jordan algebras.

To study the decomposition ofH2
ν(D), we consider aG-invariant domain Ξ

in the complexification GC/HC of G/H introduced by J. Hilgert, B. Ørsted
and G. Ólafsson (cf. [14]). A geometric descripition of the domain Ξ is
given by W. Bertram. The domain Ξ can be realized as D \ Σ where Σ is
an analytic set (cf. [3]).

We consider a covering Ξ̃ of Ξ with infinite order. We show that there is a
unitary isomorphism of H2

ν(D) onto a weighted Bergman space H2
ν(Ξ̃). It is

a Hilbert space of holomorphic functions on Ξ̃, which satisfy a monodromy
condition and are square integrable with respect to a G-invariant measure
on Ξ.

To describe explicitly the decomposition of H2
ν(Ξ̃) into irreducible sub-

spaces we study the holomorphic discrete series of the universal covering G̃.
Our approach is based on the spherical Laplace transform associated with
the ordered symmetric space Gc/H dual of G/H. See [1] for G/H ' U(p, q)
and [2] for G/H of Cayley type.

This paper is organized as follows: In Section 2, we give a geometric de-
scripition of the covering Ξ̃ of Ξ using the theory of Jordan algebras. In
Section 3, we study the Bergman space H2

ν(Ξ̃) and its reproducing kernel
and we establish a unitary isomorphism of H2

ν(Ξ̃) onto H2
ν(D). To describe

explicitly the spectrum of H2
ν(Ξ̃) and to express its reproducing kernel as

series of spherical functions associated with the ordered symmetric spaces
Gc/H, we study in Section 4 the holomorphic discrete series of G̃. In par-
ticular, we obtain a necessary condition for πµ to appear in the Plancherel
formula. In Section 5, we compute explicitly the L2-norm of matrix coeffi-
cient associated with an H-spherical unitary highest weight representation.
Then, we can state an explicit Plancherel Theorem. The case G = K is due
to W. Schmid (cf. [28]). See also [11], [12], [26] and [29].

2. Geometric realization of the covering Ξ̃.

Let V be a Euclidean Jordan algebra, and let Ω be the associated symmetric
cone. We denote the dimension of V by n, the rank by r, and the unit element
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by e. A Euclidean Jordan algebra is said to be simple if it has no nontrivial
ideal (cf. [12], Chapter II).

Let D be the unit disc of VC := V + iV with respect to the spectral norm

D := { z ∈ VC | e− z z � 0} ,

where z w := L(zw) +
[
L(z), L(w)

]
. Here L(z) denotes the endomorphism

of VC defined by L(z)w = zw.
Let G be the group of holomorphic automorphisms of D and let K be the

isotropy subgroup of 0 in G. It is a maximal compact subgroup of G. The
Lie algebra g of G is consists of vector fields of the form

X(z) = w + Tz − P (z)w,

where w ∈ VC, T ∈ k := Lie(K) and P (z) := 2L(z)2−L(z2). The application
P is called a quadratic representation associated with VC. We identify a
vector field X with the triplet (w, T,w).

Let α be an involutive automorphism of the Jordan algebra V. Denote also
α its C-linear extention to VC. The Jordan algebra V and its complexification
VC decompose into eigenspaces with respect to the involution α

V = V+ ⊕ V−, VC = V+
C ⊕ V−C .

We say that the pair (V, α) is irreducible if it is not possible to write

(V, α) = (V1 ⊕ V2, α1 ⊕ α2).

We show that if (V, α) is irreducible then either V is simple, or V = V◦×V◦
where V◦ is a simple Euclidean Jordan algebra and α(x, y) = (−y,−x). We
note that V+ is either simple or a direct sum of two simple algebras.

Let {c1, . . . , cr} be a Jordan frame of V. It is a complete system of orthog-

onal primitive idempotent elements. The algebra R :=
r⊕
j=1

Rcj is a maximal

associative subalgebra of V. Assume α is given such that α(R) = R, then
R = R+⊕R− is the decomposition of R into eigenspaces with respect to α.
We note r+ := dimR+.

Theorem 2.1 (cf. [4]). Let V be a Euclidean Jordan algebra and let α be
an involutive automorphism of V.

(1) The rank of the Euclidean Jordan algebra V+ is equal to r+.
(2) Either R = R+ and r = r+, or r = 2r+ and dimR+ = dimR−.

Let
G(−α) := {g ∈ G | (−α) ◦ g ◦ (−α) = g} ,

and let G be its connected identity component. In particular if α = idV then
G = K.
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The Lie algebra g of G is consists of vector fields X on VC such that (−α) ◦
X ◦ (−α) = X. Then g is isomorphic to the set of triplets{

(w, T,w) | w ∈ V−C , T ∈ k and α ◦ T ◦ α = T
}
.

We write, for z ∈ VC, j(z) := z−1 the inverse of z in the Jordan algebra
VC, and τ the conjugation of VC with respect to the real form V. The
application θ : g 7→ (−jτ) ◦ g ◦ (−jτ) is a Cartan involution of the Lie
algebra g (cf. [3]). Then

k := gθ = {(0, T, 0) | T ∈ k and θ ◦ T ◦ θ = T} ,

p := g−θ =
{
(w, 0, w) | w ∈ V−C

}
.

Let H be the stabilizer of the base point ie in G,

H := {g ∈ G | g · (ie) = ie} .

Proposition 2.1. The pair (G,H) is a symmetric pair.

Proof. Let σ be the involution of G defined by

σ(g) = (−j) ◦ g ◦ (−j),
which commutes with the Cartan involution θ defined before. The differen-
tial of σ, also denoted by σ, is given by

σ(w, T,w) = (−w,−T ′,−w),

where T ′ denote the adjoint of T with respect to the scalar product on V
defined by the trace. By definition of H, its Lie algebra h is given by

h =
{
(iw, T, iw) | w ∈ V−, T ∈ Der(V+)

}
,

where Der(V+) is the derivation algebra of V+. Then

h = gσ := {X ∈ g | σ(X) = X} .
�

The pseudo-Riemannian symmetric space G/H is the open orbit G · ie
in the Shilov boundary of D. It is a compactly causal symmetric space.
Moreover G/H is a Makarevič symmetric space (cf. [3], [21]). With respect
to the involution σ, the Lie algebra g decomposes as g = h⊕ q where q :=
g−σ = {(w, iL(v), w) | w ∈ V−, v ∈ V+} .

The Lie algebra g is semisimple and hermitien. By a theorem of Vin-
berg and Kostant, there is a regular G-invariant cone (i.e., convex, closed,
proper, and with nonempty interior) in g. Let Cmax be a maximal regular
G-invariant cone in g containing (0, iI, 0). By [25],

Γ(Cmax) := G exp(iCmax) =
{
g ∈ GC | g · D ⊂ D

}
.

In the complexified space GC/HC of G/H we consider the complex domain

Ξ := Γ(C0) · ie
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where C0 is the interior of C := i (Cmax ∩ g) . (This domain is introduced
by J. Hilgert, B. Ørsted, and G. Ólafsson in [14].)

The domain Ξ can be realized as D \ Σ where Σ is the analytic set given
by

Σ = {z ∈ D | det(P (z + αz)) = 0} ,(1)

where the notation “det” denotes the determinant with respect to V (cf. [3]).
The domain Ξ can also be realized as a subset of the imaginary tangent

bundle of G/H
Ξ ' G× Cq/ ∼,

where Cq := C0 ∩ iq, and G × Cq/ ∼ is the quotient of G × Cq by the
equivalence relation: (g1, X1) ∼ (g2, X2) if and only if there exists h ∈ H
such that

g2 = g1h and X2 = Ad(h−1)X1,(2)

(cf. [14]).
The open set Ξ is connected since it is homeomorphic to D\Σ, observing

that D is connected and codimR(Σ) = 2.

Let
Ξ̃ :=

{
(z, ζ) ∈ Ξ× C | e

2n
r+ ζ = det(P (z + αz))

}
.

Note that
2n
r+

is an integer.

Theorem 2.2. The set Ξ̃ is a connected covering of infinite order of the
domain Ξ.

Proof. Let p be the map defined by

p : Ξ̃ −→ Ξ,

(z, ζ) 7→ z.

Then p is surjective. In fact for z ∈ Ξ, we have det(P (z + αz)) 6= 0, then
there exists ζ ∈ C such that e

2n
r+ ζ = det(P (z+αz)). Let z0 ∈ Ξ, we can find

an open neighbourhood U of z0 such that p−1(U) is homeomorphic to U×Z.
In fact, since p is surjective, there exists (z0, ζ0) ∈ Ξ̃ such that p(z0, ζ0) = z0.

We consider a determination of log
(

det(P (z+αz))
)

in the neighbourhood

U of z0, we can define a homeomorphism of U × Z in p−1(U) as

(z,m) 7→
(
z, log (det(P (z + αz))) + 2πim

)
.

Hence Ξ̃ is a covering of infinite order of Ξ.
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Let {e1, e2, . . . , er+} be a Jordan frame of V+. An element z of the form

z =
r+∑
j=1

zjej belongs to Ξ if and only if 0 < |zj | < 1. Let

z(t) =
r+−1∑
j=1

ej + e2πiter+ ∈ Ξ,

and

z0 =
r+∑
j=1

zjej ∈ Ξ.

The curve ϕ(t) := z(t)z0 belongs to Ξ and satisfies ϕ(0) = ϕ(1) = z0. Let ϕ̃
be the lifting of ϕ to Ξ̃,

ϕ̃ : [0, 1] −→ Ξ̃,

t 7→ (ϕ(t), ζ(t)).

Using the fact that ej = cj if r = r+ and ej = cj + cj+r+ if r = 2r+, for all
1 ≤ j ≤ r+, we deduce that

e
2n
r+ ζ(t) = det(P (z(t) + αz(t)))

= C(z1, . . . , zr+)
(
e2πit

) 2n
r+ ,

where C(z1, . . . , zr+) is a nonzero constant depending on z1, . . . , zr+ . There

exists ~ ∈ C∗ such that C(z1, . . . , zr+) = e~ and
2n
r+

(ζ(t)− 2πit) = ~ +

2πiκ(t). Here κ(t) is an integer valued continuous function on [0, 1], therefore
constant. Thus ζ(1) − ζ(0) = 2πi and if ϕ̃(0) = (z0, ζ0), then ϕ̃(1) =

(z0, ζ0 + 2πi). Thus if z0 is an element of Ξ ∩
r+⊕
j=1

Cej and if (z0, ζ1
0 ) and

(z0, ζ2
0 ) are two points of Ξ̃, there exists a curve ϕ̃ such that ϕ̃(0) = (w0, ζ

1
0 )

and ϕ̃(1) = (z0, ζ2
0 ).

Let (z1, ζ1) and (z2, ζ2) be two points of Ξ̃. Since Ξ is connected, there
exists a curve ϕ1 (resp. ϕ2) such that

ϕ1(0) = z0, ϕ1(1) = z1 (resp. ϕ2(0) = z0, ϕ2(1) = z2) .

Let ϕ̃1 (resp. ϕ̃2) be the lifting of ϕ1 (resp. ϕ2) to Ξ̃ such that

ϕ̃1(0) = (z0, ζ1
0 ) ϕ̃1(1) = (z1, ζ1)

ϕ̃2(0) = (z0, ζ2
0 ) ϕ̃2(1) = (z2, ζ2).

Using the fact that z0 ∈ Ξ ∩
r+⊕
j=1

Cej , we deduce that Ξ̃ is connected. �
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Let

>α(z) = det(P (z + αz)).

With respect to Lebesgue measure, the restriction to Ξ of the GC-invariant
measure of GC/HC is given by

dξ =
dλ(z)
|>α(z)|

.

Let

>α(z̃)
r
4n
ν := e

r
2r+ νζ , z̃ = (z, ζ) ∈ Ξ̃.(3)

The realization of the domain Ξ inside the imaginary tangent bundle of
G/H will be used below which permits to show an integral formula.

Let a be a Cartan subalgebra in k∩q. Let 4 be the root system 4(gC, ia),
and a+ a positive Weyl chamber. Let 4+ be the positive root system with
respect to ia+.

Theorem 2.3. For an integrable function f on Ξ,∫
Ξ
f(ξ)dξ = c0

∫
G

∫
C+

f (g exp(X) · ie)
∏
β∈4+

(sh 〈β, 2X〉)mβdgdX,

where C+ := C0 ∩ ia+ and mβ = dim(gβ).

Proof. Let Z := ZH(ia) be the centralizer subgroup of ia in H. The map

ϕ : G/Z × C+ −→ Ξ,
(g · Z,X) 7→ g exp(X) · ie

is a diffeomorphism onto its open image. In fact, let g1 exp(X1) · ie and
g2 exp(X2)·ie be two elements of Ξ such that g1 exp(X1)·ie = g2 exp(X2)·ie.
Since the group G acts on G/Z × C

+
(resp. Ξ) by

g0 · (g · Z,X) = (g0g · Z,X),
(
resp. g0 · (g exp(X) · ie) = g0g exp(X) · ie

)
,

we may assume that g1 = 1. But since X1 and X2 are regular and in the
same positive Weyl chamber, by the equivalence relation (2), we deduce that
X1 = X2. Thus establishing injectivity.
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We will compute the differential of ϕ. For this we consider the commuta-
tive diagram defined by

G× C+ Φ−−−→ GC

φ

y yΨ

G/Z × C+ ψ−−−→ GC/HC

(g,X) Φ−−−→ g exp(X)

φ

y yΨ

(g · Z,X)
ψ−−−→ g exp(X) ·HC.

Then d(ψ ◦ φ)(1, X) = d(Ψ ◦ Φ)(1, X).
Let λg (resp. Λg) be the left translation by g in G (resp. GC/HC), then

for (Y, U) ∈ g× ia,

d(Ψ ◦ Φ)(1, X)(Y, U)

=
d
dt |t=0

Ψ
(

exp(tY ) exp(X + tU)
)

= dΨ(exp(X)).dλexp(X)(1).

(
e−ad(X).Y +

1− e−ad(X)

ad(X)
.U

)
= dΛexp(X)Ψ(1).dΨ(1).

(
e−ad(X).Y + U

)
,

where dΨ(1) sends gC onto qC. Note PqC the projection of gC onto qC along
hC, then

PqC

(
e−ad(X)Y + U

)
=
e−ad(X)Y + U − ead(X)σ(Y ) + U

2

=
e−ad(X)Y − ead(X)σ(Y )

2
+ U

= sh (−ad(X))
(
Y + σ(Y )

2

)
+ ch (ad(X))

(
Y − σ(Y )

2

)
+ U.

Using the fact that σ(gβ) = g−β, the Lie algebra g can be written as

g = z⊕
∑
β∈4+

(1 + σ)gβ ⊕ a⊕
∑
β∈4+

(1− σ)gβ,



WEIGHTED BERGMAN SPACES 47

where z := Lie(Z). Then for all Y ∈ g and Yβ ∈ gβ ,

PqC

(
e−ad(X)Y +U

)
= sh (−β(X)) (Yβ+σ(Yβ))+ch (β(X)) (Yβ−σ(Yβ))+U.

Let ω be the volume form on Ξ which defines an invariant Haar measure on
Ξ. Again, the volume form ϕ∗ω on G/Z × C+ is given by

ϕ∗ω = c0
∏
β∈4+

(sh 2β(X))mβ ω1 ⊗ ω2,

where ω1 is a volume form on G/Z which defines an invariant measure, and
ω2 is a volume form on ia which defines a Lebesgue measure. Using the fact
that Z is compact, the integral formula holds. �

3. Weighted Bergman spaces and reproducing kernels.

In this section we introduce the Bergman space H2
ν(Ξ̃) associated with the

covering Ξ̃. We establish a unitary isomorphism of H2
ν(D) on H2

ν(Ξ̃). Then
we compute the explicit expression of the reproducing kernel of H2

ν(Ξ̃).

For a real ν, let Oν(Ξ̃) be the space of holomorphic functions F on Ξ̃
which satisfy

F (z, ζ + 2πi) = e2πi
r

2r+ νF (z, ζ).
This condition will be called a monodromy condition. Remark that the
function >α

r
4n
ν belongs to Oν(Ξ̃).

For ν >
2n
r
− 1, let H2

ν(Ξ̃) be the Hilbert space of functions F ∈ Oν(Ξ̃)
such that

‖F‖2
ν :=

∫
Ξ
|F (ξ̃)|2 pν(ξ)dξ <∞,

where
pν(ξ) = det(B(ξ, ξ))

r
2n
ν−1|>α(ξ)|−

r
2n
ν+1,

and B(z, w) is the Bergman operator defined by B(z, w) := idVC − 2z w+
P (z)P (w).

Proposition 3.1. Let z and w be two invertible elements of VC. Thus

det(B(z, w)) = ∆(z)
2n
r ∆(z−1 − w)

2n
r ,

where ∆ is the determinant polynomial associated with V.

Proof. By definition det(B(z, w)) = det(idVC−2z w+P (z)P (w)). According
to [18] Proposition 4.13,

z w = P (w−1, z)P (w),

where P (z, w) =
1
2

(
P (z + w)− P (z)− P (w)

)
. Then

idVC − 2z w + P (z)P (w) = idVC − 2P (w−1, z)P (w) + P (z)P (w).



48 S. BEN SAÏD

Moreover

P (w−1 − z) = P (w)−1 + 2P (w−1,−z) + P (z)
= P (w−1)− 2P (w−1, z) + P (z).

Hence we deduce the following equalities

−2P (w−1, z)P (w) = P (w−1 − z)P (w)− P (z)P (w)− idVC ,

and
idVC − 2z w + P (z)P (w) = P (w−1 − z)P (w).

Then, we have

det(idVC − 2z w + P (z)P (w)) = det(P (w−1 − z)) det(P (w)),

where det(P (w)) = ∆(w)
2n
r . Finally

det(B(z, w)) = ∆(w)
2n
r ∆(w−1 − z)

2n
r = ∆(z)

2n
r ∆(z−1 − w)

2n
r .

�

The universal covering G̃ of G can be realized as the set of pairs (g, ϕ)
with g ∈ G and ϕ a holomorphic function on D defined by

eϕ(z) = det(Dg(z)),

where Dg(z) is the differential of the map z 7→ g · z. The product on G̃ is
given by

(g1, ϕ1) · (g2, ϕ2) = (g1g2, ϕ3),

where ϕ3(z) = ϕ1(g2 · z) + ϕ2(z). For g̃ = (g, ϕ) ∈ G̃, and κ ∈ R, we will
write

det(Dg(z))κ := eκϕ(z).

Let Γ̃(C) := G̃ ẽxp(C) be the semigroup associated with the covering G̃

where ẽxp : g → G̃. We denote by Γ̃(C0) the interior of Γ̃(C). The linear
action of G̃ on the space H2

ν(Ξ̃) is given by

(π0(g̃)F )(ξ̃) = F (g · ξ̃), g̃−1 = (g, ϕ),

where g · ξ̃ = (g ·ξ, ζ ′) and e
2n
r+ ζ

′
= det(P (g ·ξ+α(g ·ξ))) (cf. [19] Lemma 5.1).

The representation π0 extends to a continuous representation of Γ̃(−C)

and a holomorphic one of ˜Γ(−C0) (cf. [25]).
We recall that the Bergman space H2

ν(D) is the Hilbert space of holomor-
phic functions f on D such that

‖f‖2 =
∫
D
|f(z)|2 det (B(z, z))

r
2n
ν−1 dλ(z) <∞,
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where λ denote the Lebesgue measure (cf. [12]). The action of G̃ on H2
ν(D)

is given by

(πν(g̃)f)(z) = e
r
2n
νϕ(z)f(g · z), g̃−1 = (g, ϕ).

The unitary representation πν extends to a continuous representation of
Γ̃(−C) and a holomorphic one of ˜Γ(−C0).

Let Aν be the operator given by

Aν : H2
ν(D) −→ Oν(Ξ̃),

f 7→ Aν(f) = >α
r
4n
ν f.

Since >α
r
4n
ν ∈ Oν(Ξ̃), the operator Aν is well defined.

Theorem 3.1. The operator Aν is a unitary isomorphism of H2
ν(D) onto

H2
ν(Ξ̃) intertwining the representations πν and π0.

Proof. Since Σ is an analytic set of measure zero and dξ =
dλ(z)
|>α(z)|

,

‖Aν(f)‖2
ν =

∫
Ξ
|Aν(f)(ξ̃)|2 pν(ξ)dξ

=
∫

Ξ
|f(ξ)|2|>α(ξ̃)|

r
2n
ν det(B(ξ, ξ))

r
2n
ν−1 dξ

|>α(ξ̃)|
r
2n
ν−1

=
∫
D
|f(z)|2 det(B(z, z))

r
2n
ν−1dλ(z) = ‖f‖2.

If f belongs to H2
ν(D) then Aν(f) ∈ Oν(Ξ̃) and∫

Ξ
|Aνf(ξ̃)|2 pν(ξ)dξ <∞.

Hence the image of Aν is containd in H2
ν(Ξ̃) and Aν is isometric.

Moreover Aν is surjective. In fact, let F ∈ H2
ν(Ξ̃), then in particular

F ∈ Oν(Ξ̃). Since det(P (z̃ + αz̃))−
r
4n
ν ∈ O−ν(Ξ̃), the function

f(z) := >α(z̃)−
r
4n
νF (z̃), z̃ = (z, ζ) ∈ Ξ̃,

is holomorphic on Ξ = D \ Σ. Moreover, the function f belongs to H2
ν(D).

In fact

‖f‖2 =
∫
D
|F (z̃)|2 |>α(z)|−

r
2n
ν det(B(z, z))

r
2n
ν−1dλ(z)

=
∫

Ξ
|F (ξ̃)|2|>α(ξ)|−

r
2n
ν+1det(B(ξ, ξ))

r
2n
ν−1dξ = ‖F‖2

ν <∞.

Then f is a holomorphic function on D \ Σ and belongs to L2
ν(D). Hence f

extends to a holomorphic function on D. This is the content of the following
lemma.
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Lemma 3.2 (cf. [6], [27]). Let U be a domain in Cn and let A be an ana-
lytic set such that codimR(A) ≥ 1. If f ∈ O(U \ A) and if f ∈ L2(U), then
f extends to a holomorphic function on U.

It remains to show that Aν intertwining the representations π0 and πν . In
fact it follows from [3] 1.3 (9) that >α(g · ξ̃)

r
4n
ν

= e
r
2n
νϕ(ξ)>α(ξ̃)

r
4n
ν
. Hence

Aν(πν(g̃)f)(ξ̃) = >α(ξ̃)
r
4n
ν
e

r
2n
νϕ(ξ)f(g · ξ)

(
g̃−1 = (g, ϕ)

)
= e−

r
2n
νϕ(ξ)>α(g · ξ̃)

r
4n
ν
e

r
2n
νϕ(ξ)f(g · ξ)

= (π0(g̃)Aνf)(ξ̃).

�

Proposition 3.3. The reproducing kernel of the Bergman space H2
ν(Ξ̃) is

equal to

Kν(ξ̃1, ξ̃2) = cν >α(ξ̃1)
r
4n
ν
det(B(ξ1, ξ2))

− r
2n
ν >α(ξ̃2)

r
4n
ν
,

where cν is the positive constant

cν =
1
πn

r∏
j=1

Γ
(
ν − (j − 1) n−r

r(r−1)

)
Γ
(
ν − n

r − (j − 1) n−r
r(r−1)

) .(4)

The definition of >α(ξ̃2)
r
4n
ν

is similar to that given on (3).

Proof. The reproducing kernel of H2
ν(D) is given by

KD
ν (z, z′) = cν det(B(z, z′))−

r
2n
ν .

From the definition of Aν , the reproducing kernel of H2
ν(Ξ̃) is equal to

Kν(ξ̃, ξ̃′) = >α(ξ̃)
r
4n
ν
KD
ν (ξ, ξ′)>α(ξ̃′)

r
4n
ν

= cν>α(ξ̃)
r
4n
ν
det(B(ξ, ξ′))−

r
2n
ν>α(ξ̃′)

r
4n
ν
.

�

4. Holomorphic discrete series of G̃.

Recall that {e1, . . . , er+} is the Jordan frame of R+ and k∩q =
{
(0, iL(v), 0)|

v ∈ V+
}
.

Let a be the Cartan subalgebra in k ∩ q defined by

a =


0, i

r+∑
j=1

tjL(ej), 0

 ∣∣∣ tj ∈ R

 .
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We denote by 4 the root system 4(gC, ia), 4+ the positive system with
respect to the positive Weyl chamber (ia)+ defined by

(ia)+ =
{(

0,
r+∑
j=1

tjL(ej), 0
)
| 0 < t1 < · · · < tr+

}
.(5)

Let X0 := (0, I, 0) ∈ gC. The eigenvalues of ad(X0) are 1, 0, and −1.
Let 40 := {α ∈ 4+ | α(X0) = 0} and 41 := {α ∈ 4+ | α(X0) = 1} . Then
4+ = 40∪41. The roots belonging to 40 are called compact and the roots
belonging to 41 noncompact. Let ρ := 1

2

∑
α∈4+ mαα be one half of the

positive roots weighted by the dimension mα of the root spaces. For the
description and computation of ρ we refer to [4]. See also [8].

Let π be a unitary representation of the Lie group G on a Hilbert space
H, and let C be an invariant and regular cone in ig. The representation π
is called C-positive if for all X ∈ C and for all C∞ vector v,

d
d t |t=0

〈π(exp(tX)) v | v 〉 ≤ 0.

Let R be the set of the weights µ = (µ1, µ2, . . . , µr+) ∈ Rr+ such that

µi − µi+1 ∈ N, 1 ≤ i ≤ r+ − 1.

(If V+ is a direct sum of two simple algebras with ranks p and q such that
p+ q = r+(= r), then i 6= p.)

For µ ∈ R and β a noncompact positive root. By [14], the “Harish-
Chandra” condition 〈ρ− µ, β〉 ≤ 0 can be written as

(?) V+ is simple µr+ > n
2r −

d+1
8 if r = r+,

(
d := 2(n−r)

r(r−1)

)
µr+ > n

r −
1
2 if r = 2r+.

(??) V+ is not simple µ1 + µr+ > −2dp where r = r+.

If µ ∈ R and satisfies the “Harish-Chandra” condition, then we can asso-
ciate to µ a unitary and C-positive representation (πµ,Wµ) of G̃ with highest
weight µ. This representation extends to a continuous representation of Γ̃(C)

which is holomorphic on Γ̃(C0).
Let A := exp a, and gC

+ :=
∑
β∈4+

gC
β .

Definition 4.1. A holomorphic function Φ in Ξ̃ will be called a conical
function if there exists a continuous character χµ of A such that

I(a)Φ = χµ(a)Φ, (a ∈ A),

dI(X)Φ = 0, (X ∈ gC
+, )

where (I(g)F )(ξ̃) = F (g−1 · ξ̃).
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For all s = (s1, s2, . . . , sr) ∈ Cr and z in VC, we write

∆s(z) := ∆1(z)s1−s2 ∆2(z)s2−s3 . . . ∆r(z)sr ,

where ∆j is the principal minor of order j (cf. [12]).
For µ = (µ1, µ2, . . . , µr+), let,

Φµ(z̃) := ∆µ

(
z̃ + α(z̃)

2

)
.

The function Φµ satisfies the monodromy condition.

Proposition 4.2. The function Φµ is conical, and any conical function is
proportional to Φµ.

The proof is similar to that given for Proposition XI.2.1 in [12].

Note that W∞
µ (resp. W−∞

µ ) is the vector space of C∞ (resp. distribution)
vectors of Wµ, and (W−∞

µ )H the vector space of H-invariant distribution
vectors of Wµ. Let RH be the subset of highest weight µ ∈ R such that
(W−∞

µ )H 6= {0} .
For µ ∈ RH , we denote ψµ an H-invariant distribution vector. For all

element w ∈ Wµ, the holomorphic mapping F : Wµ −→ O(Ξ̃), w 7→
F(w)(ξ̃) := 〈πµ(γ̃−1

1 )w|ψµ〉 where ξ̃ = γ̃ · H, is a continuous embedding.
Then the representation πµ is realized on a Hilbert space Hµ of holomorphic
functions on Ξ̃. In the case where w = vµ, a normalized highest weight
vector, we denote Fµ(ξ̃) := 〈πµ(γ̃−1)vµ |ψµ〉. The function Fµ is a conical
function.

Let Rν,H be the highest weight subset of RH such that Fµ ∈ Oν(Ξ̃).

Proposition 4.3. The function Fµ satisfies the monodromy condition, i.e.,
Fµ ∈ Oν(Ξ̃), if and only if

µi ∈ Z +
ν

2
, (1 ≤ i ≤ r+) if r = r+

and
µi ∈ Z + ν, (1 ≤ i ≤ r+) if r = 2r+.

Proof. Since Fµ is conical, then it is proportional to Φµ. If V+ is simple,
then >α is proportional to the Jordan determinant ∆ of V+. In fact, >α
is homogeneous of degree 2n and ∆ is homogeneous of degree r+, then
>α(z̃) = ∆(z̃ + α(z̃))

2n
r+ and Fµ ∈ Oν(Ξ̃) if and only if µr+ ∈ Z +

r

2r+
ν.

Using the fact that µi − µi+1 ∈ N, the result holds for V+ simple.
If V+ is a direct sum of two simple Jordan algebras V+

1 of rank p and V+
2

of rank q such that p+q = r+(= r), then there exist z1 ∈ V+
1,C and z2 ∈ V+

2,C

such that z + α(z) = z1 + z2 and >α(z̃) = ∆(1)(z̃1)
2n
r ∆(2)(z̃2)

2n
r where ∆(1)

(resp. ∆(2)) is the Jordan determinant of V+
1 (resp. V+

2 ). Hence Fµ ∈ Oν(Ξ̃)
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if and only if µp ∈ Z +
ν

2
and µr ∈ Z +

ν

2
. The assertion follows from the

fact that µi − µi+1 ∈ N for all i 6= p. �

Remark. In [1] we consider the case G/H ' U(p, q) and we establish
another isomorphism between H2

ν(D) and H2
ν(Ξ̃). The correspondence be-

tween the present isomorphism Aν and the one used in [1] is given by

f 7→ det(A)
ν
2 det(D)−

ν
2 f(z) for all z =

[
A B
C D

]
∈ D. This correspondence

explains the shift between the highest weight µ shown in [1] and the present
form of µ.

Since ν is very large
(
ν >

2n
r
− 1
)
, the representation πµ satisfies the

Harish-Chandra condition for all µ ∈ Rν,H .

Let
Cµ(ν) =

∫
Ξ
|〈πµ(γ̃−1) vµ|ψµ〉|2 pν(ξ)dξ.

Proposition 4.4. For µ ∈ Rν,H , the Hilbert space Hµ belongs to H2
ν(Ξ̃) if

and only if Cµ(ν) is finite.

In this case we denote µ ∈ R′
ν,H .

Proof. This is proved in [1] Proposition 4.2. �

Hence the Plancherel Theorem can be written as:

Theorem 4.1 (cf. [13]). The Bergman space H2
ν(Ξ̃) is decomposed multi-

plicity-free and discretely into irreducible Hilbert subspaces,

H2
ν(Ξ̃) =

⊕
µ∈R′

ν,H

Hµ.

Moreover, the reproducing kernel can be written as

Kν(ξ̃1, ξ̃2) =
∑

µ∈R′
ν,H

1
Cµ(ν)

〈πµ(γ̃]2γ̃1)−1ψµ |ψµ〉.

The series converges uniformly on compact subsets of Ξ̃× Ξ̃.

5. Computation of the constant Cµ(ν).

Let M be a differentiable manifold. A causal structure on M is a field
of cones M 3 x 7→ Cx ⊂ TxM. The cones Cx are assumed to be closed,
convex, proper, and with nonempty interior. Furthermore the cones Cx
depend smoothly on x. A piecewise C1 curve γ : [0, 1] −→ M is said to be
causal if for all t, the derivative γ̇(t) belongs to the cone Cγ(t). The causal
structure is said to be global if there exists no nontrivial closed causal curve.
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In that case one defines a partial ordering on M in the following way: One
writes x ≤ y if there exists a causal curve from x to y.

Let g be the Lie algebra defined in Section 2. Let σ be an involutive
automorphism of g that commutes with the Cartan involution θ where g =
k
⊕θ p, and g = h

⊕σ q.

Let Gc := (G(α))0 where G(α) = {g ∈ G | α ◦ g ◦ α = g} and the subscript
0 means the identity component. The group Gc is the group of holomorphic
automorphisms of the tube domain TΩ+ associated with the involution α
defined by

TΩ+ := V− + Ω+ =
{
x+ y | x ∈ V−, y ∈ Ω+

}
where Ω+ := V+ ∩ Ω and Ω is the symmetric cone associated with V. (If
V and V+ are simple, the cone Ω+ coincides with the open cone associated
with the Jordan algebra V+.) The group Gc is the c-dual group of G. We
consider on M := Gc/H the causal structure defined by the field of cones

Cx = −Ω.

The noncompactly causal symmetric space M is an ordered symmetric
space. By [3], the intersection M∩V is a union of connected components of
the set {x ∈ V | detBα(x, x) 6= 0} where Bα(x, y) := B(x, αy) and B(x, y)
is the Bergman operator. In particular

(M∩ V)0 = {x ∈ V | detBα(x, x) 6= 0}0 .

Let gc = Lie(Gc) (the c-dual algebra of g). We denote also by σ the
C-linear extention of σ to the complexified algebra gC of g. The involution
θc := θσ|gc is a Cartan involution of gc. Let a be a maximal abelian subspace
in pc ∩ iq where pc := (gc)θ

c

(note that ia is a maximal abelian subspace in
k∩q), 4 the root system for the pair (gc, a), and let 4+ be the positive root
system with respect to the positive Weyl chamber a+ (see (5)).

Let
n :=

⊕
β∈4+

gcβ , n :=
⊕

β∈−4+

gcβ ,

N := exp n, N := exp n, A := exp a.

Let x0 := eH be the base point of Gc/H. The map

N ×A −→M, (n, a) 7→ na · x0,

is a diffeomorphism of N × A onto its open image NA · x0. For all x =
n exp(X) · x0 (X ∈ a), we write X = A(x). We denote aH(x) := expA(x).

Let M+ be the subset of M defined by

M+ := {x ∈M | x ≥ x0} ,
called the future of x0. By [9], M+ ⊂ NA · x0.
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The spherical Laplace transform of an H-invariant function f is defined
by

f̂(λ) =
∫
M+

f(x)aH(x)−λdx, λ ∈ a∗C.

Using the following integral formula,∫
M+

f(x)dx =
∫
−a+

∫
H
f(h exp(X) · x0)dh

∏
β∈−4+

(sh 〈β,X〉)mβ dX,(6)

the spherical Laplace transform can be written as

f̂(λ) = c

∫
−a+

f(exp(X) · x0) ϕλ(exp(X))
∏

β∈−4+

(sh 〈β,X〉)mβ dX,

where ϕλ is the spherical function of the ordered symmetric spaceM, defined
in the interior S0 of S := {g ∈ Gc | g · x0 ≥ x0 } ⊂ NAH,

ϕλ(g) =
∫
H
aH(hg)−λdh

(cf. [10]). The c-function of the symmetric space M, which we denote by
cM, is defined by the integral

cM(λ) =
∫
N∩HAN

aH(n)−(λ+ρ)dn.

Remark. From Theorem 2.3 and the integral formula (6), we obtain∫
Ξ
f(ξ)dξ = c0

∫
G/H

∫
M+

f(g · ix
1
2 )dġdx.

This integral formula is a generalization of that given in Proposition X.3.4
of [12] where G = K.

LetWω
µ (resp.W−ω

µ ) be the space of analytic (resp. hyperfunction) vectors

of Wµ. By [5] Theorem 1.1,
(
W−ω
µ

)H =
(
W−∞
µ

)H where
(
W−ω
µ

)H is the
subspace of H-invariant hyperfunction vectors of W−ω

µ . Moreover, if the
representation (πµ,Wµ) satisfies the Harish-Chandra condition, the linear
form

Lµ(f) =
∫
H
〈πµ(h)f | vµ〉 dh, f ∈ Wω

µ

defines an H-invariant hyperfunction vector (cf. [20]). Using the fact that
dim

(
W−∞
µ

)H ≤ 1, and we deduce that if ψµ is an H-invariant distribution
vector, there exist a constant c0 such that

〈f |ψµ〉 = c0Lµ(f), f ∈ W∞
µ .(7)

In particular if f = vµ then

〈vµ|ψµ〉 = c0

∫
H
〈πµ(h)vµ|vµ〉dh.
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Using the integral formula for all functions f ∈ L1(H),∫
H
f(h)dh =

∫
N∩HAN

f(h(n))aH(n)−2ρdn,

(cf. [24]), we deduce that

Lµ(vµ) =
∫
N∩HAN

〈πµ(h(n))vµ|vµ〉aH(n)−2ρdn

=
∫
N∩HAN

〈πµ(aH(n)−1n)vµ|vµ〉aH(n)−2ρdn
(
πµ(n(n))vµ = vµ

)
=
∫
N∩HAN

〈πµ(n)vµ|vµ〉aH(n)−2ρ−µdn

=
∫
N∩HAN

〈vµ|πµ(n)∗vµ〉aH(n)−2ρ−µdn

=
∫
N∩HAN

aH(n)−(2ρ+µ)dn

= cM(µ+ ρ).

That implies,

c0 =
〈vµ|ψµ〉

cM(µ+ ρ)
.(8)

Lemma 5.1. For all γ ∈ Γ(C),

〈πµ(γ−1)ψµ|ψµ〉 =
|〈ψµ|vµ〉|2

cM(µ+ ρ)
ϕ−µ(γ−1).

Proof. By [10], for all γ ∈ Γ(C0) ∩ Gc there exist n ∈ N, aH(γ) ∈ A, and
h ∈ H, such that γ = naH(γ)h. Hence for γ ∈ Γ(C0) ∩Gc,

〈πµ(γ−1)ψµ|vµ〉 = aH(γ−1)µ〈ψµ|vµ〉.

The equalities (7) and (8) yield

〈πµ(γ−1)ψµ|ψµ〉 =
〈vµ|ψµ〉

cM(µ+ ρ)

∫
H
〈πµ(hγ−1)ψµ|vµ〉dh

=
〈vµ|ψµ〉

cM(µ+ ρ)

∫
H
aH(hγ−1)µ〈ψµ|vµ〉dh

=
|〈ψµ|vµ〉|2

cM(µ+ ρ)
ϕ−µ(γ−1).

Now the assertion follows from the fact that the function γ 7→〈πµ(γ−1)ψµ|ψµ〉

is holomorphic on Γ(C0) and coincides with
|〈ψµ|vµ〉|2

cM(µ+ ρ)
ϕ−µ(γ−1) in Γ(C0)∩

Gc. �
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Let (πµ,Wµ) be an H-spherical unitary highest weight representation of
G̃ such that (πµ,Wµ) belongs to the relative discrete series, and∫

G/H
|〈πµ(g)vµ|ψµ〉|2dġ =

1
δµ

where δµ is the relative formal dimension calculated in [20], δµ = dµ ·cM(µ+

ρ), with dµ =
∏
β∈4+

〈µ+ ρ, β〉
〈ρ, β〉

the formal dimension of the representation

πµ.

Theorem 5.1. Let Pν be the G-invariant function such that Pν(exp(2X) ·
ie) := pν(exp(X) · ie). The weight µ ∈ R′

ν,H if and only if the spherical
Laplace transform P̂ν(−µ) is finite. Moreover

Cµ(ν) =
1
δµ

P̂ν(−µ),

where δµ is the relative formal dimension.

Proof. We assume that the H-invariant distribution vector ψµ is normalized
by 〈ψµ|vµ〉 = 1. By the integral formula of Theorem 2.3 and the fact that
pν is G-invariant, we deduce that

Cµ(ν) =
∫

Ξ
|〈πµ(γ−1)vµ|ψµ〉|2 pν(ξ)dξ

=
∫
G

∫
C+

|〈πµ(γ−1)vµ|ψµ〉|2 pν(exp(X) · ie)
∏
β∈4+

sh (2β(X))mβ dgdX

=
1
dµ

∫
C+

‖πµ(exp(X))ψµ‖2 pν(exp(X) · ie)
∏
β∈4+

sh (2β(X))mβ dX.

According to the last lemma, this yields∫
Ξ
|〈πµ(γ)ψµ|vµ〉|2pν(ξ)dξ

=
1
δµ

∫
C+

pν(exp(X) · ie)ϕ−µ(exp(2X))
∏
β∈∆+

sh (2β(X))mβ dX

=
1
δµ
P̂ν(−µ).

�

For any x ∈ V we have x = x+ + x−, where x+ :=
x+ α(x)

2
∈ V+ and

x− :=
x− α(x)

2
∈ V−. We denote x := (x+, x−).
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Let J be the bounded set in V defined by

J =
{
x = (x+, x−) ∈ V | x+ ∈ Ω, x+ + x− ∈ e− Ω

}
⊂(

V+ ∩ Ω
)
×
(
(e+ V−) ∩ Ω

)
.

Proposition 5.2. The set J coincides with{
x ∈M | x ≥ x0

}
,

the future of x0.

Proof. Let ϕ : [0, 1] −→ V be the curve defined by

ϕ(t) = tx+ (1− t)e,

where ϕ(0) = e and ϕ(1) = x. Since Ω is convex,

ϕ(t) + α(ϕ(t)) = t(x+ α(x)) + (1− t)2e ∈ Ω.

Thus ϕ(t) ∈M for all t ∈ [0, 1]. Moreover ϕ̇(t) = x− e ∈ −Ω ' Cc, where

Cc =
{

(v, 0,−α(v)) | v ∈ Ω
}
⊂ gc,

the regular cone in gc such that Cc∩pc 6= ∅, where pc = {(v, L(w),−v) | v ∈
V+, w ∈ V−} (cf. [3], p. 26). Then, ϕ is a nontrivial causal curve in M
from x to x0 and x belongs to the future of x0.

Conversely, let ϕ : [a, b] −→ M be a causal curve. Assume that there
exists t > a such that ϕ(t) 6∈ M ∩ V and

κ = inf
{
t ∈ [a, b] | ϕ(t) 6∈ M ∩ V

}
.

Since M∩ V is open in M, then ϕ(t) ∈ M∩ V if t < κ and ϕ(t) 6∈ M ∩ V
if not. Hence

lim
t→κ
t<κ

‖ϕ(t)‖ = ∞.

Moreover the curve ϕ : [a, κ[−→ V is causal with respect to the causal
structure defined by the cone −Ω. Then, ϕ(t) ∈ e− Ω and for all t ∈ [a, κ[,
ϕ(t) belongs to the connected component of x0 in M∩ V given by{

x ∈ V | x+ α(x) ∈ Ω
}
.

Hence for all t ∈ [a, κ[, ϕ(t) ∈ J such that J is a bounded set. This leads
to contradiction. �

Lemma 5.3. Let s ∈ Cr+ and x = n expA(x) · x0 ∈ NA · x0. To identify
aC with Cr+ we have

e〈s|A(x)〉 = ∆s

(x+ α(x)
2

)
.
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Proof. The function x 7→ ∆s

(x+ α(x)
2

)
is N -invariant. Then, for all x =

n expA(x) · x0,

∆s

(x+ α(x)
2

)
= ∆s(expA(x) · x0).

Since A(x) ∈ aC, there exists (t1, t2, . . . , tr+) ∈ Cr+ such that A(x) =∑r+

j=1 tjL(ej), and expA(x) · x0 =
∑r+

j=1 e
tjej . Here {ej}1≤j≤r+ is the Jordan

frame of R+. Thus for all s = (s1, . . . , sr+), we deduce that

∆s

(
x+ α(x)

2

)
= ∆s

 r+∑
j=1

etjej

 =
r+∏
j=1

etjsj = e〈s|A(x)〉.

�

To give an explicit formula of the spherical Laplace transform P̂ν(−µ)
and an explicit descripition of the spectrum R′

ν,H , we recall some notations.
The Gindikin gamma function of the symmetric cone Ω is defined by the

following integral, generalizing the classical Siegel integral

ΓΩ(s) =
∫

Ω
e-tr(x)∆s−n

r
(x)dx

=
r∏
j=1

Γ
(
sj −

d

2
(j − 1)

)
, d :=

2(n− r)
r(r − 1)

for s = (s1, . . . , sr) where <sj > (j − 1)
d

2
for j = 1, . . . , r.

The Gindikin beta function of the symmetric cone Ω is defined by the
following integral

BΩ(s,m) =
∫

Ω∩(e−Ω)
∆s−n

r
(x)∆m−n

r
(e− x)dx

=
ΓΩ(s)ΓΩ(m)
ΓΩ(s + m)

.

Case (I). V+ is a simple Jordan algebra.
Let n± := dim(V±), and ΓΩ+ (resp. BΩ+) be the Gindikin gamma (resp. beta)

function of the symmetric cone Ω+ := Ω ∩ V+ of V+.

Lemma 5.4. For λ ∈ C such that <(λ) >
n

r
− 1,∫

(−e+Ω)∩V−
∆(e+ v)

r
r+ λ−

n
r+ dv =

ΓΩ(λ)

ΓΩ+

(
r
r+
λ
) .
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Proof. With respect to the decomposition of the Jordan algebra V as V =
V+ ⊕ V−, the Gindikin gamma function of the symmetric cone Ω can be
written as

ΓΩ(λ) =
∫

Ω
e−tr(x)∆(x)λ−

n
r dx

=
∫

Ω+

e−tr(x
+)

[∫
{x− |x++x−∈Ω}

∆(x+ + x−)λ−
n
r dx−

]
dx+.

Moreover x+ + x− = P ((x+)
1
2 )(e+ v), where P is the quadratic representa-

tion and v = P ((x+)−
1
2 )x−. Hence

ΓΩ(λ) =
∫

Ω+

e−tr(x
+)∆(x+)

r
r+ λ−

n
r+ +n−

r+ dx+

∫
(−e+Ω)∩V−

∆(e+ v)
r

r+ λ−
n

r+ dv

= ΓΩ+

( r

r+
λ
)∫

(−e+Ω)∩V−
∆(e+ v)

r
r+ λ−

n
r+ dv.

This proves that∫
(−e+Ω)∩V−

∆(e+ v)
r

r+ λ−
n

r+ dv =
ΓΩ(λ)

ΓΩ+

(
r
r+
λ
) .

�

Proposition 5.5. For µ =
(
m1 + (r/2r+)ν, . . . ,mr+ + (r/2r+)ν

)
, the

spherical Laplace transform P̂ν(−µ) is finite if and only if

m1 ≥ m2 ≥ · · · ≥ mr+ ≥ 0.

Moreover

P̂ν(−µ) = c0ΓΩ

(
ν − n

r

) ΓΩ+

(
µ− ν

r

2r+
+
n+

r+

)
ΓΩ+

(
µ+ ν

r

2r+
− n−

r+

) ,
where c0 is a positive constant.

Proof. By Proposition 3.1 and for all x = n expA(x) · x0, the function pν is
given by

pν(x) = det
(
P (x+ α(x))

)− r
2n
ν+1

∆(e− x2)ν−
2n
r .

Since A(x) ∈ aC, there exists (t1, . . . , tr+) ∈ Cr+ such that A(x) =∑r+

j=1 tjL(ej), and

exp
(
A(x)

2

)
· x0 =

r+∑
j=1

e
tj
2 ej .
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Let x =
∑r+

j=1 e
tjej and u =

∑r+

j=1 e
tj
2 ej . Using the fact that pν is G-

invariant, we deduce that

pν(u) = ∆(x+)−ν
r

2r+ + n
r+ ∆(e− x)ν−

2n
r = Pν(x).

For x ∈ V, let dδ(x) be the G-invariant measure on M, where its restriction
to M ∩ V is equal to dδ(x) = ∆(x+)−

n
r+ dx+dx−. Using Lemma 5.3, the

spherical Laplace transformation of Pν can be written as

P̂ν(−µ) =
∫
x≥x0

e〈µ,A(x)〉Pν(x)dδ(x)

=
∫

Ω+∩(e−Ω+)

∫
{x−|e−x+−x−∈Ω}

∆µ(x+)∆(x+)−ν
r

2r+ + n
r+

·∆(e− x)ν−
2n
r ∆(x+)−

n
r+ dx+dx−

=
∫

Ω+∩(e−Ω+)
∆µ−ν r

2r+
(x+)

·

[∫
{x−|e−x+−x−∈Ω}

∆(e− x+ − x−)ν−
2n
r dx−

]
dx+.

Using the last lemma, and the fact that e− x+ − x− = P ((e− x+)
1
2 )(e− v)

where v = P ((e− x+)−
1
2 )x−, we obtain

P̂ν(−µ) =
∫

Ω+∩(e−Ω+)
∆µ−ν r

2r+
(x+)∆(e− x+)ν

r
r+−

2n
r+ +n−

r+ dx+

·
∫

(e−Ω)∩V−
∆(e− v)ν

r
r+−

2n
r+ dv

=
ΓΩ

(
ν − n

r

)
ΓΩ+

(
ν
r

r+
− n

r+

)BΩ+

(
µ− ν

r

2r+
+
n+

r+
, ν

r

r+
− n

r+

)
,

such that µj − ν
r

2r+
+
n+

r+
> (j − 1)

n+ − r+

r+(r+ − 1)
for 1 ≤ j ≤ r+. By the fact

that µj = mj + ν
r

2r+
, where mj ∈ Z and µj − µj+1 ∈ N, this condition will

be written as

m1 ≥ m2 ≥ · · · ≥ mr+ ≥ 0.

�
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It follows from Proposition 5.5 that the spectrum of the Bergman space
H2
ν(Ξ̃) is given by

R′
ν,H =

{
µ =

(
m1 + (r/2r+)ν, m2 + (r/2r+)ν, . . . ,mr+ + (r/2r+)ν

)∣∣∣
m1 ≥ m2 ≥ · · · ≥ mr+ ≥ 0

}
.

Recall that the constant cν =
1
πn

ΓΩ(ν)

ΓΩ

(
ν − n

r

) (see (4)), the reproducing

kernel Kν(ξ̃1, ξ̃2) can be written as

>α(ξ̃1)
r
4n
ν det(B(ξ1, ξ2))

− r
2n
ν>α(ξ̃2)

r
4n
ν

=
∑ c0dµ

ΓΩ(ν)

ΓΩ+

(
m + ν

r

r+
− n−

r+

)
ΓΩ+

(
m +

n+

r+

) ϕ−µ

(
(γ̃]2γ̃1)−1

)
,

for all ξ̃1 = γ̃1 ·H and all ξ̃2 = γ̃2 ·H in Ξ̃. The summation index runs over
the integers of type m := (m1,m2, . . . ,mr+) such that m1 ≥ · · · ≥ mr+ ≥ 0.
We use m ≥ 0 to denote the summation index. The function

ν 7→ >α(ξ̃1)
r
4n
ν det(B(ξ1, ξ2))

− r
2n
ν>α(ξ̃2)

r
4n
ν
,

is holomorphic on C and coincides with

∑
m≥0

c0dµ
ΓΩ(ν)

ΓΩ+

(
m + ν

r

r+
− n−

r+

)
ΓΩ+

(
m +

n+

r+

) ϕ−µ

(
(γ̃]2γ̃1)−1

)
,

for ν ∈
]2n
r
− 1,+∞

[
, therefore these two functions coincide everywhere.

The following theorem holds.

Theorem 5.2. Assume α is given such that V+ is a simple algebra. Then
for all ν ∈ C such that <(ν) >

n

r
− 1,

>α(ξ̃1)
r
4n
ν det(B(ξ1, ξ2))

− r
2n
ν>α(ξ̃2)

r
4n
ν

=
∑
m≥0

c0dµ
ΓΩ(ν)

ΓΩ+

(
m + ν

r

r+
− n−

r+

)
ΓΩ+

(
m +

n+

r+

) ϕ−µ

(
(γ̃]2γ̃1)−1

)
.

The series converges uniformly on compact subsets of Ξ̃× Ξ̃.
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An application (Makarevič symmetric spaces of Cayley type). Let V be a
simple Euclidean Jordan algebra of dimension n and rank r. The bounded
symmetric domain associated with VC ×VC is the bidisc D ×D where D is
the unit disc of VC. Let α be the involution on D×D defined by α(z, w) =
(−w,−z). In this case, the domain Ξ is realized as D ×D \ Σ where

Σ = {(z, w) ∈ D ×D | ∆(z − w) = 0} ,
and ∆ is the determinant polynomial associated with V (see (1)).

Let {
z, w; z′, w′

}
:=

∆(z′ − z)∆(w − w′)
∆(z − w)∆(z′ − w′)

be the cross-ratio of four points z, w, z′, and w′ of VC. This definition gener-
alizes the classical cross-ratio-matrix and satisfies the G-invariance property{
g · z, g · w; g · z′, g · w′

}
=
{
z, w; z′, w′

}
. The reproducing kernel of the

Bergman space H2
ν(Ξ̃) is equal to

Kν(z̃1, w̃1; z̃2, w̃2) = c2ν

{
z̃1, w̃1; z̃2

−1
, w̃2

−1
}ν
,

for (z̃1, w̃1) and (z̃2, w̃2) in Ξ̃.
Using Theorem 5.2, we deduce a formula of a complex power of a cross-

ratio of four points,

{
z̃1, w̃1; z̃2

−1
, w̃2

−1
}ν

=
∑
m≥0

c0 dµ
ΓΩ(ν)2

ΓΩ

(
m + 2ν − n

r

)
ΓΩ

(
m +

n

r

) ϕ−µ

(
(γ̃]2γ̃1)−1

)
,

for all (z̃1, w̃1) = γ̃1 ·H and all (z̃2, w̃2) = γ̃2 ·H. We remark that this formula
is a generalization of that given in Theorem 3.1 of [7].

Let W be the Wallach set

W =
{

0,
n− r

r(r − 1)
, . . . ,

n

r
− 1
}
∪
]n
r
− 1,+∞

[
,

(cf. [12] p. 268), and let Kν(z̃1, w̃1; z̃2, w̃2) := {z̃1, w̃1; z̃2
−1
, w̃2

−1}ν . The
kernel Kν is of positive type on Ξ̃ × Ξ̃ if and only if ν belongs to W. Then
Kν is a reproducing kernel of some Hilbert space Hν(Ξ̃). In particular if

ν >
2n
r
− 1, Hν(Ξ̃) = H2

ν(Ξ̃).

We note that
n

r
∈ 1

2
N. In [12], J. Faraut and A. Korányi showed that

the analytic continuation Bergman space Hn
r
(D × D) (' Hn

r
(Ξ̃) by Theo-

rem 3.1) coincides with the Hardy space H2(D × D). It is a Hilbert space
of holomorphic functions f on D ×D such that

sup
0<r1,r2<1

∫
S×S

|f(r1u1, r2u2)|2dσ(u1)dσ(u2) <∞,
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where S is the Shilov boundary of D.
Using the same notations as in Section 3, the covering G̃ of order 2 of G

acts on H2(D×D) by the representation π̃n
r

:= πn
r
⊗πn

r
: for f ∈ H2(D×D)

and g̃−1 = (g, ϕ) ∈ G̃,

(π̃n
r
(g̃)f)(z, w) =

(
∆(g · z − g · w)

∆(z − w)

)n
r

f(g · z, g · w).

Using [4] Theorem 3.2.1, we can deduce that the representation π̃n
r

decom-

poses into a discrete sum of irreducible unitary representations πµ of G̃ with
highest weights

µ =
(
m1 +

n

r
,m2 +

n

r
, . . . ,mr +

n

r

)
such that m1 ≥ m2 ≥ · · · ≥ mr ≥ 0. In particular, the decomposition of
the Hardy space H2(D × D) holds. Hence, we find the decomposition of
H2(D ×D) shown in [7] when

n

r
belongs to N.

Case (II): V+ is a direct sum of two simple algebras.
Let V+ be a direct sum of two simple algebras V+

1 of rank p and V+
2 of rank

q such that p+ q = r+ (= r). Let n1 = p+ 1
2dp(p− 1) denote the dimension

of V+
1 , and n2 = q+ 1

2dq(q− 1) the dimension of V+
2 . Then the involution α

is given by α = P (w), where w = c1 + c2 + · · ·+ cp − cp+1 − cp+2 − · · · − cr.
The cone Ω+ is a direct sum of Ω+

1 and Ω+
2 , where Ω+

1 := Ω+ ∩ V+
1 and

Ω+
2 := Ω+ ∩ V+

2 .

For s ∈ Cp (resp. Cq), we write ∆(1)
s (resp. ∆(2)

s ) for the generalized power
function associated with Ω+

1 (resp. Ω+
2 ).

Using the same techniques as in Lemma 5.4, we show that for all λ ∈ C
such that <(λ) >

n

r
− 1,∫

(−e+Ω)∩V−
∆(e+ v)λ−

n
r dv =

ΓΩ(λ)

ΓΩ+
1

(
λ− n+

r + n1
p

)
ΓΩ+

2

(
λ− n+

r + n2
q

) .(9)

Here ΓΩ+
1

(resp. ΓΩ+
2
) denotes the Gindikin gamma function associated with

the symmetric cone Ω+
1 (resp. Ω+

2 ).

Proposition 5.6. For all µ =
(
m1 + (ν/2), . . . ,mp + (ν/2); mp+1 + (ν/2),

. . . ,mr+(ν/2)
)

:= (µ
1
;µ

2
), the spherical Laplace transform P̂ν(−µ) is finite

if and only if

m1 ≥ · · · ≥ mp ≥ 0, mp+1 ≥ · · · ≥ mr ≥ 0.
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Moreover

P̂ν(−µ) = c0 ΓΩ

(
ν − n

r

)
·

ΓΩ+
1

(
µ

1
− ν

2 + n1
p

)
ΓΩ+

2

(
µ

2
− ν

2
+
n2

q

)
ΓΩ+

1

(
µ

1
+ ν

2 −
n+

r − n
r + 2n1

p

)
ΓΩ+

2

(
µ

2
+ ν

2 −
n+

r − n
r + 2n2

q

) ,
where c0 is a positive constant.

Proof. As proved in Proposition 5.5, we have

P̂ν(−µ) =
∫

Ω+
1 ∩(e−Ω+

1 )
∆(1)
µ

1
− ν

2
(x+

1 ) ∆(1)(e− x+
1 )ν+

n−
r
− 2n

r dx+
1∫

Ω+
2 ∩(e−Ω+

2 )
∆(2)
µ

2
− ν

2
(x+

2 ) ∆(2)(e− x+
2 )ν+

n−
r
− 2n

r dx+
2∫

(e−Ω)∩V−
∆(e− v)ν−

2n
r dv

= BΩ+
1

(
µ

1
− ν

2
+
n1

p
, ν − n+

r
− n

r
+
n1

p

)
BΩ+

2

(
µ

2
− ν

2
+
n2

q
, ν − n+

r
− n

r
+
n2

q

)
∫

(e−Ω)∩V−
∆(e− v)ν−

2n
r dv.

Then the assertion follows from formula (9). �

Let m := (m1,m2) = (m1, . . . ,mp;mp+1, . . . ,mr). We use m ≥ 0 to
denote m1 ≥ · · · ≥ mp ≥ 0; mp+1 ≥ · · · ≥ mr ≥ 0. We apply the similar
arguments as in Theorem 5.2, the following theorem holds.

Theorem 5.3. Assume α is given such that V+ is a direct sum of two
simple algebras. Then for all ν ∈ C such that <(ν) > n

r − 1,

>α(ξ̃1)
r
4n
ν det(B(ξ1, ξ2))

− r
2n
ν>α(ξ̃2)

r
4n
ν

=
∑
m≥0

c0dµ
ΓΩ(ν)

·
ΓΩ+

1

(
m1 + ν − n+

r − n
r + 2n1

p

)
ΓΩ+

2

(
m2 + ν − n+

r − n
r + 2n2

q

)
ΓΩ+

1

(
m1 + n1

p

)
ΓΩ+

2

(
m2 + n2

q

) ϕ−m− ν
2(

(γ̃]2γ̃1)−1
)
.

The series converges uniformly on compact subsets of Ξ̃× Ξ̃.
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Remark. If p = 0 or q = 0, then α = idV (the compact case). The last
series can be written as

∆(e− z)−ν = c0
∑
m≥0

dm
(ν)m
(nr )m

ϕm(z),

with m = (m1,m2, . . . ,mr). Here (s)m denote (s)m =
ΓΩ(s + m)

ΓΩ(s)
, for all

s ∈ Cr and m ∈ Nr. Hence, we find the generalized binomial formula shown
in [12]. See also [2].

We present here the table of Makarevič symmetric space G/H, and its
dual symmetric space Gc/H.

V G/H Gc/H

1) Herm(n,C) U(p, q) (p+q=n) GL(n,C)/U(p, q)

SO∗(2n)/SO(n,C) SO(n, n)/O(n,C)

Sp(4n,R)/Sp(2n,C) Sp(n, n)/Sp(2n,C)

2) Sym(n,R) U(p, q)/O(p, q) GL(n,R)/O(p, q)

Sp(2n,R) Sp(2n,C)/Sp(2n,R)

3) Herm(n,H) U(2p, 2q)/Sp(p, q) U∗(2n)/Sp(p, q)

SO∗(2n) SO(2n,C)/O∗(2n)

4) R× Rn−1 SO(p)× SO(2, q)/ SO(1, p− 1)× SO(1, q + 1)/

SO(p− 1)× SO(1, q) SO(p− 1)× SO(1, q)

5) Herm(3,O) E6 × U(1)/F4 E6 × R+/F4

E6(−14) × U(1)/F4(−20) E6(−14) × R+/F4(−20)

SU(6, 2)/Sp(3, 1) SU∗(8)/Sp(3, 1)

V× V, where V is Cayley type

either of the type SU(n, n)/SL(n,C)× R∗
+ SU(n, n)/SL(n,C)× R∗

+

1), 2), 3), 4), or 5). Sp(2n,R)/GL(n,R) Sp(2n,R)/GL(n,R)

SO∗(4n)/SL(n,H)× R∗
+ SO∗(4n)/SL(n,H)× R∗

+

SO(2, n)/SO(1, n− 1)× R∗
+ SO(2, n)/SO(1, n− 1)× R∗

+

E7(−25)/E6(−26) × R∗
+ E7(−25)/E6(−26) × R∗

+
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[13] J. Hilgert and B. Krötz, Weighted Bergman spaces associated with causal symmetric
spaces, Manuscripta Math., 99 (1999), 151-180, MR 2000g:22019, Zbl 0961.32008.
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