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Let (Mm, g) be a compact Riemannian manifold isometri-
cally immersed in a simply connected space form (euclidean
space, sphere or hyperbolic space). The purpose of this paper
is to give optimal upper bounds for the first nonzero eigen-
value of the Laplacian of (Mm, g) in terms of r-th mean curva-
tures and scalar curvature. As consequences, we obtain some
rigidity results. In particular, we prove that if (Mn, g) is a
compact hypersurface of positive scalar curvature immersed
in Rn+1 and if g is a Yamabe metric, then (Mn, g) is a stan-
dard sphere.

1. Introduction.

Let (Mm, g) be a compact, connected m-dimensional Riemannian manifold
without boundary isometrically immersed into a simply connected space
form Nn(κ) (κ = 0, 1 or −1 respectively for Euclidean space, sphere or hy-
perbolic space) whose canonical metric will be denoted by h. A well-known
inequality gives an extrinsic upper bound for the first nonzero eigenvalue
λ1(M) of the Laplacian of (Mm, g) in terms of the square of the length of
the mean curvature, denoted by |H|2. Indeed, we have

λ1(M)V (M) ≤ m

∫
M

(|H|2 + κ)dvg(1)

where dvg and V (M) denote respectively the Riemannian volume element
and the volume of (Mm, g). Moreover the equality holds if and only if
(Mm, g) is minimally immersed in a geodesic sphere of Nn(κ). For κ = 0,
this inequality was proved by Reilly ([16]) and can easily be extended to
the spherical case κ = 1 by considering the canonical embedding of Sn in
Rn+1 and by applying the inequality (1) for κ = 0 to the obtained im-
mersion of (Mm, g) in Rn+1. For immersions of (Mm, g) in the hyperbolic
space, Heintze ([10]) first proved an L∞ equivalent of (1) and conjectured
(1) which was finally obtained by El Soufi and Ilias in [7]. In [16], Reilly
has shown estimates of the λ1(M) of orientable manifolds (Mm, g) isomet-
rically immersed in Rn in terms of more general invariants called r-th mean
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curvatures. Let us first define these invariants. Let B be the second funda-
mental form of the immersion, which is normal-vector valued, and let (Bij),
be its matrix with respect to an orthonormal frame (ei)1≤i≤m at a point x
of (Mm, g). For any integer r ∈ {1, . . . ,m}, the r-th mean curvature of the
immersion is the quantity, if r is even

Hr =
(

m
r

)−1 1
r!

∑
i1...ir
j1...jr

ε

(
i1 . . . ir
j1 . . . jr

)
h(Bi1j1 , Bi2j2) . . . h(Bir−1jr−1 , Birjr)

and if r is odd

Hr =
(

m
r

)−1 1
r!

∑
i1...ir
j1...jr

ε

(
i1 . . . ir
j1 . . . jr

)

· h(Bi1j1 , Bi2j2) . . . h(Bir−2jr−2 , Bir−1jr−1)Birjr

where ε

(
i1 . . . ir
j1 . . . jr

)
is zero if {i1, . . . , ir} 6= {j1, . . . , jr} or if there exists

p and q such that ip = iq, and in the contrary case ε

(
i1 . . . ir
j1 . . . jr

)
is the

signature of the permutation of
(

i1 . . . ir
j1 . . . jr

)
. By convention, we put H0 = 1

and Hm+1 = 0. Note that H1 is nothing but the usual mean curvature
vector and for submanifolds of Rn, H2 is up to a multiplicative coefficient
the scalar curvature. If the codimension is 1 and if (Mm, g) is oriented by a
normal vector field ν, it is convenient to work with the real valued second
fundamental form b by: b(X, Y ) = h(B(X, Y ), ν). Therefore, the r-th mean
curvatures of odd order can be defined as real valued (we replace in this case
the vector field Hr by the scalar h(Hr, ν)). Choosing an orthonormal frame
at x such that bx(ei, ej) = µiδij , we get the following unified formulae, for
any integer r ∈ {1, . . . ,m}

Hr =
(

m
r

)−1 ∑
i1<···<ir

µi1 . . . µir .(2)

In [16], Reilly proved a sharp bound for λ1(M) of manifolds immersed in a
Euclidean space, in terms of r-th mean curvatures. Recall this result:

Theorem 1.1 (see Reilly [16], Theorem A). Let (Mm, g) be a compact,
orientable m-dimensional Riemannian manifold isometrically immersed by
φ into Rn.
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1. If m < n− 1 and if r is an even integer such that r ∈ {0, . . . ,m− 1},
then

λ1(M)
(∫

M
Hrdvg

)2

≤ mV (M)
∫

M
|Hr+1|2dvg.

Moreover if Hr+1 doesn’t vanish identically and if equality holds, then
φ immerses (Mm, g) minimally into some hypersphere in Rn.

2. If m = n− 1 and r ∈ {0, . . . ,m− 1}, then

λ1(M)
(∫

M
Hrdvg

)2

≤ mV (M)
∫

M
H2

r+1dvg.

Moreover if Hr+1 doesn’t vanish identically, equality holds if and only
if φ immerses (Mm, g) as a hypersphere in Rn.

Note that, if m < n − 1 and r is odd, there is no inequality, because in
the proof it is necessary that Hr can be viewed as a real quantity.

The purpose of this paper is to find similar upper bounds for submani-
folds of the other space forms. In a first part, we extend Reilly’s result to
the sphere and the hyperbolic space (Theorems 2.1 and 2.2). In a second
part, as a consequence of such estimates and using a different approach, we
obtain for hypersurfaces of a simply connected space form upper bounds of
λ1(M) in terms of the scalar curvature (Corollary 3.1 and Theorem 3.1).
Moreover, these estimates allow us to obtain rigidity results (Remark 3.1).
In particular, we prove that if (Mn, g) is a compact hypersurface of posi-
tive scalar curvature immersed in the Euclidean space and if g is a Yamabe
metric, then (Mn, g) is a standard sphere (Corollary 3.2).

2. Upper bounds of λ1(M) in terms of r-th mean curvatures.

Let (Mm, g) be an orientable m-dimensional Riemannian manifold isomet-
rically immersed by φ in an n-dimensional Riemannian manifold (Nn, h) of
constant sectional curvature. Let B be the second fundamental form as-
sociated to φ. Before stating our results, we need some definitions. Let
(ei)1≤i≤m be an orthonormal frame at x ∈ M , (e?

i )1≤i≤m its dual coframe
and (Bij) the matrix of B with respect to the frame (ei)1≤i≤m. We define
the following (0, 2)-tensors Tr for r ∈ {1, . . . ,m}:

• If r is even, we set

Tr =
1
r!

∑
i,i1...ir
j,j1...jr

ε

(
i i1 . . . ir
j j1 . . . jr

)
h(Bi1j1 , Bi2j2) . . . h(Bir−1jr−1 , Birjr)e

?
i ⊗ e?

j .
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• If r is odd, we set

Tr =
1
r!

∑
i,i1...ir
j,j1...jr

ε

(
i i1 . . . ir
j j1 . . . jr

)
h(Bi1j1 , Bi2j2) . . .

h(Bir−2jr−2 , Bir−1jr−1)Birjr ⊗ e?
i ⊗ e?

j .

By convention T0 = g. As for the r-th mean curvatures, we have an unified
formulae if the codimension of (Mm, g) is 1 (i.e., m = n−1); indeed, choosing
a unit normal field ν and a g-orthonormal frame (ei)1≤i≤m at a point x ∈
M which diagonalizes the scalar valued second fundamental form b (i.e.,
bx(ei, ej) = µiδij), the tensors Tr can be viewed as scalar valued (0, 2)-
tensors (if r is odd we replace Tr by the tensor h(Tr(., .), ν)) and we have at
x

Tr =
(

m
r

)−1 ∑
i1<···<ir

ij 6=i

µi1 . . . µire
?
i ⊗ e?

i .(3)

We first prove a lemma which is well-known in codimension 1:

Lemma 2.1. Let (Mm, g) be a n-dimensional Riemannian manifold iso-
metrically immersed in a n-dimensional Riemannian manifold of constant
sectional curvature. Let r ∈ {1, . . . ,m}, and if m < n− 1, assume that r is
even. Then we have

divMTr = 0.

Proof. The proof is known when m = n− 1 (see for instance [17]). Assume
that m < n−1 and r is even and let ∇M denote the Riemannian connection
of (Mm, g). Let x ∈ M and (ei)1≤i≤m be an orthonormal parallel frame at
x, then we have

divMTr(ej)

=
1
r!

∑
i

∇eiTr(ei, ej)

=
1

(r − 1)!

∑
i1...ir
j1...jr

i

ε

(
i i1 . . . ir
j j1 . . . jr

)
h((∇eiB)i1j1 , Bi2j2) . . . h(Bir−1jr−1 , Birjr)

=
1

(r − 1)!

∑
i1...ir
j1...jr

ε

(
i i1 . . . ir
j j1 . . . jr

)
h((∇ei1

B)ij1 , Bi2j2) . . . h(Bir−1jr−1 , Birjr)



FIRST EIGENVALUE OF THE LAPLACIAN ON SUBMANIFOLDS 97

where we used in the last equality the Codazzi equation and the fact that
the sectional curvature of (Nn, h) is constant. Therefore

divMTr(ej) =
1

(r − 1)!

∑
i1...ir
j1...jr

i

ε

(
i1 i . . . ir
j j1 . . . jr

)
h((∇eiB)i1j1 , Bi2j2) . . .

h(Bir−1jr−1 , Birjr)

= − 1
(r − 1)!

∑
i1...ir
j1...jr

i

ε

(
i i1 . . . ir
j j1 . . . jr

)
h((∇eiB)i1j1 , Bi2j2) . . .

h(Bir−1jr−1 , Birjr)

= −divMTr(ej).

This completes the proof. �

In the following lemma, we give some relations between the r-th mean
curvatures and the tensors Tr. These relations are also well-known in codi-
mension 1 (see for instance [17]).

Lemma 2.2. For any integer r ∈ {1, . . . ,m}, we have

tr (Tr) = k(r)Hr.

Moreover, if r is even∑
ij

Tr(ei, ej)B(ei, ej) = k(r)Hr+1

and if r is odd ∑
ij

h(Tr(ei, ej), B(ei, ej)) = k(r)Hr+1

where k(r) = (m− r)
(

m
r

)
.

Proof. It follows easily from the definitions of Tr and Hr, so we will omit
it. �

Now, we extend Theorem 1.1 of Reilly mentioned in the introduction to
submanifolds of the sphere.

Theorem 2.1. Let (Mm, g) be a compact, orientable m-dimensional Rie-
mannian manifold isometrically immersed by φ into Sn.
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1. If m < n− 1 and if r is an even integer such that r ∈ {0, . . . ,m− 1},
then

λ1(M)
(∫

M
Hrdvg

)2

≤ mV (M)
∫

M

(
|Hr+1|2 + H2

r

)
dvg.

Moreover, if Hr doesn’t vanish identically, and if equality holds then φ
immerses M minimally into Sn or some geodesic hypersphere of Sn.

2. If m = n− 1 and r ∈ {0, . . . ,m− 1}, then

λ1(M)
(∫

M
Hrdvg

)2

≤ mV (M)
∫

M

(
H2

r+1 + H2
r

)
dvg.(4)

If Hr doesn’t vanish identically and if equality holds, then (Mm, g) is
minimally immersed in Sn or φ(M) is a geodesic sphere. Moreover, if
φ(M) is contained in a hemisphere, we have equality if and only if φ
immerses (Mm, g) as a geodesic hypersphere of Sn.

Remark 2.1. As in Theorem 1.1, the method used doesn’t allow us to have
an inequality if m < n− 1 and r is odd.

On the other hand, this theorem can’t be deduced from Theorem 1.1
of Reilly by considering the canonical embedding of Sn in Rn+1, but is a
consequence of a more general result given in Proposition 2.1 below.

Let (Mm, g) be a compact m-dimensional Riemannian manifold isomet-
rically immersed by φ in Rn and denotes by B its second fundamental form.
We assume that (Mm, g) is endowed with a free divergence (0, 2)-tensor T
and we define a normal vector field HT at a point x ∈ M , by

HT (x) =
∑

1≤i,j≤n

T (ei, ej)B(ei, ej)

where (ei)1≤i≤m is an orthonormal basis of the tangent space of M at x. We
have the following generalization of Theorem 1.1:

Proposition 2.1. Let (Mm, g) be a compact, orientable m-dimensional
Riemannian manifold isometrically immersed by φ into Rn and assume that
(Mm, g) is endowed with a free divergence (0, 2)-tensor T . Then, we have

λ1(M)
(∫

M
tr(T )dvg

)2

≤ mV (M)
(∫

M
|HT |2dvg

)
.(5)

Moreover, if HT doesn’t vanish identically and if equality holds, then (Mm, g)
is minimally immersed into a geodesic hypersphere of Rn.

This proposition will be a consequence of a generalization of the Hsiung-
Minkowski formulas. For this purpose, let us first define a second order
differential operator LT on C∞(M) by

LT u = −divM (T ]∇Mu)
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where ∇M is the gradient associated to the metric g and T ] is the sym-
metric endomorphism associated to T with respect to g (i.e., g(T ]X, Y ) =
T (X, Y )). The differential operator LT is self-adjoint because T is a free-
divergence tensor, and it is easy to see that

LT (u) = −〈D2u, T 〉(6)

where D2 and 〈 , 〉 denote respectively the hessian operator and the inner
product extended to tensors. Now, if (∂i)1≤i≤n and φi denote respectively
the canonical basis of Rn and the component functions of φ in this basis, we
set

LT φ =
∑
i≤n

LT φi∂i.

Now, we can state:

Lemma 2.3. We have

LT φ = −HT(7)

and
1
2
LT |φ|2 = −〈φ,HT 〉 − tr (T ).(8)

Proof. The proof of (7) is similar to that of the well-known formula ∆φ =
−mH and Formula (8) is an immediate consequence of (7). �

Proof of Proposition 2.1. Doing a translation if necessary, we can assume
that the center of mass of φ is at the origin; that is

∫
M φidvg = 0 for all

i ≤ n. From the variational characterization of λ1(M), we have for any i

λ1(M)
∫

M
(φi)2dvg ≤

∫
M
|dφi|2dvg(9)

and if the equality holds, then each φi is an eigenfunction of the Laplacian.
From the above inequality and by applying Lemma 2.3 and using a Cauchy-
Schwartz inequality, we obtain the following inequalities

λ1(M)
(∫

M
tr(T )dvg

)2

= λ1(M)
(∫

M
〈HT , φ〉dvg

)2

(10)

≤ λ1(M)
(∫

M
|HT |2dvg

)(∫
M
|φ|2dvg

)
≤
(∫

M
|HT |2dvg

)(∫
M

∑
i

|dφi|2dvg

)

= mV (M)
(∫

M
|HT |2dvg

)
.

This proves the inequality (5) of Proposition 2.1.
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Equality case. If (5) is an equality, then inequalities in (10) are equalities
too. But since |HT | doesn’t vanish identically on M , we deduce that

λ1(M)
∑

i

∫
M

(φi)2dvg =
∑

i

∫
M
|dφi|2dvg

this implies with (9) that the functions φi are eigenfunctions of λ1(M).
Hence by Takahashi’s theorem ([19], Theorem 3) we deduce that φ is a
minimal immersion of (Mm, g) into a hypersphere of radius

√
m/λ1(M). �

Proof of Theorem 2.1. The desired inequality can’t be deduced from The-
orem 1.1, but it will be a consequence of the generalized inequality (5) of
Proposition 2.1. In fact, let Tr be the (0, 2)-tensors associated to the second
fundamental form B of φ and let i be the canonical embedding of Sn in
Rn+1. Then, as before the normal vector field H ′

Tr
associated to the second

fundamental form B′ of the isometric immersion i ◦ φ is given at x ∈ M by

H ′
Tr

=
∑

1≤i,j≤n

Tr(ei, ej)B′(ei, ej)

where (ei)1≤i≤m is an orthonormal basis of the tangent space of M at x.
Now, it follows from (5) that

λ1(M)
(∫

M
tr (Tr)dvg

)2

≤ mV (M)
(∫

M
|H ′

Tr
|2dvg

)
(11)

now, it is easy to see that B′ = B−gφ and then H ′
Tr

= HTr − tr (Tr)φ. This
gives us

|H ′
Tr
|2 = |HTr |2 + tr (Tr)2

therefore, reporting this last relation in (11) we obtain

λ1(M)
(∫

M
tr (Tr)dvg

)2

≤ mV (M)
∫

M

(
|HTr |2 + tr (Tr)2

)
dvg.(12)

Now the inequalities of Theorem 2.1 follow by using Lemma 2.2 which gives

us |HTr | = k(r)|Hr+1| and tr (Tr) = k(r)Hr, where k(r) = (m− r)
(

m
r

)
.

Equality case. If we assume that Hr doesn’t vanish identically, then it
is also the case for H ′

Tr
and we can deduce as in the previous proof, that

if equality holds then M is minimally immersed in a geodesic hypersphere
of Rn+1 with radius less or equal to 1. If the radius is equal to 1, then M
is minimally immersed in Sn if not M is minimally immersed in a geodesic
hypersphere of Sn.

Conversely, if m = n − 1 and if φ(M) is a geodesic hypersphere of Sn,
then λ1(M) = (n−1)(H2

1 +1). On the other hand Hr = Hr
1 , and inequality

(4) becomes an equality. �
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These results are a consequence of a Hsiung-Minkowski formulae for sub-
manifolds of Rn or Sn. For submanifolds of the hyperbolic space, such a
formulae exists but doesn’t allow us to generalize these theorems in this
case. However, using a different approach, we can obtain a partial result for
hypersurfaces of Hn+1.

Theorem 2.2. Let (Mn, g) be a compact, orientable n-dimensional Rie-
mannian manifold isometrically immersed by φ into Hn+1. Let r ∈ {0, . . . ,
n − 2}. If Hr is a positive constant and if φ is convex (i.e., its second
fundamental form is semi definite), then we have

λ1(M)V (M)H2
r ≤ n

∫
M

(
H2

r+1 −H2
r

)
dvg.(13)

Moreover, the equality holds if and only if φ immerses M as a geodesic
hypersphere in Hn+1.

Proof. Here, (Mn, g) is isometrically immersed in Hn+1 and we assume it
to be oriented by a unit normal field ν. Therefore as noticed before, the r-
th mean curvatures will be considered as scalar quantities (see (2)) defined
over M . In a recent paper, using the fact that any space form Nn+1(κ) is
conformally embedded in Sn+1, we establish a relation between r-th mean
curvatures and the conformal factor ([9]). We recall this result in the case
which we are interested in, that is when κ = −1. Let Π be a conformal
embedding of (Hn+1, canH) into (Sn+1, canS) and let f be the function de-
fined on Hn+1 such that Π?canS = efcanH. Then we have for any integer
r ∈ {0, . . . , n− 1} (see Proposition 3.1 of [9])

H2
r+1 −H2

r(14)

= (Hr+1 − FHr)2 + ef◦φH2
r +

1
4
|∇M (f ◦ φ)|2H2

r

− 1
2k(r)

g(Tr∇M (f ◦ φ),∇M (f ◦ φ))Hr −
1

k(r)
HrLr(f ◦ φ)

where Lr = LTr , F = (1/2)canH(∇Hn+1
f, ν) ◦ φ, ∇Hn+1

and ∇M denote
respectively the gradient of Hn+1 and M . Furthermore, we have shown (see
the proof of Theorem 1.1 of [9]) that for any integer r ∈ {0, . . . , n− 2} and
under the assumption of the convexity of φ

1
4
|∇M (f ◦ φ)|2H2

r −
1

2k(r)
g(Tr∇M (f ◦ φ),∇M (f ◦ φ))Hr ≥ 0.(15)

Since Lr is selfadjoint and Hr constant, we deduce from (14) and (15) that∫
M

(
H2

r+1 −H2
r

)
dvg ≥

∫
M

(Hr+1 − FHr)2dvg + H2
r

∫
M

ef◦φdvg.
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Now, if we put X = Π ◦ φ and if we denote by Xi its component functions
in Rn+2, we have ∑

i≤n+2

|dXi|2 = nef◦φ.

Composing Π with a conformal diffeomorphism of (Sn+1, can) if necessary,
we can assume that

∫
M Xidvg = 0 ([4]), and thus∫

M

(
H2

r+1 −H2
r

)
dvg(16)

≥
∫

M
(Hr+1 − FHr)2dvg +

H2
r

n

∫
M

∑
i≤n+2

|dXi|2dvg

≥ H2
r

n
λ1(M)

∫
M

∑
i≤n+2

(Xi)2dvg =
H2

r

n
λ1(M)V (M).

This proves the inequality in Theorem 2.2.

Equality case. If (Mn, g) is immersed as a geodesic sphere, then λ1(M) =
n(H2

1 − 1). Now, since Hr = Hr
1 , the inequality in Theorem 2.2 becomes an

equality. Conversely, assume that (13) is an equality, then all inequalities in
(16) are equalities. Thus, Xi are eigenfunctions of the Laplacian associated
to λ1(M) and it follows that

nef◦φ =
∑

i≤n+2

|dXi|2 = −1
2

∑
i≤n+2

∆(Xi)2 +
∑

i≤n+2

Xi∆Xi = λ1(M)

and we deduce that f ◦ φ is constant on M . Furthermore, the equality in
(16) and Equation (14) imply successively that

Hr+1

Hr
= F(17)

and

ef◦φ =
H2

r+1

H2
r

− 1.(18)

Now, considering (14) for r = 0, we have

H2
1 − 1 = H2

1 − 2H1F + F 2 + ef◦φ.

Finally, reporting (17) and (18) in this last equality, we get

HrH1 −Hr+1 = 0.

It is well-known that this implies that M is totally umbilic and thus φ(M)
is a geodesic sphere ([2]). �
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In the sequel, since the codimension of the orientable manifold (Mn, g)
is 1, we consider r-th mean curvatures as scalar quantities (see (2)) defined
on M . As a straightforward consequences of Theorems 1.1, 2.1 and 2.2 we
have the following corollaries:

Corollary 2.1. Let (Mn, g) be a compact, connected orientable n-dimen-
sional Riemannian manifold isometrically immersed by φ in Rn+1. Let r ∈
{1, . . . , n}. If Hr is a positive constant, then we have

λ1(M) ≤ nH2/r
r .

Moreover, we get equality if and only if φ immerses (Mn, g) as a hypersphere
in Rn+1.

For hypersurfaces of Sn+1, we obtain:

Corollary 2.2. Let (Mn, g) be a compact, connected orientable n-dimen-
sional Riemannian manifold isometrically immersed by φ in an open hemi-
sphere of Sn+1. Let r ∈ {1, . . . , n − 1}. If Hr+1 > 0 and if Hr is a positive
constant, then we have

λ1(M) ≤ n
(
H2/r

r + 1
)

.

Moreover, we get equality if and only if φ immerses (Mn, g) as a hypersphere
in Sn+1.

And for hypersurfaces of Hn+1, we have:

Corollary 2.3. Let (Mn, g) be a compact, connected orientable n-dimen-
sional Riemannian manifold isometrically immersed by φ in Hn+1. For any
integer r ∈ {1, . . . , n − 1}, if Hr is a positive constant and if φ is convex
(i.e., B is semi definite), then we have

λ1(M) ≤ n
(
H2/r

r − 1
)

.

Moreover, we get equality if and only if φ immerses (Mn, g) as a hypersphere
in Hn+1.

These corollaries are an immediate consequence of the Maclaurin inequal-
ities which we recall (see for instance [13] and [14]). Let φ be an isometric
immersion of a Riemannian manifold (Mn, g) into a simply connected space
form Nn+1(κ) (κ = 0, 1 or −1 respectively for Rn+1, Sn+1 or Hn+1). If for
all integer j ∈ {1, . . . , k}, we have Hj > 0 then

H
1/k
k ≤ H

1/j
j

with equality at umbilic points. Moreover, we know that if for an integer k,
we have:

1. Hk > 0 and φ is a convex immersion (i.e., B is semi definite), then
Hj > 0, for any j ∈ {1, . . . , k} ([20]).
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2. Hk > 0 and for κ = 1, φ(M) lies in an open hemisphere, then Hj > 0,
for any j ∈ {1, . . . , k} ([5]).

Note that the Maclaurin inequalities and Property 1 are still valid for hy-
persurfaces of any ambiant space.

Another approach allows us to obtain a different upper bounds for λ1(M)
of hypersurfaces of Rn+1. Indeed, we have:

Theorem 2.3. Let (Mn, g) be a compact, orientable n-dimensional Rie-
mannian manifold isometrically immersed by φ in Rn+1. If for r ∈ {0, . . . ,
n− 2}, we have Hr+2 > 0, then

λ1(M)
∫

M
Hrdvg ≤ nV (M) sup

M
Hr+2.

Moreover, equality holds if and only if φ immerses (Mn, g) as a hypersphere
in Rn+1.

Proof. From (8), we have

1
2
|φ|Lr|φ|2 = −〈φ,HTr〉|φ| − tr(Tr)|φ|

= −k(r) (Hr+1〈φ, ν〉|φ|+ Hr|φ|)
≤ k(r)

(
|Hr+1||φ|2 −Hr|φ|

)
hence ∫

M
|φ|Tr

(
∇M |φ|,∇M |φ|

)
dvg ≤ k(r)

∫
M

(
|Hr+1||φ|2 −Hr|φ|

)
dvg.(19)

Now, in [5] (Proposition 3.2), Barbosa and Colares show that if Hr+1 > 0,
then Tk is a definite positive (0, 2)-tensor for any k ∈ {1, . . . , r}. Further-
more, we have in particular that Hr > 0. Consequently, we deduce from
(19) and the fact that Tr is positive, that∫

M
Hr|φ|dvg ≤

∫
M

Hr+1|φ|2dvg

and finally from (8) and the above estimate, we obtain

λ1(M)k(r)
∫

M
Hrdvg

= λ1(M)
∫

M
tr(Tr)dvg

= −λ1(M)
∫

M
〈HTr , φ〉dvg
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≤ k(r)λ1(M)
∫

M
Hr+1|φ|dvg ≤ k(r)λ1(M)

∫
M

Hr+2|φ|2dvg

≤ k(r)λ1(M) sup
M

Hr+2

∫
M
|φ|2dvg ≤ k(r) sup

M
Hr+2

∫
M

∑
i

|dφi|2dvg

= nk(r)V (M) sup
M

Hr+2.

This completes the proof of Theorem 2.3. Furthermore, it follows from (19)
that equality holds if and only if φ(M) is contained in a geodesic sphere of
Rn+1. �

3. Upper bounds of λ1(M) in terms of scalar curvature.

First, we deduce from the previous corollaries an unified estimate of λ1(M)
in terms of the scalar curvature S for hypersurfaces immersed in a space form
Nn+1(κ) (κ = 0, 1 or −1 respectively for Rn+1, Sn+1 and Hn+1). Indeed, we
have:

Corollary 3.1. Let (Mn, g) be a compact, orientable n-dimensional Rie-
mannian manifold isometrically immersed in a simply connected space form
Nn+1(κ). Assume that:

1. If κ = 0, r ∈ {2, . . . , n} and Hr is a positive constant;
2. if κ = 1, r ∈ {2, . . . , n− 1}, φ(M) is contained in an open hemisphere

of Sn+1, Hr+1 > 0 and Hr is a constant;
3. if κ = −1, r ∈ {2, . . . , n−2}, φ is convex and Hr is a positive constant.

Then S > 0, and we have

λ1(M) ≤ infM S

n− 1
.

Moreover, equality holds if and only if φ immerses (Mn, g) as a geodesic
sphere.

Remark 3.1. If (Mn, g) is an Einstein manifold (n ≥ 3) with positive scalar
curvature, then the Lichnerowicz-Obata ([12]) estimate for λ1(M) gives us:
λ1(M) ≥ S/(n − 1), equality holding only for the spheres. Now, if (Mn, g)
is an Einstein manifold of positive scalar curvature isometrically immersed
in Rn+1, H2 is a positive constant and we deduce from Corollary 3.1, that
φ(M) is a geodesic sphere. This is another way to prove that the spheres
are the only hypersurfaces of Rn+1 which are endowed with an Einstein
structure of positive scalar curvature (see for instance Theorem 5.3 p. 36 of
[11]). We can obtain similar results for the other space forms. Recall that,
more generally, Fialkow in [8] proved that geodesic spheres are the only
compact Einstein hypersurfaces of positive scalar curvature immersed in a
space form Nn+1(κ). Recall also that A. Montiel and A. Ros in [14] have
shown that geodesic spheres are the only compact hypersurfaces of constant
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scalar curvature embedded in Nn+1(κ) (with the additionaly hypothesis
“φ(M) contained in a hemisphere” for the spherical case κ = 1).

Another consequence concerns the Yamabe problem. Indeed, note that T.
Aubin ([4]) shows that if g is a Yamabe metric of positive scalar curvature
on a compact manifold (Mn, g) (n ≥ 3), then λ1(M) ≥ S/(n − 1) . Then
from our Corollary 3.1, we deduce the following:

Corollary 3.2. If (Mn, g) is a compact hypersurface of positive scalar cur-
vature immersed in Rn+1 and if g is a Yamabe metric (i.e., minimizes the
Yamabe functional in its conformal class) then (Mn, g) is a standard sphere.

Proof of Corollary 3.1. This corollary follows from Corollaries 2.1, 2.2 and
2.3, in the case r = 2. Under the assumptions of these corollaries and by
using the Maclaurin inequalities about r-th mean curvatures, we obtain

λ1(M) ≤ n
(
H2/r

r + κ
)
≤ n(H2 + κ)(20)

and equality holds if and only if φ immerses (Mn, g) as a geodesic sphere.
Now, let (ei)1≤i≤n be a g-orthonormal basis which diagonalizes the second
fundamental form b (i.e., b(ei, ej) = 〈B(ei, ej), ν〉 = µiδij). From the Gauss
equation, we have

S = κn(n− 1) +
∑
i6=j

µiµj = n(n− 1)(κ + H2)(21)

and reporting this relation in (20), we obtain the desired inequality. �

As an immediate consequence of Theorem 2.3, we have λ1(M) ≤
supM S/(n − 1), by applying the inequality for r = 0. The techniques used
in this theorem don’t allow us to extend it to hypersurfaces of Sn+1 and
Hn+1. But, by a different method inspired by Heintze’s work ([10]), we can
prove:

Theorem 3.1. Let (Mn, g) be a compact, orientable n-dimensional Rie-
mannian manifold isometrically immersed in a simply connected space form
Nn+1(κ) (κ = 0, 1 or −1 respectively for Rn+1, Sn+1 or Hn+1) and assume
in addition that for κ = 1, φ(M) lies in a geodesic ball of radius π/4. If
S > n(n− 1)κ then we have

λ1(M) ≤ supM S

n− 1
and equality holds if and only if φ immerses M as a geodesic sphere.

Before giving the proof of Theorem 3.1, we need to give some preliminary
results. Let p0 ∈ Nn+1(κ) and expp0

the exponential map at this point. We
denote (xi)1≤i≤n+1 the normal coordinates of Nn+1(κ) centered at p0 and
for all x ∈ Nn+1(κ), we set r(x) = d(p0, x), the geodesic distance between
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p0 and x on Nn+1(κ). Assume in the case κ = 1, that φ(M) lies in an open
hemisphere.

Let sκ and cκ be the functions defined by

sκ(r) =


sin r if κ = 1
r if κ = 0
sinh r if κ = −1

and cκ(r) =


cos r if κ = 1
1 if κ = 0
cosh r if κ = −1.

Note that c2
κ + κs2

κ = 1 and s′κ = cκ and c′κ = −sκ.
In the sequel, we denote respectively by ∇M and ∇N the gradient associ-

ated to g and to the canonical metric of Nn+1(κ) denoted by h. Then, if we
put X = sκ(r)∇Nr, it is easy to see that the normal coordinates of X are(

sκ(r)
r xi

)
1≤i≤n+1

. Furthermore, the tangential and the normal projection of

a vector field Y respectively on the tangent bundle and the normal bundle
to φ(M) will be denoted by Y T and Y ⊥.

We recall two lemmas shown by Heintze ([10]):

Lemma 3.1. At any x ∈ M , we have

∑
1≤i≤n+1

gx

(
∇M

(
sκ(r)

r
xi

)
,∇M

(
sκk(r)

r
xi

))
= n− κgx(XT , XT ).(22)

Lemma 3.2. The vector field X = sκ(r)∇Nr satisfies

κ

∫
M
|XT |2dvg = n

∫
M

c2
κdvg − n

∫
M
|H|sκcκdvg.

Now, we need the following inequality for the proof of Theorem 3.1:

Lemma 3.3. For all symmetric free divergence definite positive (0, 2)-ten-
sor T , we have

tr (T )cκ ≤ sκ|HT |+ divM (T ]XT )

and if T is the identity, then equality holds.

Proof of Lemma 3.3. Since T ] is a positive symmetric (1, 1)-tensor, we can
define a natural positive symmetric (1, 1)-tensor

√
T ] such that

√
T ]◦

√
T ] =

T ].

Now let (ei)1≤i≤n be an orthonormal frame at x, such that
√

T ]en lies in
the direction of ∇Mr and let e∗n be a unit vector orthogonal to ∇Nr in order
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to have:
√

T ]en = λ∇Nr + µe∗n. Then at x, we have

divM (T ]XT ) =
∑

1≤i≤n

gx(∇M
ei

(T ]XT ), ei) =
∑

1≤i≤n

hx(∇N
ei

XT , T ]ei)(23)

=
∑

1≤i≤n

hx(∇N
ei

X, T ]ei)−
∑

1≤i≤n

hx(∇N
ei

X⊥, T ]ei)

=
∑

1≤i≤n

hx(∇N
ei

X, T ]ei) + hx(X, HT ).

We need to estimate
∑

1≤i≤n hx(∇N
ei

X, T ]ei). We first have∑
1≤i≤n

hx(∇N
ei

X, T ]ei)(24)

=
∑

1≤i≤n

hx(∇N
ei

(sκ∇Nr), T ]ei)

= cκhx(∇Nr, T ](∇Nr)T ) + sκ

∑
1≤i≤n

hx(∇N
ei
∇Nr, T ]ei)

= cκhx(T ](∇Nr)T , (∇Nr)T ) + sκ

∑
1≤i≤n

hx(∇N√
T ]ei

∇Nr,
√

T ]ei).

Now, we compute the last term of (24). Using the Jacobi fields of Nn+1(κ),
one can prove that D2r = (cκ/sκ)(h−dr⊗dr) (see for instance [18]). Then,
for all orthogonal vector ξ to ∇Nr at x, we have the equality

hx(∇N
ξ ∇Nr, ξ) =

cκ

sκ
|ξ|2x.

Thus ∑
1≤i≤n

hx(∇N√
T ]ei

∇Nr,
√

T ]ei)

=
∑

1≤i≤n−1

hx(∇N√
T ]ei

∇Nr,
√

T ]ei) + hx(∇N√
T ]en

∇Nr,
√

T ]en)

=
cκ

sκ

∑
1≤i≤n−1

|
√

T ]ei|2x + µ2hx(∇N
e∗n
∇Nr, e∗n)

=
cκ

sκ

∑
1≤i≤n−1

|
√

T ]ei|2x + µ2 cκ

sκ

and reporting this inequality in (24), we obtain∑
1≤i≤n

hx(∇N
ei

X, T ]ei)(25)

= cκ|
√

T ](∇Nr)T |2x + cκ

∑
1≤i≤n−1

|
√

T ]ei|2x + µ2cκ
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now

λ2 = hx(
√

T ]en,∇Nr)2 = hx(en,
√

T ](∇Nr)T )2 ≤ |
√

T ](∇Nr)T |2x
and if T ] is the identity, this last inequality is in fact an equality. Further-
more, it is easy to verify that

λ2 + µ2 = |
√

T ]en|2x.

Thus, from (25) and these two last facts, we have

∑
1≤i≤n

hx(∇N
ei

X, T ]ei) ≥ cκ

λ2 + µ2 +
∑

1≤i≤n−1

|
√

T ]ei|2x


= tr (T )cκ.

Now, we report this last inequality in (23) and we complete the Proof of
Lemma 3.3 by noting that hx(X, HT ) ≥ −|X||HT | = −sκ|HT |. �

Now, we can give the Proof of Theorem 3.1:

Proof of Theorem 3.1. Let p0 ∈ N and r(x) = d(p0, x). We will use sκ(r)
r xi

as test functions in the variational characterization of λ1(M) but the mean of
these functions must be zero. For this purpose, we use a standard argument
used by Chavel and Heintze before ([10] and [6]). Indeed, let Y be the
vector field defined by

Yq =
∫

M

sκ(d(q, p))
d(q, p)

exp−1
q (p)dvg(p) ∈ TqN.

From the theorem of fixed point of Brouwer, there exists a point p0 ∈ N

such that Yp0 = 0 and consequently, for a such p0, the mean of sκ(r)
r xi will

be zero. But for κ = 1, we must assume φ(M) contained in a ball of radius
π/4. This guarantees the inclusion of φ(M) in a ball of center p0 (the point
p0 such that Yp0 = 0) with a radius less or equal to π/2 (this hypothesis
is necessary in the proof of the preceding lemmas). It follows from the
variational characterization of λ1(M), that

λ1(M)
∫

M
s2
κ(r)dvg

= λ1(M)
∫

M
|X|2dvg = λ1(M)

∫
M

∑
1≤i≤n+1

(
sκ(r)

r
xi

)2

dvg

≤
∫

M

∑
1≤i≤n+1

g

(
∇M

(
sκ(r)

r
xi

)
,∇M

(
sκ(r)

r
xi

))
dvg
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and using Lemmas 3.1 and 3.2, we deduce that

λ1(M)
∫

M
s2
κ(r)dvg ≤ nV (M)− κ

∫
M
|XT |2dvg(26)

≤ nκ

∫
M

s2
κdvg + n

∫
M
|H|sκcκdvg

= nκ

∫
M

s2
κdvg +

1
n− 1

∫
M

tr (T1)sκcκdvg

now, from Lemma 3.3, we have

tr (T1)sκcκ ≤ sκdivM (T ]
1XT )− h(X, HT1)sκ

and reporting this inequality in (26), we obtain

λ1(M)
∫

M
s2
κdvg

≤ nκ

∫
M

s2
κdvg −

1
n− 1

∫
M

h(X, HT1)sκdvg +
1

n− 1

∫
M

sκdivM (T ]
1XT )dvg

≤ nκ

∫
M

s2
κdvg +

1
n− 1

∫
M
|HT1 |s2

κdvg −
∫

M
g(∇Msκ, T ]

1XT )dvg

= nκ

∫
M

s2
κdvg + n

∫
M

H2s
2
κdvg −

∫
M

sκcκT1(∇Mr,∇Mr)dvg.

Since we assume that S > n(n− 1)κ, it follows from (21), that H2 > 0, and
from the same argument used in the proof of Theorem 2.3, T1 is a definite
positive (0, 2)-tensor ([5]). Furthermore cκ and sκ are positive functions and
thus

λ1(M)
∫

M
s2
κdvg ≤ n

∫
M

(H2 + κ)s2
κdvg =

1
n− 1

∫
M

Ss2
κdvg

which gives the inequality of Theorem 3.1. Now, equality in this inequality
holds if and only if T1(∇Mr,∇Mr) = 0. Since T1 is definite positive, this is
the case if and only if φ(M) is a geodesic sphere. This concludes the Proof
of Theorem 3.1. �
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