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Trudinger and Moser, interested in certain nonlinear prob-
lems in differential geometry, showed that if |Vu|? is inte-
grable on a bounded domain in R™ with ¢ > n > 2, then
u is exponentially integrable there. Symmetrization reduces
the problem to a one-dimensional inequality, which Jodeit ex-
tended to ¢ > 1. Carleson and Chang proved that this in-
equality has extremals when g > 2 is an integer. Hence, so
does the Moser-Trudinger inequality (with ¢ = n).

This paper extends the result of Carleson and Chang to all
real numbers ¢ > 1. An application and some related results
involving noninteger q are also discussed.

Introduction.

Let D be a bounded domain in R", n > 2. Let W"(D) be the Sobolev
space of functions u supported in the closure of D with gradient in L™(D).
Trudinger [10] showed that for u in the unit ball of W, there are constants
a and A (depending only on n) such that

(1) / exp(aun-1)dz < A|D|.
D

Moser [9] found the largest possible value of o by using symmetrization
to reduce this to a one-dimensional problem. The integer n can then be
replaced by a real number ¢ > 2. Jodeit [5] extended the result to 1 < g < 2.

Theorem A (Jodeit, Moser). Let 1 < g < oo, 1/p+1/qg=1. Let w be a
function in C1[0,00) such that w(0) =0 and [ |w!|? < 1. Then

(2) Alg) = sup /0 T exp(w(t) — 1) dt.

Carleson and Chang [2] proved that this theorem has extremals for inte-
gers ¢ > 2. Through symmetrization, this proves that the Trudinger-Moser
theorem for W"(D) has extremals, at least when D is a ball. Flucher [3]
extended this to arbitrary smooth bounded domains in R™ . Lin [6] did the
same for n > 3. It is natural to ask whether Theorem A has extremals for
general g. The main result of this paper is:
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Theorem B. Theorem A has extremals for all real numbers ¢ > 1.

The outline of the proof is similar to that in [2], especially when ¢ > 2.
In Section 1 we show that if no extremals exist, then A(q) is less than an
explicit constant R(q). This requires new methods when 1 < ¢ < 2. One of
the main ideas of [2] is linearization, in which the exponent p is replaced by
1, with controllable error for 1 < p < 2. So, it is not surprising that their
proof (their inequality (23), for example) breaks down when 1 < ¢ < 2.

Section 2 provides a specific w to show A(q) > R(q). This part requires
a different construction than in [2], but for a different reason. There is less
slack: It appears that A(q) — R(q) as ¢ — 17 (but we do not attempt a
proof of this).

In a related paper, McLeod and Peletier [8] give a somewhat different
proof of Theorems A and B for integer ¢ > 1. It differs especially in the first
part, in showing A(q) < R(q). It then refers to the w in [2].

It is not clear whether Theorem B has important applications to functions
on R"™ (with ¢ # n). But there are several related results that show it
is reasonable to look at noninteger q. For example, in Section 3, we use
Theorem B to generalize the results in [2] to u € W9(B"), 1 < ¢ < n, with
similar sharpness in a«. When ¢ < n this involves a weight.

Also, Theorem A is used by the authors in [4] to prove an inequality like
Moser’s for functions in the Lorentz-Sobolev space W™4(D). It isn’t clear
whether Theorem B gives extremals for this problem, due to problems with
symmetrization.

Adams [1] has extended the Moser-Trudinger theorem to higher-order
derivatives, based on a generalization of Theorem A by Garcia. A very
interesting question is whether the inequality of Adams, or Garcia, has ex-
tremals. Our methods seem promising in showing that Garcia’s inequality
has them, for some range of q.

Section 1.

This section contains the proof of Proposition 1 below, and follows the strat-
egy in [2]. Mainly, the range 1 < ¢ < 2 requires a new approach. We will
generally avoid duplication of [2], except that our construction in the next
section (unlike the one in [2]) is based on this work. So several equations
from [2] are included here for later reference.

Let R(q) = 1+ exp{®(q) + v}, where 1(q) is the psi function I'(¢q)/T'(q)
and y is the Euler constant. If ¢ = n is an integer, then R(q) is the Carleson-
Chang constant 1 +exp{l+1/2+4---4+1/(n—1)}. A(q) is the constant of
Theorem A.

Proposition 1. If Theorem A has no extremal, then A(q) < R(q).
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The following notation and results will be used in the proof. Let K, be
the space of continuous piecewise C'* functions w(t) on [0, o) satisfying

o0
w(0) =0,0'(t) >0, and / w7 < 1.
0

Roughly, these are the functions of Theorem A.

Let wp be a sequence in K, such that [~ exp(wh(t) — ¢) dt converges
to A(q) as m — oo. Assuming Theorem A has no extremal, the following
conditions hold:

(a) For each A > 0, fOA lw!, (t)]7dt — 0 as m — oo.

(b) For m large enough, there exists a point a,, in [l,00) such that
(W (am))? — am = —2log*(am,). Moreover, if a,, denotes the first
such point, then a,, — oo as m — oc.

(¢) limsup,, o [, exp(wh(t) —t) dt < exp(y(q) +7)-
(d) limp—oo [ exp(win(t) —t) dt = 1.

Proposition 1 follows from (c) and (d). The proofs in [2] require only
minor modifications except for part (c¢) for 1 < ¢ < 2, which begins with the
following lemma.

Lemma 1.1. For 1 < ¢ < oo, p = q/(qg—1) and § > 0, let K, be the
space of continuous piecewise C1 functions on [0,00) satisfying ¢(0) = 0,
¢'(t) >0 and [(¢)? < 6. Then for each ¢ > 0,

(3) sup /OOO exp{e(t) — t} dt < exp{(1/p)?~'¢?6/q} R(q)-

¢€K5,q

While the proof resembles that in [2], we list the modifications required
for noninteger ¢, and also some formulas needed later. Inequality (3) has an
extremal ¢ such that,

(4) ¢¢/(t) = p(1 + Bet/(@=1)=1,

where B > 0 is chosen so that
(5) 15 = / (cd/ (1)1 d.
0

It is also shown (B + 1)/B is the numerical value of the supremum of (3).
Let

(6) B(t) = [141/(Bet/(@ )71 5o that
¢(t) = (q/c)[log(1 + 1/B) +log(5(t))]-
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For further reference, define for B > 0,

(7) @B = [ =07 1

B+1
1

1
- kzzl k(B+ 1)k (k+q—1)(B+ 1)kta-1°

After a change of variables, the right side of (5) is equal to
o 1 1

(8) pq(q—l)/B (u—l)uqdu:pq(q_l);(k:—i—q—l)(B—i-l)’erq—l’

= p?(q — 1)[log(1 + 1/B) — e(q, B)],
> p?(q — 1)[log(1+1/B) — (¥(q) + )],

where 1(q) +v = €(q,0) > &(q, B) for all B > 0. Solving for (B +1)/B in
the above inequality establishes (3).

With the help of (7) and (8), the following extends a lemma of Carleson-
Chang to noninteger ¢ > 2, which is used to prove (c) in this case.

Lemma 1.2.a. Letw € K, and [°(w)9 =6. For 2 < q < oo and a > 0,
we have

© [ ewwrn-nas O o, (Om]) R(g)

1— a1 pilq
where f = §/(1 6"/ D)1"1 and Cy = pwP~ (a).

Our proof of (¢) for 1 < ¢ < 2 requires a similar lemma:

Lemma 1.2.b. For 1l < q < 2 and a large enough with wP(a) —a =
—2log(a), we have

(10) /oo exp(wP(t) —t) dt
< exp(wP(a) — a) exp (Ci}(l +a)?f,

T 1_gax pilq
where o = Cy(log(a)/a)'/9, for some constant Cy independent of a.

Proof of (10). For a > 1, set x =t — a, ¥(r) = w(t) —w(a). Then,

(11)  (w(a) + 9 (@) = wP(a) + p? 1+ [ (@) /w(a)]¥(x) + P (x),
where the function f comes from the binomial expansion of (1 + u)?. Note
that f is an increasing function and f is O(z) as x — 0.

We have wP(a) —a = —2log(a) and wP(a) < a(l — 5)'1%1 This shows,

> R(q) + 2exp(—a),

12) 5=~ 0B ologa)/e?, (0 < (2 q)2)

< Chlog(a)/a.



EXTREMALS FOR A MOSER’S INEQUALITY 117
Let E; be the set of x for which

o) 2 wla)

Then on Ej, using Holder’s inequality and (12),

) 1 a La
! C1log(a) ’

< §l/agl/p [1 + 3(01 1og(a)>1/q] :

(G ]

We now require a to be large enough so that Cjlog(a)/a < 1/47. The
integral of exp{wP — t} over Fj is bounded by,

o t—
(13) / exp <2a — t> dt <2e 7.

1/
Let By = {x s (x) < dw(a) (Cll+g(a)) q}. Replacing wP(t) by the right

C1 log(a) > 1/a

a

w(t) < ()

< 21/P

side of (11), we need to estimate the following integral,
/E exp(wP(a) + pw? ™ (a)(1 + f(v(2) /w(a)¥(z) + VP (2) — 2 — a) da.

Using 9P (z) < o@Dz we set
y=1-6YCTNz o =pPa), ¢(y)=1(x),

o () ()

for some independent constant Cs. Observe that the previous integral is less
than the following

and

exp(wP(a) — a &
ag SO [T e+ a)ot) - )y
1—469¢1 0
where the supremum is taken over all ¢ satisfying
/D (¢'(y)? dy < By.

We have the following inequality from (13) and (14).

| et —nar< (@) ~a) o | espteots) —pyay +2e,
a 1—4da1 0
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where ¢ = (1 + a)c;. We now apply Lemma 1.1 proving (10).
We now return to the proof of (¢) for 1 < ¢ < 2. The conclusion of
Lemma 1.2.b implies

(15) /00 exp(wh (t) —t)dt <

m

e exp(¥(q) +7)
1— 5#{((1*1)

+ 2exp(—ap,),

where

K = wh(am) = am + Gylpe?™" (am) (14 Ca log(am) fam)]*/ (5" q).

All we need to show is that limsup K < 0 as m — oo. The above
expression for K reduces to

I (1 + ) (wim(am))” .
(g = 1)1 =6y

We have (wp,(am))P — am = —21og(ay,). Applying a binomial expansion to
the denominator with estimate (12) derives

K < —2log(am) + 2log(am) + C(log(am)/am) /.

Observing a,, — oo as m — oo completes the proof of (c).

K =dWb (am) —a

Section 2.

Here we prove that A(q) > R(q) by studying specific examples w,. Combined
with Proposition 1 from Section 1, this proves Theorem B. When ¢ > 2,
we can use the Carleson-Chang example, but not their proof which uses
induction on ¢ = n. When 1 < ¢ < 2, we will need a new type of example,
motivated by Section 1, and some very precise estimates to show A(q) >
R(q). In passing, it seems likely that A(q) — R(q) — 0 as ¢ — 1.

Case 1. Suppose 2 < g < co. Set
[(g—1)~"/plt, 0<t<yq,
wq(t) = { (t =)'/, g <t<Ng,
(Ng — 1)Y/P, t> Ny,
where N, = (¢ — 1) exp(p? — p) + 1 is chosen so that [ |/ (¢)|9dt = 1.

One computes the exponential norm as the following:

H@zflmwwwﬁwt

1
:q/o e’ D dt + (2 —q)/e+ (qg— 1) exp(p? —p — 1),

where v(xz) = (¢ — 1)aP — gz. We prove the following lemma and thereby
establish Theorem B.

Lemma 2.1. I(q) > R(q) for q > 2.
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Proof. We observe for v(z) = (¢ — 1)2P — gz that v(0) = 0, v(1) = —1,
v'(x) = q(zP~1 = 1), v'(0) = —¢, v'(1) = 0 and v” > 0. Thus, v(z) > —¢x on
(0,1/q] and v(z) > —1 on [1/q, 1]. We estimate

1 1/q 1
/0 exp(v) > /0 exp(—qx) + /1/q exp(—1) = (1+ (¢ —2)/e)/q,

or

1
q/ exp(v) + (2—¢q)/e > 1.
0
To complete the proof, it is enough to show, for ¢ > 2,

(¢ —Dexp(p? —p—1) > R(q) — 1 = exp(¥(q) + 7).
Both sides are equal to e for ¢ = 2. For ¢ > 2, the problem reduces to
showing

(16) W'(q) < d/dg[p? — p +log(q — 1)].
We now estimate both sides of (16). Observe,
— 1 - 1
V' (q) = <
= (k+q? " = (k+aq- Dk+q+1)
_ 1
(a-3)

d/dg(p? - p) = p?(log(p) —p +1) + (p — 1)*.
To prove (16), we must show
1

1
(a-3)
which requires estimates of log(p) and p?. Set x = 1/(2¢ — 1) < 1/3 so that
p=(1+2)/(1 —x). A Maclaurin series expansion in z shows that

1 + 1 < log(p) < 1 + 1
(4-3) 12(q- %)3 D 10—y
Therefore, from d/dg[log(p?)] = log(p) —1/(¢ — 1) <

log(p?) = log(4) + /2 log <(t f 1)> i i 0 dt,
and using (17),

log(p?) < log(4) +log((2q —1)/3) + ¢ —log(q — 1),

<(p-172+(p-1)+p'(log(p) —p+1),

(17)

, we have

where

q 1 A .
6:/2 MdtZ(l/%) [9—((]_%)2] < 1/45.
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So p? < 8(q—1/2)exp(e)/[3(¢ — 1)]. Since log(p) —p+1 < 0, (16) has been
reduced to proving

(18)

1 1 1\ 8(g—3) 1
@—5)§<q—n*'ﬁq—n> B e CICRr))
Set \=p—1=1/(q—1). Since

1 1 —1
) A T T @D T Bla- D)

the right side of (18) is at least A+ A2 — (4/3)A2 exp{e}. The left side equals
20/(A +2), so (18) reduces to checking that

(19) [(4/3) exp{e} —1](A+2) < 1.

If ¢ > 3, (19) holds because £ < 1/45 and A < 1/2.

Now suppose that 2 < ¢ < 3. Since € < (¢—2)/30, the mean value theorem
shows that exp{e} < 14 (¢—2)/28. We also have A\+2 = (2¢—1)/(¢—1) =
3—(q—2)/(qg—1), so the left side of (19) is at most

[1/3+ (g — 2)/21[3 — (¢ — 2)/(q - 1)]
<1+(¢—2)(1/7-1/Blg- 1) < 1.

This completes the proof of Lemma 2.1.
Case 2. Suppose 1 < q < 2.

Attempts to use examples like those in Case 1 indicate that the number
of pieces required to beat R(q) is unbounded as g approaches 1. We will
construct an example that is linear over [0, a] and nonlinear over [a, c0). We
shall show that for large enough a, the exponential norm exceeds R(q). In
fact, as a — oo, the exponential norm of our example converges downward
to R(q). This is sufficient to establish the conclusion of Proposition 1 as
false thereby proving Theorem B. The idea of how to do this is based upon
the method of proof of Proposition 1 for 1 < ¢ < 2.

To begin, let a > 1 and w be linear on [0, a] satisfying w(0) = 0 and
wP(a) —a = —2log(a). Define § by the following:

(20) 5= /0 W (0|7 dt = (wP(a)/a)s".

We look to Lemma 1.1 for the definition of our example over [a, c0). Recall
that there is an explicit formula for an extremal for the supremum of (3). We
use this formula below. For ¢t > a, we define x = t—a and w(t) = (z)+w(a),
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where
(21)

(@) = (g — 1) As[log(1 + 1/B) + log(B(x))], and /0 T W (@) de <6

For ease of notation we have set

Blw) = [1+1/(Ber 1),

We shall specify the constants A; and B later.
The first estimate of the exponential integral is obvious.

(22) /a exp(wP(t) —t)dt >1—e .
0

The hard work is estimating the exponential integral over [a, 00).
The basic idea of [2] was to linearize the (w(a) + ¢ (x))P and we do the
same. However, the obvious inequality

(w(a) + (@) > wP(a) + pw?~ (a)p(z) + 9P (2),
is too generous for our purposes. Therefore we expand as follows:
wh(t) = (wla) + ¥(x))” = (n+ (¢ — 1) A1 log(B(x)))",
where 1 = w(a) + (¢ — 1)A1log(1 + 1/B) = w(a) + ¥(o0), to obtain
(23)
(w(a) + 9 (@))? = pP + puP~" (g — 1) A1 log(B(x))
+(1/2)p(p — 1)((q — 1)A1)*1P " log?(B(2))
+(1/6)p(p — 1)(p — 2)((g — 1) A1)*(¢)P log? (B(x)),

(where w(a) < ¢ < p),

> Ag + Azt(z) 4+ Aslog®(B(x)) + As log®(B(x)),
where
(24) Ay = (w(a) + (¢ — 1)A1log(1 4 1/B))P " (w(a) — qA;log(1 + 1/B)),
(or Az = pP~Hw(a) — (p — 1)ip(c0))),
Az = p(w(a) + (¢ — 1) Ay log(1 + 1/B))P 1,
Ag= (1/2)p(p — D((¢ = D A1)*(w(a) + (¢ — 1) A1 log(1 + 1/B))P~?
A5 = (1/6)p(p — 1)(p — 2)((¢ — D A)*W,
ere W — (w(a))? 2<p<3.
where {<w<a>+ ()P, 3<p.
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We can now specify A; and B. Motivated by Equation (4), with the intention
of having ¢ = A3 = p/A1, we want A; and B to satisfy
-1
(25) Az’ (x) =p (1 + Bex/(q_l)) , or equivalently,
Ar = (w(a) + (g — ) Arlog(1 +1/B))' P = ()"

And also, from (5), we want

0 o ds
* - =(q—-1 / —_—
() Af ( ) B1 (58— 1)st
It is not yet clear that there exist simultaneous solutions 4; and B. To
see this, let (25) define A; as a function of B. Define L(B) as the left side
and R(B) as the right side of (x). As B — oo, A1 — w(a)P~! by (25), and
R(B) — 0. So, L > R for large enough B. We compute,

dR/dB = —(q—1)/[B(B +1)9] and dL/dB = —(q—1)/[B(B + 1)].

Estimating the integrals as B — 0% shows L < R for small enough B.

Note that (24) and (25) imply A; = p/As. Setting ¢ = As in (3) implies
that the extremal ¢(x) for Lemma 1.1 is the ¢(x) defined by (21). Thus,
1 satisfies all the formulas in Lemma 1.1. We can now use (23) to proceed
with the proof of Theorem B. The terms involving 3 below were neglected
error terms in [2], but contribute to an important ‘good’ integral G' defined
below. The analysis is very tight.

We now have the following estimate:

(26)
/aoo exp(wP(t) —t) dt
> exp(dz —a) [ exp(Aat(a) + Aslogh(B(a)) + Aslog'(B(a)) ~ o) do
— exp(As — a) / exp(v(z) + n(x)) dx
— exp(As — a) [ / exp(v(z)) dz + G]
where v(z) = Az (z) — z, n(z) = Aglog?(B(z)) + Aslog®(B(z)) and

G= / exp(v(z) + () — exp(v(z)) dz.

We will be done if we show the right-hand side of (26) is larger than
R(q) — 1+ e = exp(e(q,0)) + e ® We now expand the right side of
(26) into quantities that we must estimate. Since we have chosen ¢ to be
an extremal, all the estimates of Lemma 1.1 will apply. In particular, we
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shall need the following identities to establish the estimates that have been
organized into Lemmas 2.2 and 2.3.

(27)
(i) a=wP(a)(1-68)'7F, (by (20));
(ii) (B+1)/B = exp(6p”/(q — 1) + (g, B)), (by (8) and (25));

(i) dp = h(o0) — (qulp)el(q,b)

(iv) exp(4z — a) /exp(V(w)) = exp(Az —a+6pP/(q — 1)) exp(e(g, B));

((iv) is equivalent to (ii)).

(rearranging (ii));

Lemma 2.2.

(a) A2 —a+06pP/(q—1) > —*(q, B)/[w(a)p?~"].

(b) €(g,0) —e(q, B) < (¢ — 1)B.

(c) e(g, B) < (7%/6 —1/p)(g — 1).
Proof of (a). We begin with expanding the left side of (a) and simplifying
using the definitions of Ag,u, w(a) and 1 (c0), see (24).

Ay —a+06pP/(q—1)
= 1M (wla) — (p~ D(o0) —at
(¢—1)

op

(¢—1)]"

using —(p — 1) +1/(¢ — 1) = 0 and the right side of (27iii) for dpu,

— —a+ 57 [w(a) — (= 1(o0) +

= —a+ P w(a) — (g, B)utP),
— a4 W (@)1 + 9(o0) @) — (g, B),

using (27iii) to solve for ¥ (o0)/w(a),

L, (g=Delg, B
1—-6  (1—=0)w(a)ur!
For p > 2, (x + y)P~' > 2P~ 4 (p — 1)2P~2y and the above reduces to
(28)

> —a —e(q, B) + w(a)(1 = 8)' 7P + (g, B)[(1 — 0)(1+9(00) /w(a))]' P
Using (271) and the following version of (27iii),

(1 =0)(1+1(o0)/w(a)) =1+

=—a—¢(g,B) + w”(a)
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The right side of (28) is
= —&(¢, B) +e(q, B)[1 + (¢ = De(g, B)/ (w(a)u D',
> —e(q, B) +¢(q, B)[1 — e(g, B)/(w(a) )]

which completes the Proof of (a).

Proof of (b). By (7) we have

e(q,0) —e(q, B) :/13+1 ! F—l} ds

(s—1) s 4

B+1
g/l " (g—1)/sds < (q¢g—1)B.

Proof of (c). Using the series representation of (g, 0), see (7),

[e.9]

0 8) <00 =3 (3 =)

k=1
> 1 1
‘<Q‘”<l+k§k:<k+q—1>‘p’>

1 1
<(qg—1) (Z 5 p) . which is (c).
k=1
Lemma 2.3. For large enough a, G > q(q — 1)[1 — 3/a]/[Bu?].

Proof. By integration by parts,
/ " exp(u(a) + n(x)) de = V(o) - / " V(a) expln(e)) () de,
0 0
where
Vi(z) = /O exp(u(t)) dt,

and n(x) = Aqlog>(B(2)) + Aslog®(B(x)), B(z) = [1 +1/(Be™/*~ )],

We need to explicitly calculate V(z). To begin, v(t) = Az (t) —t, where
1 is an extremal for (3). Therefore, a variational argument shows that v
satisfies,

(29) '@ = AV (#)(V(t) +1)972, for some constant A < 0.

Observe v(0) = 0, /(c0) = —1 and v(oc0) = —oo. Multiply (29) by +/(t) and
integrate to obtain,
o _ A1 A+

30 = -~ +C.
(30) . p—
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Let t — oo to obtain C' = 0. Equations (29) and (30) imply
V() +1?  @+1)

V// t —
(t) . =
Solving this differential equation shows the following version of (4):
(31) V(t) +1=p(1+ Be/lT"D)~L,

It can be shown, see [2], that V(co) = (B+1)/B = J = 1/5(0). Using (30)
and (31) we compute,

V(z) = —Ap" /(g = D[(B+ 1) — (1 - B(a))T].
Using V(o) = (B + 1)/B and the above with $(c0) = 1, we have
(32) V(z) = (B+1)?/B[(B+1)""7~ (1 B(x))"].
Notice 3 < 1, exp(n(z)) > 1 and n/(z) < 0, thus the above gives,

G=>1/B /Ooo[(B + )= (1= () ()] da,
and setting w = log (),

0
— _1/3/ (244w — 3AswH)[(B+ 1)1 — (1 — “)? ] dw.
—log(J)
Using a Maclaurin series representation for (1 — z)4~! and (B +1)"! =
1-1/J,
0
G > 1/3/ (244w — 3A5w?)(q — 1)[e¥ — B/(B + 1)] dw,
—log(J)

integrating by parts and using the definitions of A4 and Ajs (see (24)) gives,
= la(q — 1)/(BpP)[1 = (p — 2)(a — 1)/u + O(log®(J) /)]
Notice that, u? =~ wP(a) = a, as a approaches co. By (27iii),
p=>wla)/(1-90) = (a/w(a)).

So P > pP~lw(a) > a. By (20), 6 > 2(q¢ — 1)log(a)/a. This and (27ii) give
B is O(1/a?). Thus log3(J)/J is o(1/a), and so

G = q(qg— 1)1 —3/a]/(Bp?).
This completes the proof of Lemma 2.3. We return to the proof of Theo-

rem B.

Using (22), (26), and (27iv),

/0 " exp(w?(x) — z) da

>1—e " +exp(Ay —a+0pP /(g —1))ef @B 4 exp(Ay — a)G.
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We shall show the right side is greater than or equal to 1 + ¢5(¢9). Using
algebra and (27ii) this goal becomes,

(33) exp(As — a+duP/(q — 1))[1 + BG/(B +1)] > e @B [5(00) 4 =],

By Lemma 2.2(a) and Lemma 2.3, the left side of the above is greater than
or equal to

exp(—e?(q, B)/(w(a)p?~ )L +q(q — 1)(1 = 3/a)/ [P (1 + B)]],
and,
e2(¢,B) < (7?/6 —1/p)* (¢ — 1)?, (by Lemma 2.2(c)).

Since 72/6 — 1/p < p for p > 2 and p(q — 1) = ¢, for large enough a the
above is

< (g —log(a)/a)(q — 1).
We also claim 1/a — 1/pP is O(1/a?). To see this, from (27i) and (27iii),

p’ < (afw(a))’(1+ (¢ — De(g, B)/a)”.
A binomial expansion shows (1 + (¢ — 1)e(q, B)/a)? is 1 + O(1/a). So,
lim sup(u” — a) < limsup[(a/w(a))” —a] + O(1)
=0(1).
Therefore, 1/a — 1/pP ~ (uP — a)/a? is O(1/a?).
Recall that B is O(1/a?), so the factor B + 1 is negligible and the left
side of (33) is at least
[1 — (¢ —log(a)/a)(g — 1)/a][1 + q(q — 1)(1 — 3/a)/a] + O(1/a®),
> 14 (¢ —1)log(a)/a® + O(1/a?),
> 1+ (¢ —1)[B+ (log(a) — 1)/a?]| + O(1/a?).

Lemma 2.2(b) implies the right side of (33) is at most 14 (¢—1)B+0(1/a*),
completing the proof.

Section 3. An application of Theorem B.

For real valued functions f on R", let f* be the nonincreasing rearrangement
of f defined as f*(t) = inf{s : m{|f| > s} < t}. We define f#(z) to
be the spherically symmetric nondecreasing rearrangement of f defined as
f7(x) = f*(on_1]z|"/n) where o,,_1 is the n — 1 measure of the unit sphere.

We have the following theorem which includes the case ¢ = n which is the
application of Carleson and Chang, [2].
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Theorem C. Let 1 < g < n. For functions u supported in B"™ such that
[Vullg <1,

/n exp(au®? (z))m(|z|) dz < A(q)| B,

where

exp{—(r~F* —1
(r) = p{rn(kﬂ) )}

and
(n—q) 1/(g—1)
=— a=n(o,— .
n(qg—1) N
If g =n, set m(r) = 1.
This is sharp in the sense that it does not hold for any larger «. There is
an extremal for each 1 < ¢ < n. Also, m(r) is continuous as a function of gq.
By standard symmetrization, we can assume u = u#. Set |z| = e~¥/™,
v(t) = o /Pu#(x) and note |v/(t)| = (a/P|z|/n)|Vu# (z)|, dz = —|B"|e tdt.
So,

/ 1/ ()2t @)/ g < 1.
0

For 1 < g < m, set t = In(ks + 1)/k, so s = (1) /k. Set w(s) = v(t).
Then,

/ W (5)]7ds < 1.
0

By Theorem A, [exp(wP(s) — s)ds < A(g), and this has an extremal by
Theorem B. Thus,

/ " exp(u? (1) — s(t)) ds(t) < A(g),

and this has an extremal. This is the conclusion of Theorem C.

References

[1] D.R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of
Math., 128 (1988), 385-398, MR 89i:46034, Zbl 9672.31008.

[2] L. Carleson and S.Y.A. Chang, On the existence of an extremal function for an in-
equality of J. Moser, Bull. Sc. Math., 2¢ série, 110 (1986), 113-127, MR 88f:46070,
Zbl 0619.58013.

[3] M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions,
Comm. Math. Hel., 67 (1992), 471-497, MR 93k:58073, Zbl 0763.58008.

[4] S. Hudson and M. Leckband, A sharp exponential inequality for Lorentz-Sobolev
spaces on bounded domains, Proc. Amer. Math. Soc., 127(7) (1999), 2029-2033,
MR 99j:46036, Zbl 0920.46025.


http://www.ams.org/mathscinet-getitem?mr=89i:46034
http://www.emis.de/cgi-bin/MATH-item?9672.31008
http://www.ams.org/mathscinet-getitem?mr=88f:46070
http://www.emis.de/cgi-bin/MATH-item?0619.58013
http://www.ams.org/mathscinet-getitem?mr=93k:58073
http://www.emis.de/cgi-bin/MATH-item?0763.58008
http://www.ams.org/mathscinet-getitem?mr=99j:46036
http://www.emis.de/cgi-bin/MATH-item?0920.46025

128 STEVE HUDSON AND MARK LECKBAND

[5] M. Jodeit, An inequality for the indefinite integral of a function in L?, Studia Math.,
44 (1972), 545-554, MR 49 #5805, Zbl 0244.26010.

[6] M.A. Leckband, An integral inequality with applications, Trans. Amer. Math. Soc.,
283(1) (1984), 157-168, MR 85g:26018, Zbl 0545.26006.

[7] K.-C. Lin, Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc.,
348(7) (1996), 2663-2671, MR 96i:58043, Zbl 0861.49001.

[8] J.B. McLeod and L.A. Peletier, Observations on Moser’s inequality, Arch. Rat. Mech.
Anal., 106 (1989), 261-285, MR 90d:26029, Zbl 0687.46017.

. Moser, sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J.,
9] J. M A sh f f ; lity by N. Trudi Ind. Univ. Math. J., 23
(1971), 1077-1092, MR 46 #662, Zbl 0213.13001.

[10] N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math.
Mech., 17 (1967), 473-484, MR 35 #7121, Zbl 0163.36402.

Received July 19, 1999.

MATHEMATICS DEPARTMENT
FLORIDA INTERNATIONAL UNIVERSITY
Miawmi, FL 33199

FE-mail address: hudsons@fiu.edu

MATHEMATICS DEPARTMENT
FLORIDA INTERNATIONAL UNIVERSITY
Miawmi, FL 33199

E-mail address: leckband@fiu.edu


http://www.ams.org/mathscinet-getitem?mr=49:5805
http://www.emis.de/cgi-bin/MATH-item?0244.26010
http://www.ams.org/mathscinet-getitem?mr=85g:26018
http://www.emis.de/cgi-bin/MATH-item?0545.26006
http://www.ams.org/mathscinet-getitem?mr=96i:58043
http://www.emis.de/cgi-bin/MATH-item?0861.49001
http://www.ams.org/mathscinet-getitem?mr=90d:26029
http://www.emis.de/cgi-bin/MATH-item?0687.46017
http://www.ams.org/mathscinet-getitem?mr=46:662
http://www.emis.de/cgi-bin/MATH-item?0213.13001
http://www.ams.org/mathscinet-getitem?mr=35:7121
http://www.emis.de/cgi-bin/MATH-item?0163.36402
mailto:hudsons@fiu.edu
mailto:leckband@fiu.edu

