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Trudinger and Moser, interested in certain nonlinear prob-
lems in differential geometry, showed that if |∇u|q is inte-
grable on a bounded domain in Rn with q ≥ n ≥ 2, then
u is exponentially integrable there. Symmetrization reduces
the problem to a one-dimensional inequality, which Jodeit ex-
tended to q > 1. Carleson and Chang proved that this in-
equality has extremals when q ≥ 2 is an integer. Hence, so
does the Moser-Trudinger inequality (with q = n).

This paper extends the result of Carleson and Chang to all
real numbers q > 1. An application and some related results
involving noninteger q are also discussed.

Introduction.

Let D be a bounded domain in Rn, n ≥ 2. Let Wn(D) be the Sobolev
space of functions u supported in the closure of D with gradient in Ln(D).
Trudinger [10] showed that for u in the unit ball of Wn, there are constants
α and A (depending only on n) such that∫

D
exp(αu

n
n−1 ) dx ≤ A|D|.(1)

Moser [9] found the largest possible value of α by using symmetrization
to reduce this to a one-dimensional problem. The integer n can then be
replaced by a real number q ≥ 2. Jodeit [5] extended the result to 1 < q < 2.

Theorem A (Jodeit, Moser). Let 1 < q < ∞, 1/p + 1/q = 1. Let ω be a
function in C1[0,∞) such that ω(0) = 0 and

∫
|w′|q ≤ 1. Then

A(q) = sup
w

∫ ∞

0
exp(ωp(t)− t) dt.(2)

Carleson and Chang [2] proved that this theorem has extremals for inte-
gers q ≥ 2. Through symmetrization, this proves that the Trudinger-Moser
theorem for Wn(D) has extremals, at least when D is a ball. Flucher [3]
extended this to arbitrary smooth bounded domains in Rn . Lin [6] did the
same for n ≥ 3. It is natural to ask whether Theorem A has extremals for
general q. The main result of this paper is:
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Theorem B. Theorem A has extremals for all real numbers q > 1.

The outline of the proof is similar to that in [2], especially when q ≥ 2.
In Section 1 we show that if no extremals exist, then A(q) is less than an
explicit constant R(q). This requires new methods when 1 < q < 2. One of
the main ideas of [2] is linearization, in which the exponent p is replaced by
1, with controllable error for 1 < p ≤ 2. So, it is not surprising that their
proof (their inequality (23), for example) breaks down when 1 < q < 2.

Section 2 provides a specific ω to show A(q) > R(q). This part requires
a different construction than in [2], but for a different reason. There is less
slack: It appears that A(q) → R(q) as q → 1+ (but we do not attempt a
proof of this).

In a related paper, McLeod and Peletier [8] give a somewhat different
proof of Theorems A and B for integer q > 1. It differs especially in the first
part, in showing A(q) ≤ R(q). It then refers to the ω in [2].

It is not clear whether Theorem B has important applications to functions
on Rn (with q 6= n). But there are several related results that show it
is reasonable to look at noninteger q. For example, in Section 3, we use
Theorem B to generalize the results in [2] to u ∈ W q(Bn), 1 < q ≤ n, with
similar sharpness in α. When q < n this involves a weight.

Also, Theorem A is used by the authors in [4] to prove an inequality like
Moser’s for functions in the Lorentz-Sobolev space Wn,q(D). It isn’t clear
whether Theorem B gives extremals for this problem, due to problems with
symmetrization.

Adams [1] has extended the Moser-Trudinger theorem to higher-order
derivatives, based on a generalization of Theorem A by Garcia. A very
interesting question is whether the inequality of Adams, or Garcia, has ex-
tremals. Our methods seem promising in showing that Garcia’s inequality
has them, for some range of q.

Section 1.

This section contains the proof of Proposition 1 below, and follows the strat-
egy in [2]. Mainly, the range 1 < q < 2 requires a new approach. We will
generally avoid duplication of [2], except that our construction in the next
section (unlike the one in [2]) is based on this work. So several equations
from [2] are included here for later reference.

Let R(q) = 1 + exp{ψ(q) + γ}, where ψ(q) is the psi function Γ′(q)/Γ(q)
and γ is the Euler constant. If q = n is an integer, then R(q) is the Carleson-
Chang constant 1 + exp{1 + 1/2 + · · ·+ 1/(n− 1)}. A(q) is the constant of
Theorem A.

Proposition 1. If Theorem A has no extremal, then A(q) ≤ R(q).
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The following notation and results will be used in the proof. Let Kq be
the space of continuous piecewise C1 functions ω(t) on [0,∞) satisfying

ω(0) = 0, ω′(t) ≥ 0, and
∫ ∞

0
|ω′|q ≤ 1.

Roughly, these are the functions of Theorem A.
Let ωm be a sequence in Kq such that

∫∞
0 exp(ωp

m(t) − t) dt converges
to A(q) as m → ∞. Assuming Theorem A has no extremal, the following
conditions hold:

(a) For each A > 0,
∫ A
0 |ω′m(t)|q dt→ 0 as m→∞.

(b) For m large enough, there exists a point am in [1,∞) such that
(ωm(am))p − am = −2 log+(am). Moreover, if am denotes the first
such point, then am →∞ as m→∞.

(c) lim supm→∞
∫∞
am

exp(ωp
m(t)− t) dt ≤ exp(ψ(q) + γ).

(d) limm→∞
∫ am

0 exp(ωp
m(t)− t) dt = 1.

Proposition 1 follows from (c) and (d). The proofs in [2] require only
minor modifications except for part (c) for 1 < q < 2, which begins with the
following lemma.

Lemma 1.1. For 1 < q < ∞, p = q/(q − 1) and δ > 0, let Kδ,q be the
space of continuous piecewise C1 functions on [0,∞) satisfying φ(0) = 0,
φ′(t) ≥ 0 and

∫
(φ′)q ≤ δ. Then for each c > 0,

sup
φ∈Kδ,q

∫ ∞

0
exp{cφ(t)− t} dt < exp{(1/p)q−1cqδ/q}R(q).(3)

While the proof resembles that in [2], we list the modifications required
for noninteger q, and also some formulas needed later. Inequality (3) has an
extremal φ such that,

cφ′(t) = p(1 +Bet/(q−1))−1,(4)

where B ≥ 0 is chosen so that

cqδ =
∫ ∞

0
(cφ′(t))q dt.(5)

It is also shown (B + 1)/B is the numerical value of the supremum of (3).
Let

β(t) = [1 + 1/(Bet/(q−1))]−1, so that(6)

φ(t) = (q/c)[log(1 + 1/B) + log(β(t))].
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For further reference, define for B ≥ 0,

ε(q,B) =
∫ ∞

B+1
(u− 1)−1[1/u− 1/uq] du,(7)

=
∑
k=1

1
k(B + 1)k

− 1
(k + q − 1)(B + 1)k+q−1

.

After a change of variables, the right side of (5) is equal to

pq(q − 1)
∫ ∞

B

1
(u− 1)uq

du = pq(q − 1)
∑
k=1

1
(k + q − 1)(B + 1)k+q−1

,(8)

= pq(q − 1)[log(1 + 1/B)− ε(q,B)],

> pq(q − 1)[log(1 + 1/B)− (ψ(q) + γ)],

where ψ(q) + γ = ε(q, 0) > ε(q,B) for all B > 0. Solving for (B + 1)/B in
the above inequality establishes (3).

With the help of (7) and (8), the following extends a lemma of Carleson-
Chang to noninteger q ≥ 2, which is used to prove (c) in this case.

Lemma 1.2.a. Let ω ∈ Kq and
∫∞
a (ω′)q = δ. For 2 ≤ q < ∞ and a > 0,

we have∫ ∞

a
exp(ωp(t)− t) dt ≤ exp(ωp(a)− a)

1− δ
1

q−1

exp
(
Cq

1βq

pq−1q

)
R(q),(9)

where βq = δ/(1− δ1/(q−1))q−1 and C1 = pωp−1(a).

Our proof of (c) for 1 < q < 2 requires a similar lemma:

Lemma 1.2.b. For 1 < q < 2 and a large enough with ωp(a) − a =
−2 log(a), we have∫ ∞

a
exp(ωp(t)− t) dt(10)

≤ exp(ωp(a)− a)

1− δ
1

q−1

exp
(
Cq

1(1 + α)qβq

pq−1q

)
R(q) + 2 exp(−a),

where α = C2(log(a)/a)1/q, for some constant C2 independent of a.

Proof of (10). For a > 1, set x = t− a, ψ(x) = ω(t)− ω(a). Then,

(ω(a) + ψ(x))p = ωp(a) + pωp−1[1 + f(ψ(x)/ω(a))]ψ(x) + ψp(x),(11)

where the function f comes from the binomial expansion of (1 + u)q. Note
that f is an increasing function and f is O(x) as x→ 0.

We have ωp(a)− a = −2 log(a) and ωp(a) ≤ a(1− δ)
1

q−1 This shows,

δ ≤ 2(q − 1)
log(a)
a

+ C log2(a)/a2,
(
C ≤ (2− q)22−q

)
(12)

≤ C1 log(a)/a.
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Let E1 be the set of x for which

ψ(x) ≥ 4ω(a)
(
C1 log(a)

a

)1/q

.

Then on E1, using Holder’s inequality and (12),

ω(t) ≤ ψ(x)

[
1 +

1
4

(
a

C1 log(a)

)1/q
]
,

≤ δ1/qx1/p

[
1 +

1
4
(C1 log(a))1/q

]
,

≤ x1/p

[(
C1 log(a)

a

)1/q

+
1
4

]
.

We now require a to be large enough so that C1 log(a)/a < 1/4q. The
integral of exp{ωp − t} over E1 is bounded by,∫ ∞

a
exp

(
t− a

2
− t

)
dt ≤ 2e−a.(13)

Let E2 =
{
x : ψ(x) ≤ 4ω(a)

(
C1 log(a)

a

)1/q
}

. Replacing ωp(t) by the right

side of (11), we need to estimate the following integral,∫
E2

exp(ωp(a) + pωp−1(a)(1 + f(ψ(x)/ω(a)))ψ(x) + ψp(x)− x− a) dx.

Using ψp(x) ≤ δ1/(q−1)x, we set

y = (1− δ1/(q−1))x, c1 = pωp−1(a), φ(y) = ψ(x),

and

α = C2

(
log(a)
a

)1/q

≥ f

(
4
(
C1 log(a)

a

)1/q
)
,

for some independent constant C2. Observe that the previous integral is less
than the following

exp(ωp(a)− a)

1− δ
1

q−1

sup
∫ ∞

0
exp(c1(1 + α)φ(y)− y) dy,(14)

where the supremum is taken over all φ satisfying∫ ∞

0
(φ′(y))q dy ≤ βq.

We have the following inequality from (13) and (14).∫ ∞

a
exp(ωp(t)− t) dt ≤ exp(ωp(a)− a)

1− δ
1

q−1

sup
∫ ∞

0
exp(cφ(y)− y) dy + 2e−a,
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where c = (1 + α)c1. We now apply Lemma 1.1 proving (10).
We now return to the proof of (c) for 1 < q < 2. The conclusion of

Lemma 1.2.b implies∫ ∞

am

exp(ωp
m(t)− t) dt ≤ eK exp(ψ(q) + γ)

1− δ
1/(q−1)
m

+ 2 exp(−am),(15)

where

K = ωp
m(am)− am + βq[pωp−1(am)(1 + C2 log(am)/am)]q/(pq−1q).

All we need to show is that lim supK ≤ 0 as m → ∞. The above
expression for K reduces to

K = ωp
m(am)− am +

δm(1 + α)q(ωm(am))p

(q − 1)(1− δ
1/(q−1)
m )q−1

.

We have (ωm(am))p − am = −2 log(am). Applying a binomial expansion to
the denominator with estimate (12) derives

K ≤ −2 log(am) + 2 log(am) + C(log(am)/am)1+1/q.

Observing am →∞ as m→∞ completes the proof of (c).

Section 2.

Here we prove that A(q) > R(q) by studying specific examples ωq. Combined
with Proposition 1 from Section 1, this proves Theorem B. When q ≥ 2,
we can use the Carleson-Chang example, but not their proof which uses
induction on q = n. When 1 < q < 2, we will need a new type of example,
motivated by Section 1, and some very precise estimates to show A(q) >
R(q). In passing, it seems likely that A(q)−R(q) → 0 as q → 1.

Case 1. Suppose 2 ≤ q <∞. Set

ωq(t) =


[(q − 1)−1/q/p]t, 0 ≤ t ≤ q,

(t− 1)1/p, q ≤ t ≤ Nq,

(Nq − 1)1/p, t ≥ Nq,

where Nq = (q − 1) exp(pq − p) + 1 is chosen so that
∫∞
0 |ω′(t)|q dt = 1.

One computes the exponential norm as the following:

I(q) =
∫ ∞

0
exp(ωp

m(t)− t) dt

= q

∫ 1

0
ev(t) dt+ (2− q)/e+ (q − 1) exp(pq − p− 1),

where v(x) = (q − 1)xp − qx. We prove the following lemma and thereby
establish Theorem B.

Lemma 2.1. I(q) > R(q) for q ≥ 2.
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Proof. We observe for v(x) = (q − 1)xp − qx that v(0) = 0, v(1) = −1,
v′(x) = q(xp−1− 1), v′(0) = −q, v′(1) = 0 and v′′ > 0. Thus, v(x) > −qx on
(0, 1/q] and v(x) ≥ −1 on [1/q, 1]. We estimate∫ 1

0
exp(v) >

∫ 1/q

0
exp(−qx) +

∫ 1

1/q
exp(−1) = (1 + (q − 2)/e)/q,

or

q

∫ 1

0
exp(v) + (2− q)/e > 1.

To complete the proof, it is enough to show, for q ≥ 2,

(q − 1) exp(pq − p− 1) ≥ R(q)− 1 = exp(ψ(q) + γ).

Both sides are equal to e for q = 2. For q > 2, the problem reduces to
showing

ψ′(q) ≤ d/dq[pq − p+ log(q − 1)].(16)

We now estimate both sides of (16). Observe,

ψ′(q) =
∞∑

k=0

1
(k + q)2

≤
∞∑

k=0

1
(k + q − 1

2)(k + q + 1
2)

=
1(

q − 1
2

) ,
d/dq(pq − p) = pq(log(p)− p+ 1) + (p− 1)2.

To prove (16), we must show
1(

q − 1
2

) ≤ (p− 1)2 + (p− 1) + pq(log(p)− p+ 1),

which requires estimates of log(p) and pq. Set x = 1/(2q − 1) ≤ 1/3 so that
p = (1 + x)/(1− x). A Maclaurin series expansion in x shows that

1(
q − 1

2

) +
1

12
(
q − 1

2

)3 ≤ log(p) ≤ 1(
q − 1

2

) +
1

10
(
q − 1

2

)3 .(17)

Therefore, from d/dq[log(pq)] = log(p)− 1/(q − 1) ≤ 0, we have

log(pq) = log(4) +
∫ q

2
log
(

t

(t− 1)

)
− 1

(t− 1)
dt,

and using (17),

log(pq) ≤ log(4) + log((2q − 1)/3) + ε− log(q − 1),

where

ε =
∫ q

2

1
(10(t− 1

2)3)
dt = (1/20)

[
4
9
− 1(

q − 1
2

)2
]
< 1/45.
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So pq ≤ 8(q− 1/2) exp(ε)/[3(q− 1)]. Since log(p)− p+ 1 ≤ 0, (16) has been
reduced to proving

1(
q − 1

2

) ≤ 1
(q − 1)

+
(

1
(q − 1)

)2

+
8(q − 1

2)
3(q − 1)

exp(ε)
(

log(p)− 1
(q − 1)

)
.

(18)

Set λ = p− 1 = 1/(q − 1). Since

log(p)− λ ≥ 1(
q − 1

2

) − 1
(q − 1)

=
−1

[2(q − 1
2)(q − 1)]

,

the right side of (18) is at least λ+λ2− (4/3)λ2 exp{ε}. The left side equals
2λ/(λ+ 2), so (18) reduces to checking that

[(4/3) exp{ε} − 1](λ+ 2) ≤ 1.(19)

If q ≥ 3, (19) holds because ε ≤ 1/45 and λ ≤ 1/2.
Now suppose that 2 < q ≤ 3. Since ε ≤ (q−2)/30, the mean value theorem

shows that exp{ε} ≤ 1+(q−2)/28. We also have λ+2 = (2q−1)/(q−1) =
3− (q − 2)/(q − 1), so the left side of (19) is at most

[1/3 + (q − 2)/21][3− (q − 2)/(q − 1)]

≤ 1 + (q − 2)(1/7− 1/[3(q − 1)]) ≤ 1.

This completes the proof of Lemma 2.1.

Case 2. Suppose 1 < q < 2.

Attempts to use examples like those in Case 1 indicate that the number
of pieces required to beat R(q) is unbounded as q approaches 1. We will
construct an example that is linear over [0, a] and nonlinear over [a,∞). We
shall show that for large enough a, the exponential norm exceeds R(q). In
fact, as a → ∞, the exponential norm of our example converges downward
to R(q). This is sufficient to establish the conclusion of Proposition 1 as
false thereby proving Theorem B. The idea of how to do this is based upon
the method of proof of Proposition 1 for 1 < q < 2.

To begin, let a > 1 and ω be linear on [0, a] satisfying ω(0) = 0 and
ωp(a)− a = −2 log(a). Define δ by the following:

1− δ =
∫ a

0
|ω′(t)|q dt = (wp(a)/a)q−1.(20)

We look to Lemma 1.1 for the definition of our example over [a,∞). Recall
that there is an explicit formula for an extremal for the supremum of (3). We
use this formula below. For t > a, we define x = t−a and ω(t) = ψ(x)+ω(a),
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where

ψ(x) = (q − 1)A1[log(1 + 1/B) + log(β(x))], and
∫ ∞

0
(ψ′(x))q dx ≤ δ.

(21)

For ease of notation we have set

β(x) = [1 + 1/(Be
x

q−1 )]−1.

We shall specify the constants A1 and B later.
The first estimate of the exponential integral is obvious.∫ a

0
exp(wp(t)− t) dt > 1− e−a.(22)

The hard work is estimating the exponential integral over [a,∞).
The basic idea of [2] was to linearize the (ω(a) + ψ(x))p and we do the

same. However, the obvious inequality

(ω(a) + ψ(x))p ≥ ωp(a) + pωp−1(a)ψ(x) + ψp(x),

is too generous for our purposes. Therefore we expand as follows:

ωp(t) = (ω(a) + ψ(x))p = (µ+ (q − 1)A1 log(β(x)))p,

where µ = ω(a) + (q − 1)A1 log(1 + 1/B) = ω(a) + ψ(∞), to obtain

(ω(a) + ψ(x))p = µp + pµp−1(q − 1)A1 log(β(x))

(23)

+ (1/2)p(p− 1)((q − 1)A1)2µp−2 log2(β(x))

+ (1/6)p(p− 1)(p− 2)((q − 1)A1)3(ζ)p−3 log3(β(x)),

(where ω(a) ≤ ζ ≤ µ),

≥ A2 +A3ψ(x) +A4 log2(β(x)) +A5 log3(β(x)),

where

A2 = (ω(a) + (q − 1)A1 log(1 + 1/B))p−1(ω(a)− qA1 log(1 + 1/B)),(24)

(or A2 = µp−1[ω(a)− (p− 1)ψ(∞)]),

A3 = p(ω(a) + (q − 1)A1 log(1 + 1/B))p−1,

A4 = (1/2)p(p− 1)((q − 1)A1)2(ω(a) + (q − 1)A1 log(1 + 1/B))p−2,

A5 = (1/6)p(p− 1)(p− 2)((q − 1)A1)3W,

where W =

{
(ω(a))p−3, 2 < p < 3.
(ω(a) + ψ(∞))p−3, 3 ≤ p.
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We can now specifyA1 andB. Motivated by Equation (4), with the intention
of having c = A3 = p/A1, we want A1 and B to satisfy

A3ψ
′(x) = p

(
1 +Bex/(q−1)

)−1
, or equivalently,(25)

A1 = (ω(a) + (q − 1)A1 log(1 + 1/B))1−p = (µ)1−p.

And also, from (5), we want

(∗) δ

Aq
1

= (q − 1)
∫ ∞

B+1

ds

(s− 1)sq
.

It is not yet clear that there exist simultaneous solutions A1 and B. To
see this, let (25) define A1 as a function of B. Define L(B) as the left side
and R(B) as the right side of (∗). As B → ∞, A1 → ω(a)p−1 by (25), and
R(B) → 0. So, L > R for large enough B. We compute,

dR/dB = −(q − 1)/[B(B + 1)q] and dL/dB = −δ(q − 1)/[B(B + 1)].

Estimating the integrals as B → 0+ shows L < R for small enough B.
Note that (24) and (25) imply A1 = p/A3. Setting c = A3 in (3) implies

that the extremal φ(x) for Lemma 1.1 is the ψ(x) defined by (21). Thus,
ψ satisfies all the formulas in Lemma 1.1. We can now use (23) to proceed
with the proof of Theorem B. The terms involving β below were neglected
error terms in [2], but contribute to an important ‘good’ integral G defined
below. The analysis is very tight.

We now have the following estimate:

∫ ∞

a
exp(ωp(t)− t) dt

(26)

≥ exp(A2 − a)
∫ ∞

0
exp(A3ψ(x) +A4 log2(β(x)) +A5 log3(β(x))− x) dx

= exp(A2 − a)
∫

exp(ν(x) + η(x)) dx

= exp(A2 − a)
[∫

exp(ν(x)) dx+G

]
where ν(x) = A3ψ(x)− x, η(x) = A4 log2(β(x)) +A5 log3(β(x)) and

G =
∫ ∞

0
exp(ν(x) + η(x))− exp(ν(x)) dx.

We will be done if we show the right-hand side of (26) is larger than
R(q) − 1 + e−a = exp(ε(q, 0)) + e−a. We now expand the right side of
(26) into quantities that we must estimate. Since we have chosen ψ to be
an extremal, all the estimates of Lemma 1.1 will apply. In particular, we
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shall need the following identities to establish the estimates that have been
organized into Lemmas 2.2 and 2.3.

(i) a = ωp(a)(1− δ)1−p, (by (20));

(27)

(ii) (B + 1)/B = exp(δµp/(q − 1) + ε(q,B)), (by (8) and (25));

(iii) δµ = ψ(∞)− (q − 1)ε(q, b)
µp−1

(rearranging (ii));

(iv) exp(A2 − a)
∫

exp(ν(x)) = exp(A2 − a+ δµp/(q − 1)) exp(ε(q,B));

((iv) is equivalent to (ii)).

Lemma 2.2.
(a) A2 − a+ δµp/(q − 1) ≥ −ε2(q,B)/[ω(a)µp−1].
(b) ε(q, 0)− ε(q,B) ≤ (q − 1)B.
(c) ε(q,B) ≤ (π2/6− 1/p)(q − 1).

Proof of (a). We begin with expanding the left side of (a) and simplifying
using the definitions of A2,µ, ω(a) and ψ(∞), see (24).

A2 − a+ δµp/(q − 1)

= µp−1(ω(a)− (p− 1)ψ(∞))− a+
δµp

(q − 1)
,

= −a+ µp−1

[
ω(a)− (p− 1)ψ(∞) +

δµ

(q − 1)

]
,

using −(p− 1) + 1/(q − 1) = 0 and the right side of (27iii) for δµ,

= −a+ µp−1[ω(a)− ε(q,B)µ1−p],

= −a+ ωp(a)[1 + ψ(∞)/ω(a)]p−1 − ε(q,B),

using (27iii) to solve for ψ(∞)/ω(a),

= −a− ε(q,B) + ωp(a)
[

1
1− δ

+
(q − 1)ε(q,B)p−1

(1− δ)ω(a)µp−1

]p−1

.

For p ≥ 2, (x+ y)p−1 ≥ xp−1 + (p− 1)xp−2y and the above reduces to

≥ −a− ε(q,B) + ωp(a)(1− δ)1−p + ε(q,B)[(1− δ)(1 + ψ(∞)/ω(a))]1−p.

(28)

Using (27i) and the following version of (27iii),

(1− δ)(1 + ψ(∞)/ω(a)) = 1 +
(q − 1)ε(q,B)

ω(a)(ω(a) + ψ(∞))p−1
.
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The right side of (28) is

= −ε(q,B) + ε(q,B)[1 + (q − 1)ε(q,B)/(ω(a)µp−1)]1−p,

≥ −ε(q,B) + ε(q,B)[1− ε(q,B)/(ω(a)µp−1)]

which completes the Proof of (a).

Proof of (b). By (7) we have

ε(q, 0)− ε(q,B) =
∫ B+1

1

1
(s− 1)

[
1
s
− 1
sq

]
ds

≤
∫ B+1

1
(q − 1)/s ds ≤ (q − 1)B.

Proof of (c). Using the series representation of ε(q, 0), see (7),

ε(q,B) ≤ ε(q, 0) =
∞∑

k=1

(
1
k
− 1
k + q − 1

)
,

= (q − 1)

(
1 +

∞∑
k=2

1
k(k + q − 1)

− 1
p
,

)

≤ (q − 1)

( ∞∑
k=1

1
k2

− 1
p

)
, which is (c).

Lemma 2.3. For large enough a, G ≥ q(q − 1)[1− 3/a]/[Bµp].

Proof. By integration by parts,∫ ∞

0
exp(ν(x) + η(x)) dx = V (∞)−

∫ ∞

0
V (x) exp(η(x))η′(x) dx,

where

V (x) =
∫ x

0
exp(ν(t)) dt,

and η(x) = A4 log2(β(x)) +A5 log3(β(x)), β(x) = [1 + 1/(Bex/q−1)]−1.
We need to explicitly calculate V (x). To begin, ν(t) = A3ψ(t)− t, where

ψ is an extremal for (3). Therefore, a variational argument shows that ν
satisfies,

eν(t) = Aν ′′(t)(ν ′(t) + 1)q−2, for some constant A < 0.(29)

Observe ν(0) = 0, ν ′(∞) = −1 and ν(∞) = −∞. Multiply (29) by ν ′(t) and
integrate to obtain,

eν(t) =
A(ν ′(t) + 1)q

q
− A(ν ′(t) + 1)q−1

q − 1
+ C.(30)
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Let t→∞ to obtain C = 0. Equations (29) and (30) imply

ν ′′(t) =
(ν ′(t) + 1)2

q
− (ν ′(t) + 1)

q − 1
.

Solving this differential equation shows the following version of (4):

ν ′(t) + 1 = p(1 +Bet/(q−1))−1.(31)

It can be shown, see [2], that V (∞) = (B+ 1)/B = J = 1/β(0). Using (30)
and (31) we compute,

V (x) = −Apq−1/(q − 1)[(B + 1)1−q − (1− β(x))q−1].

Using V (∞) = (B + 1)/B and the above with β(∞) = 1, we have

V (x) = (B + 1)q/B[(B + 1)1−q − (1− β(x))q−1].(32)

Notice β ≤ 1, exp(η(x)) ≥ 1 and η′(x) ≤ 0, thus the above gives,

G ≥ 1/B
∫ ∞

0
[(B + 1)1−q − (1− β(x))q−1]|η′(x)| dx,

and setting w = log(β),

= −1/B
∫ 0

− log(J)
(2A4w − 3A5w

2)[(B + 1)1−q − (1− ew)q−1] dw.

Using a Maclaurin series representation for (1 − x)q−1 and (B + 1)−1 =
1− 1/J ,

G ≥ 1/B
∫ 0

−log(J)
(2A4w − 3A5w

2)(q − 1)[ew −B/(B + 1)] dw,

integrating by parts and using the definitions of A4 and A5 (see (24)) gives,

= [q(q − 1)/(Bµp)][1− (p− 2)(q − 1)/µp +O(log3(J)/J)].

Notice that, µp ≈ ωp(a) ≈ a, as a approaches ∞. By (27iii),

µ ≥ ω(a)/(1− δ) = (a/ω(a))q−1.

So µp ≥ µp−1ω(a) ≥ a. By (20), δ ≥ 2(q − 1) log(a)/a. This and (27ii) give
B is O(1/a2). Thus log3(J)/J is o(1/a), and so

G ≥ q(q − 1)[1− 3/a]/(Bµp).

This completes the proof of Lemma 2.3. We return to the proof of Theo-
rem B.

Using (22), (26), and (27iv),∫ ∞

0
exp(ωp(x)− x) dx

> 1− e−a + exp(A2 − a+ δµp/(q − 1))eε(q,B) + exp(A2 − a)G.
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We shall show the right side is greater than or equal to 1 + eε(q,0). Using
algebra and (27ii) this goal becomes,

exp(A2 − a+ δµp/(q − 1))[1 +BG/(B + 1)] ≥ e−ε(q,B)[eε(q,0) + e−a].(33)

By Lemma 2.2(a) and Lemma 2.3, the left side of the above is greater than
or equal to

exp(−ε2(q,B)/(ω(a)µp−1))[1 + q(q − 1)(1− 3/a)/[µp(1 +B)]],

and,

ε2(q,B) ≤ (π2/6− 1/p)2(q − 1)2, (by Lemma 2.2(c)).

Since π2/6 − 1/p < p for p > 2 and p(q − 1) = q, for large enough a the
above is

≤ (q − log(a)/a)(q − 1).

We also claim 1/a− 1/µp is O(1/a2). To see this, from (27i) and (27iii),

µp ≤ (a/ω(a))p(1 + (q − 1)ε(q,B)/a)p.

A binomial expansion shows (1 + (q − 1)ε(q,B)/a)p is 1 +O(1/a). So,

lim sup
a→∞

(µp − a) ≤ lim sup
a→∞

[(a/ω(a))p − a] +O(1)

= O(1).

Therefore, 1/a− 1/µp ≈ (µp − a)/a2 is O(1/a2).
Recall that B is O(1/a2), so the factor B + 1 is negligible and the left

side of (33) is at least

[1− (q − log(a)/a)(q − 1)/a][1 + q(q − 1)(1− 3/a)/a] +O(1/a2),

≥ 1 + (q − 1) log(a)/a2 +O(1/a2),

≥ 1 + (q − 1)[B + (log(a)− 1)/a2] +O(1/a2).

Lemma 2.2(b) implies the right side of (33) is at most 1+(q−1)B+O(1/a4),
completing the proof.

Section 3. An application of Theorem B.

For real valued functions f on Rn, let f∗ be the nonincreasing rearrangement
of f defined as f∗(t) = inf{s : m{|f | > s} ≤ t}. We define f#(x) to
be the spherically symmetric nondecreasing rearrangement of f defined as
f#(x) = f∗(σn−1|x|n/n) where σn−1 is the n−1 measure of the unit sphere.

We have the following theorem which includes the case q = n which is the
application of Carleson and Chang, [2].
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Theorem C. Let 1 < q ≤ n. For functions u supported in Bn such that
‖∇u‖q ≤ 1, ∫

Bn

exp(αu#p(x))m(|x|) dx ≤ A(q)|Bn|,

where

m(r) =
exp{−(r−kn − 1)}

r−n(k+1)

and

k =
(n− q)
n(q − 1)

, α = n(σn−1)1/(q−1).

If q = n, set m(r) = 1.

This is sharp in the sense that it does not hold for any larger α. There is
an extremal for each 1 < q ≤ n. Also, m(r) is continuous as a function of q.

By standard symmetrization, we can assume u = u#. Set |x| = e−t/n,
v(t) = α1/pu#(x) and note |v′(t)| = (α1/p|x|/n)|∇u#(x)|, dx = −|Bn|e−tdt.
So, ∫ ∞

0
|v′(t)|qet(q−n)/n dt ≤ 1.

For 1 < q < n, set t = ln(ks + 1)/k, so s = (ekt−1)/k. Set ω(s) = v(t).
Then, ∫ ∞

0
|ω′(s)|q ds ≤ 1.

By Theorem A,
∫

exp(ωp(s)− s) ds ≤ A(q), and this has an extremal by
Theorem B. Thus, ∫ ∞

0
exp(vp(t)− s(t)) ds(t) ≤ A(q),

and this has an extremal. This is the conclusion of Theorem C.
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