Pacific Journal of Mathematics

ON A QUOTIENT OF THE UNRAMIFIED IWASAWA MODULE OVER AN ABELIAN NUMBER FIELD, II

HUMIO ICHIMURA

Volume 206 No. 1

September 2002

ON A QUOTIENT OF THE UNRAMIFIED IWASAWA MODULE OVER AN ABELIAN NUMBER FIELD, II

Humio Ichimura

Let p be an odd prime number, k an imaginary abelian field containing a primitive p-th root of unity, and k_{∞}/k the cyclotomic \mathbb{Z}_p -extension. Denote by L/k_{∞} the maximal unramified pro-p abelian extension, and by L' the maximal intermediate field of L/k_{∞} in which all prime divisors of k_{∞} over p split completely. Let N/k_{∞} (resp. N'/k_{∞}) be the pro-p abelian extension generated by all p-power roots of all units (resp. p-units) of k_{∞} . In the previous paper, we proved that the \mathbb{Z}_p -torsion subgroup of the odd part of the Galois group $\operatorname{Gal}(N \cap L/k_{\infty})$ is isomorphic, over the group ring $\mathbb{Z}_p[\operatorname{Gal}(k/\mathbb{Q})]$, to a certain standard subquotient of the even part of the ideal class group of k_{∞} . In this paper, we prove that the same holds also for the Galois group $\operatorname{Gal}(N' \cap L'/k_{\infty})$.

1. Introduction.

Let p be a fixed odd prime number, k an imaginary abelian field containing a primitive p-th root ζ_p of unity, and k_{∞}/k the cyclotomic \mathbf{Z}_p -extension. Let L/k_{∞} be the maximal unramified pro-p abelian extension, and L' the maximal intermediate field of L/k_{∞} in which all prime divisors of k_{∞} over p split completely. We put

$$N = k_{\infty}(\epsilon^{1/p^n} \mid \epsilon \in E_{\infty}, \ n \ge 1), \quad N' = k_{\infty}(\epsilon^{1/p^n} \mid \epsilon \in E'_{\infty}, \ n \ge 1),$$

where E_{∞} (resp. E'_{∞}) is the group of units (resp. *p*-units) of k_{∞} . Put

$$\mathcal{X} = \operatorname{Gal}(L/k_{\infty}), \qquad \mathcal{Y} = \operatorname{Gal}(N \cap L/k_{\infty}),$$
$$\mathcal{X}' = \operatorname{Gal}(L'/k_{\infty}), \qquad \mathcal{Y}' = \operatorname{Gal}(N' \cap L'/k_{\infty}),$$

and let \mathcal{X}^- , \mathcal{Y}^- , \mathcal{X}'^- , \mathcal{Y}'^- be the odd parts of the respective Galois groups. It is well-known that \mathcal{X}^- is (finitely generated and) torsion free over \mathbf{Z}_p (cf. Washington [14, Corollary 13.29]). It is also known (and is shown similarly) that \mathcal{X}'^- is torsion free over \mathbf{Z}_p . One naturally asks whether or not the quotients \mathcal{Y}^- of \mathcal{X}^- and \mathcal{Y}'^- of \mathcal{X}'^- are also torsion free over \mathbf{Z}_p . This question arised in the previous investigation [5], [6] on a power integral basis problem over cyclotomic \mathbf{Z}_p -extensions.

Let A_{∞} be the ideal class group of k_{∞} , and A_{∞}^+ its even part. It is conjectured by Greenberg [4] that $A_{\infty}^+ = \{0\}$, which is far from being settled in general. Under this conjecture, it is known that $\mathcal{Y}^- = \mathcal{X}^-$ and $\mathcal{Y}'^- = \mathcal{X}'^-$, and hence \mathcal{Y}^- and \mathcal{Y}'^- are torsion free over \mathbf{Z}_p .

In the preceding paper [7], we proved that the \mathbf{Z}_p -torsion subgroup Tor \mathcal{Y}^- of \mathcal{Y}^- is isomorphic, over the group ring $\mathbf{Z}_p[\operatorname{Gal}(k/\mathbf{Q})]$, to a certain standard subquotient of A^+_{∞} (under the assumption that p does not divide the degree $[k : \mathbf{Q}]$). Further, we gave some assertions on the vanishing of this subquotient.

Let \mathcal{O}_{∞} be the ring of integers of k_{∞} , and $\mathcal{O}'_{\infty} = \mathcal{O}_{\infty}[1/p]$ the ring of *p*-integers. The pairs (L, N) and (L', N') are objects associated to \mathcal{O}_{∞} and \mathcal{O}'_{∞} , respectively. Since k_{∞}/k is wildly ramified at *p*, it is often more natural to use the *p*-integers \mathcal{O}'_{∞} than \mathcal{O}_{∞} . Therefore, it is desirable to obtain a corresponding result for the pair $(\mathcal{X}', \mathcal{Y}')$. In this paper, we prove that the \mathbf{Z}_p -torsion subgroup $\operatorname{Tor} \mathcal{Y}'^-$ of \mathcal{Y}'^- is also isomorphic to the above mentioned subquotient of A^+_{∞} as a $\mathbf{Z}_p[\operatorname{Gal}(k/\mathbf{Q})]$ -module. Namely, $\operatorname{Tor} \mathcal{Y}^-$ and $\operatorname{Tor} \mathcal{Y}'^-$ are isomorphic to each other over $\mathbf{Z}_p[\operatorname{Gal}(k/\mathbf{Q})]$.

2. Results.

Let k be an imaginary abelian field with $\zeta_p \in k^{\times}$, and $\Delta = \operatorname{Gal}(k/\mathbf{Q})$, $\Gamma = \operatorname{Gal}(k_{\infty}/k)$. We assume that

(H) p does not divide the degree $[k : \mathbf{Q}]$.

Then, we have a canonical decomposition

$$\operatorname{Gal}(k_{\infty}/\mathbf{Q}) = \Delta \times \Gamma.$$

A \mathbf{Q}_p -valued character of Δ defined and irreducible over \mathbf{Q}_p is simply called a \mathbf{Q}_p -character. For a \mathbf{Q}_p -character Φ of Δ and a $\mathbf{Z}_p[\Delta]$ -module X, we denote by X^+ , X^- and $X(\Phi)$ the even part, the odd part and the Φ -component $e_{\Phi}X$ of X, respectively. Here, e_{Φ} is the idempotent of $\mathbf{Q}_p[\Delta]$ defined by

$$e_{\Phi} = \frac{1}{|\Delta|} \sum_{\sigma \in \Delta} \Phi(\sigma) \sigma^{-1},$$

which is an element of $\mathbf{Z}_p[\Delta]$ by the assumption (H).

Throughout this paper, we fix an even \mathbf{Q}_p -character Ψ of Δ and its irreducible component ψ over the algebraic closure $\overline{\mathbf{Q}}_p$. Denote by Ψ^* and ψ^* the odd characters of Δ associated to Ψ and ψ by

$$\Psi^*(\sigma) = \omega(\sigma)\Psi(\sigma^{-1}), \quad \psi^*(\sigma) = \omega(\sigma)\psi(\sigma^{-1}), \quad (\sigma \in \Delta),$$

respectively, where ω is the character of Δ representing the Galois action on ζ_p . We often regard ψ and ψ^* as primitive Dirichlet characters.

Let $k_n \ (n \ge 0)$ be the *n*-th layer of k_{∞}/k with $k_0 = k$, and A_n the Sylow *p*-subgroup of the ideal class group of k_n . Let

$$A_{\infty} = \lim A_n$$

be the inductive limit with respect to the inclusion maps $k_n \to k_m$ (n < m). Denote by \widetilde{A}_0 the image of A_0 in A_∞ . Let A_∞^{Γ} be the elements of A_∞ fixed by the action of $\Gamma = \operatorname{Gal}(k_\infty/k)$. It is known (cf. [4, Proposition 1]) that $(A_\infty^{\Gamma})^+$ is a finite abelian group as a consequence of the Leopoldt conjecture for (k,p) proved by Brumer [1]. Hence, so is $(A_\infty^{\Gamma}/\widetilde{A}_0)(\Psi)$. On the other hand, $\operatorname{Tor} \mathcal{Y}(\Psi^*)$ and $\operatorname{Tor} \mathcal{Y}'(\Psi^*)$ are also finite since \mathcal{X}^- is finitely generated over \mathbf{Z}_p by the theorem of Ferrero and Washington [2]. For the trivial character Ψ_0 , it is known (cf. [14, Proposition 6.16]) that $A_\infty(\Psi_0) = \{0\}$ and $\mathcal{X}(\Psi_0^*) = \{0\}$. So, in what follows, we assume that Ψ is nontrivial (and even).

In [7], we proved the following:

Theorem 1. The finite abelian groups $\operatorname{Tor} \mathcal{Y}(\Psi^*)$ and $(A_{\infty}^{\Gamma}/\widetilde{A}_0)(\Psi)$ are isomorphic to each other.

As for the subquotient $A_{\infty}^{\Gamma}/\widetilde{A}_0$ of A_{∞} , we proved in [7, Proposition 1] the following:

Proposition 1. When $\psi(p) \neq 1$, we have $(A_{\infty}^{\Gamma}/\widetilde{A}_0)(\Psi) = \{0\}$.

For more on this subquotient, see [7, Proposition 3] and [8]. The main result of this paper is as follows.

Theorem 2. Tor $\mathcal{Y}'(\Psi^*)$ is isomorphic to $(A^{\Gamma}_{\infty}/\widetilde{A}_0)(\Psi)$ as an abelian group.

We obtain the following corollary from Theorems 1 and 2.

Corollary. The $\mathbb{Z}_p[\Delta]$ -modules $\operatorname{Tor}\mathcal{Y}'^-$ and $\operatorname{Tor}\mathcal{Y}^-$ are isomorphic to each other.

We put

$$\mathcal{H} = \operatorname{Gal}(N/k_{\infty})$$
 and $\mathcal{H}' = \operatorname{Gal}(N'/k_{\infty}).$

It is known (cf. [6, Claim (page 97)]) that, by the restriction map,

(1)
$$\mathcal{H}'(\Psi^*) = \mathcal{H}(\Psi^*).$$

This is because the Leopoldt conjecture for (k_n, p) holds for all $n \ge 0$ by [1]. It is also known (see Section 4.2 (Proof of Lemma 1)) that, by the restriction map,

(2)
$$\mathcal{X}(\Psi^*) = \mathcal{X}'(\Psi^*) \text{ when } \psi^*(p) \neq 1.$$

Therefore, when $\psi^*(p) \neq 1$, we have $\mathcal{Y}'(\Psi^*) = \mathcal{Y}(\Psi^*)$. By this and Proposition 1, we see that Theorem 2 follows immediately from Theorem 1 and the following:

Theorem 3. When $\psi^*(p) = 1$, $\mathcal{Y}'(\Psi^*)$ is torsion free over \mathbf{Z}_p .

Remark 1. Let A'_n be the Sylow *p*-subgroup of the *p*-ideal-class group of k_n in the sense of Iwasawa [10, Section 4.3], and let A'_{∞} be the inductive limit of A'_n with respect to the inclusion maps $k_n \to k_m$ (n < m). Denote by \widetilde{A}'_0 the image of A'_0 in A'_{∞} . To talk about the Galois groups $\mathcal{X}', \mathcal{Y}'$, it is more natural to use A'_{∞} than A_{∞} . However, it is known (cf. [4, Corollary]) that the natural projections

$$A^+_{\infty} \longrightarrow A'^+_{\infty}$$
 and $\widetilde{A}^+_0 \longrightarrow \widetilde{A}'^+_0$

are isomorphisms as a consequence of the Leopoldt conjecture for (k_n, p) $(n \ge 0)$.

Remark 2. It is conjectured that $A_{\infty}^+ = \{0\}$ (cf. [4]). We have many numerical examples of (k, p) with $A_{\infty}^+ = \{0\}$, but no counter examples (see Kraft and Schoof [11], Kurihara [12], Sumida and the author [9]). However, the conjecture is not yet proved to be true in general.

3. Proof of Theorem 3.

We recall a standard notation. Let $O = O_{\psi}$ be the subring of $\overline{\mathbf{Q}}_p$ generated by the values of ψ over \mathbf{Z}_p . We identify the subring $e_{\Psi^*}\mathbf{Z}_p[\Delta]$ of $\mathbf{Z}_p[\Delta]$ with O by sending $e_{\Psi^*}\sigma$ to $\psi^*(\sigma)$, $(\sigma \in \Delta)$. Then, for a $\mathbf{Z}_p[\Delta]$ -module $X, X(\Psi^*)$ is regarded as an O-module. We fix a topological generator γ of Γ . We identify, as usual, the completed group ring $e_{\Psi^*}\mathbf{Z}_p[\Delta][[\Gamma]]$ with the power series ring $\Lambda = O[[T]]$ by $\gamma = 1 + T$ and the above identification. Thus, for a $\mathbf{Z}_p[\Delta][[\Gamma]]$ -module X (such as several Galois groups over k_{∞}), we can regard $X(\Psi^*)$ as a module over O or Λ . We denote by q the element of $p\mathbf{Z}_p$ such that $\zeta^{\gamma} = \zeta^{1+q}$ for all $\zeta \in \mu_{p^{\infty}}$.

Let M/k_{∞} be the maximal pro-*p* abelian extension unramified outside *p*. The fields N, L, N' and L' are intermediate fields of M/k_{∞} . We put

$$\mathcal{G} = \operatorname{Gal}(M/k_{\infty}), \qquad \mathcal{Z}' = \operatorname{Gal}(M/N')$$
$$\mathcal{I} = \operatorname{Gal}(M/L), \qquad \mathcal{I}' = \operatorname{Gal}(M/L').$$

For a \mathbf{Q}_p -character Φ of Δ , denote by $M(\Phi)$ the intermediate field of M/k_{∞} corresponding to $\bigoplus_{\Phi'}' \mathcal{G}(\Phi')$ by Galois theory where Φ' runs over the \mathbf{Q}_p -characters of Δ with $\Phi' \neq \Phi$. Then, $\operatorname{Gal}(M(\Phi)/k_{\infty}) = \mathcal{G}(\Phi)$. We define $N(\Phi), L(\Phi)$, etc, in a similar way.

As we have mentioned in Section 2, $\mathcal{H}'(\Psi^*) = \mathcal{H}(\Psi^*)$. Therefore, by the assertion [6, Lemma 1] on $\mathcal{H}(\Psi^*)$, there exists an injective Λ -homomorphism

$$\iota: \mathcal{H}'(\Psi^*) \hookrightarrow \begin{cases} \Lambda, & \text{when } \psi(p) \neq 1, \\ \Lambda \oplus \Lambda/(T-q), & \text{when } \psi(p) = 1, \end{cases}$$

with a finite cokernel. This is the Δ -decomposed version of [10, Theorem 15]. In the next section, we prove the following two lemmas.

Lemma 1. There exists a Λ -isomorphism:

$$\mathcal{I}'(\Psi^*) \cong \begin{cases} \Lambda, & \text{when } \psi(p) \neq 1, \\ \Lambda \oplus \Lambda/(T-q), & \text{when } \psi(p) = 1. \end{cases}$$

Lemma 2. We have $M(\Psi^*) = N'(\Psi^*)L'(\Psi^*)$.

Proof of Theorem 3. Assume that $\psi^*(p) = 1$. We put

$$\overline{\mathcal{I}'}(\Psi^*) = \mathcal{I}'(\Psi^*)\mathcal{Z}'(\Psi^*)/\mathcal{Z}'(\Psi^*).$$

Then, we have $\overline{\mathcal{I}'}(\Psi^*) \subseteq \mathcal{H}'(\Psi^*)$, and

$$\mathcal{Y}'(\Psi^*) \cong \mathcal{H}'(\Psi^*)/\overline{\mathcal{I}'}(\Psi^*).$$

As $\psi^*(p) = 1$, we see from Lemmas 1 and 2 that

$$\overline{\mathcal{I}'}(\Psi^*) \cong \mathcal{I}'(\Psi^*) \cong \Lambda.$$

Let ι be an embedding of $\mathcal{H}'(\Psi^*)$ into Λ with a finite cokernel. By the above, the image $\iota(\overline{\mathcal{I}'}(\Psi^*))$ of $\overline{\mathcal{I}'}(\Psi^*)$ equals a principal ideal (f) of Λ for some $f \in \Lambda$. Therefore, we obtain an injective Λ -homomorphism

$$\mathcal{Y}'(\Psi^*) \hookrightarrow \Lambda/(f)$$

with a finite cokernel. On the other hand, f is relatively prime to p by [2]. Hence, $\mathcal{Y}'(\Psi^*)$ is torsion free over \mathbb{Z}_p .

4. Proof of lemmas.

4.1. Preliminaries. In this subsection, we give and recall some assertions on some groups of local universal norms of k_{∞}/k and the Galois groups $\mathcal{I} = \operatorname{Gal}(M/L), \ \mathcal{I}' = \operatorname{Gal}(M/L')$. For a while, we fix a prime ideal \mathfrak{p} of kover p. We denote the unique prime ideal of k_n over \mathfrak{p} simply by \mathfrak{p} . Let $k_{n,\mathfrak{p}}$ be the completion of k_n at \mathfrak{p} , and $\mathcal{U}_{n,\mathfrak{p}}$ the group of principal units of $k_{n,\mathfrak{p}}$. Let

$$\mathcal{V}_{n,\mathfrak{p}} = \bigcap_{m \ge n} N_{m/n} \mathcal{U}_{m,\mathfrak{p}} \quad \text{and} \quad \mathcal{W}_{n,\mathfrak{p}} = \bigcap_{m \ge n} N_{m/n} ((k_{m,\mathfrak{p}}^{\times})^{(p)})$$

be the groups of universal norms. Here, $N_{m/n}$ denotes the norm map from k_m^{\times} to k_n^{\times} , and for an abelian group X, $X^{(p)}$ denotes the maximal pro-p quotient. We put

$$\mathcal{U}_n = \prod_{\mathfrak{p}|p} \mathcal{U}_{n,\mathfrak{p}}, \quad \mathcal{V}_n = \prod_{\mathfrak{p}|p} \mathcal{V}_{n,\mathfrak{p}}, \quad \mathcal{W}_n = \prod_{\mathfrak{p}|p} \mathcal{W}_{n,\mathfrak{p}},$$

where \mathfrak{p} runs over the primes of k over p. These are closed subgroups of the maximal pro-p quotient $\widehat{k_n^{\times}} = (\prod_{\mathfrak{p}|p} k_{n,\mathfrak{p}}^{\times})^{(p)}$. Denote by φ_n the natural embedding of k_n^{\times} into $\widehat{k_n^{\times}}$. Let E_n (resp. E'_n) be the group of units (resp. punits) of k_n , and let \mathcal{E}_n (resp. \mathcal{E}'_n) be the closure of $\varphi_n(E_n)$ (resp. $\varphi_n(E'_n)$) in $\widehat{k_n^{\times}}$. Let \mathcal{U}_{∞} , \mathcal{E}_{∞} , \mathcal{W}_{∞} , \mathcal{E}'_{∞} be the projective limits of \mathcal{U}_n , \mathcal{E}_n , \mathcal{W}_n , \mathcal{E}'_n with respect to the relative norms, respectively:

$$\mathcal{U}_{\infty} = \lim_{\longleftarrow} \mathcal{U}_n \ (= \lim_{\longleftarrow} \mathcal{V}_n), \quad \mathcal{E}'_{\infty} = \lim_{\longleftarrow} \mathcal{E}'_n \ (= \lim_{\longleftarrow} (\mathcal{W}_n \cap \mathcal{E}'_n)), \quad \text{etc}$$

These groups are naturally regarded as modules over $\mathbf{Z}_p[\Delta][[\Gamma]]$.

Lemma 3. The projection $P: \mathcal{W}_{\infty} \to \mathcal{W}_0$ induces an isomorphism

$$\mathcal{W}_{\infty}/\mathcal{W}_{\infty}^T \cong \mathcal{W}_0.$$

Proof. It is clear that the projection P is surjective and that $\mathcal{W}_{\infty}^T \subseteq \ker P$. So, it suffices to show that $\ker P \subseteq \mathcal{W}_{\infty}^T$. Let $u = (u_n)_{n\geq 0}$ be an element of $\ker P$ with $u_n \in \mathcal{W}_n$. As $u_0 = 1$, we see that u_n is contained in \mathcal{U}_n . We can write $u_n = w_n^T$ for some $w_n \in \prod_{\mathfrak{p}|p} k_{n,\mathfrak{p}}^{\times}$ by Hilbert Satz 90. Hence, $u_n = \overline{w}_n^T, \overline{w}_n$ being the projection of w_n in $\widehat{k_n^{\times}}$. Denote by $x^{(n)}$ the element of the product $X = \prod_{\ell} \widehat{k_{\ell}^{\times}}$ whose ℓ -th component is $N_{n/\ell}(\overline{w}_n)$ (resp. 1) for $\ell \leq n$ (resp. $\ell > n$). Since X is compact, $\{x^{(n)}\}$ has an accumulation point x in X. We easily see that $x \in \mathcal{W}_{\infty}$ and $x^T = u$. Therefore, $\ker P \subseteq \mathcal{W}_{\infty}^T$. \Box

By class field theory, it is known (cf. [14, Corollary 13.6]) that the inertia group \mathcal{I} is canonically isomorphic to $\mathcal{U}_{\infty}/\mathcal{E}_{\infty}$ over $\mathbf{Z}_p[\Delta][[\Gamma]]$. As Ψ^* is odd and $\Psi^* \neq \omega$, it follows that $\mathcal{E}_{\infty}(\Psi^*) = \{0\}$ by a theorem on units of CM-fields (cf. [14, Theorem 4.12]). Therefore, we obtain a Λ -isomorphism

(3)
$$\mathcal{I}(\Psi^*) \cong \mathcal{U}_{\infty}(\Psi^*).$$

On the Λ -structure of \mathcal{U}_{∞} , it is known (cf. Gillard [3, Proposition 1]) that

(4)
$$\mathcal{U}_{\infty}(\Psi^*) \cong \begin{cases} \Lambda, & \text{when } \psi(p) \neq 1, \\ \Lambda \oplus \Lambda/(T-q), & \text{when } \psi(p) = 1. \end{cases}$$

It is also known (cf. [3, Proposition 2]) that

(5)
$$\mathcal{V}_0(\Psi^*) \cong \begin{cases} O, & \text{when } \psi(p) \neq 1 \text{ and } \psi^*(p) \neq 1, \\ O \oplus O/q, & \text{when } \psi(p) = 1, \\ \{0\}, & \text{when } \psi^*(p) = 1. \end{cases}$$

As for the decomposition group \mathcal{I}' , we need to prove the following:

Proposition 2. The reciprocity law map induces a canonical isomorphism

$$\mathcal{I}'\cong\mathcal{W}_\infty/\mathcal{E}'_\infty$$

over $\mathbf{Z}_p[\Delta][[\Gamma]]$.

Proof. Let M_n (resp. L'_n) be the maximal abelian extension of k_n contained in M (resp. L'). It suffices to prove that

(6)
$$\operatorname{Gal}(M_n/L'_n) \cong \mathcal{W}_n/(\mathcal{W}_n \cap \mathcal{E}'_n)$$

since \mathcal{I}' is the projective limit of $\operatorname{Gal}(M_n/L'_n)$ with respect to the restriction maps. It suffices to show the assertion (6) only when n = 0 by considering k_n as the base field.

For an integer $m \geq 0$, we put

$$W^{(m)} = \prod_{\mathfrak{p}|p} N_{m/0} k_{m,\mathfrak{p}}^{\times} (\supseteq \mathcal{U}_0^{p^m})$$

For a prime divisor \mathfrak{q} of k relatively prime to p, let $U_{\mathfrak{q}}$ be the group of local units (resp. the multiplicative group) of the completion $k_{\mathfrak{q}}$ of k at \mathfrak{q} when \mathfrak{q} is finite (resp. infinite). Let J_k be the group of idèles of k. We define its subgroups A, B, C as follows:

$$A = W^{(m)} \times \prod_{\mathfrak{q} \nmid p} \{1\}, \quad B = \mathcal{U}_0^{p^m} \times \prod_{\mathfrak{q} \nmid p} \{1\}, \quad C = \prod_{\mathfrak{p} \mid p} \{1\} \times \prod_{\mathfrak{q} \nmid p} U_{\mathfrak{q}}$$

where \mathfrak{p} (resp. \mathfrak{q}) runs over the primes of k dividing p (resp. relatively prime to p).

Denote by H the Hilbert p-class field of k. Let $M_{0,m}$ be the maximal intermediate field of M_0/H whose Galois group over H is of exponent p^m . Clearly, $M_{0,m}$ contains k_m . Let $L'_{0,m}$ be the maximal intermediate field of $M_{0,m}/k_m$ in which all prime divisors of k_m over p split completely. We have a natural isomorphism

(7)
$$\operatorname{Gal}(M_0/L'_0) \cong \lim_{\longleftarrow} \operatorname{Gal}(M_{0,m}/L'_{0,m}),$$

the projective limit being taken with respect to the restriction maps.

It is known that the reciprocity law map induces isomorphisms

$$\operatorname{Gal}(M_{0,m}/k) \cong (J_k/k^{\times}BC)^{(p)}$$
 and $\operatorname{Gal}(L'_{0,m}/k) \cong (J_k/k^{\times}AC)^{(p)}$.

For this, see Sumida [13, pp. 692-693]. Therefore, we obtain a canonical isomorphism

$$\operatorname{Gal}(M_{0,m}/L'_{0,m}) \cong (k^{\times}AC/k^{\times}BC)^{(p)} \cong (A/(A \cap (k^{\times}BC)))^{(p)}$$

We easily see that

$$A \cap (k^{\times}BC) = (W^{(m)} \cap (E'_0 \mathcal{U}^{p^m}_0)) \times \prod_{\mathfrak{q} \nmid p} \{1\}.$$

Here, we are regarding E'_0 as a subgroup of $\prod_{\mathfrak{p}|p} k_{0,\mathfrak{p}}^{\times}$ in the natural way. Hence, we have

$$\operatorname{Gal}(M_{0,m}/L'_{0,m}) \cong (W^{(m)}/(W^{(m)} \cap (E'_0 \mathcal{U}_0^{p^m})))^{(p)}.$$

From this and (7), we obtain

$$\operatorname{Gal}(M_0/L'_0) \cong \mathcal{W}_0/(\mathcal{W}_0 \cap \mathcal{E}'_0)$$

by an elementary but tedious argument on the topology of $k_0^{\times} = (\prod_{\mathfrak{p}|p} k_{0,\mathfrak{p}}^{\times})^{(p)}$, which we leave to the reader.

4.2. Proof of Lemmas 1 and 2.

Proof of Lemma 1 (and the formula (2)). Let B_n be the subgroup of A_n consisting of classes which contain a product of prime ideals of k_n over p, and let B_{∞} be the projective limit of B_n with respect to the relative norms.

From class field theory, we see that \mathcal{I}'/\mathcal{I} is canonically isomorphic to B_{∞} . Let $D (\subseteq \Delta)$ be the decomposition group of p at k. Then, we have a natural surjection

$$\mathbf{Z}_p[\Delta/D] \longrightarrow B_\infty \cong \mathcal{I}'/\mathcal{I}$$

over $\mathbf{Z}_p[\Delta]$. We see that $\mathbf{Z}_p[\Delta/D](\Psi^*) = \{0\}$ or O according as $\psi^*(p) \neq 1$ or $\psi^*(p) = 1$. Let $\psi^*(p) \neq 1$. Then, from the above surjection, we see that $\mathcal{I}'(\Psi^*) = \mathcal{I}(\Psi^*)$ (from which (2) follows). Hence, the assertion of Lemma 1 follows from (3) and (4) in this case.

Let $\psi^*(p) = 1$. We have the following exact sequence of $\mathbf{Z}_p[\Delta]$ -modules.

$$\{0\} \longrightarrow \mathcal{U}_0 \longrightarrow \left(\prod_{\mathfrak{p}|p} k_{0,\mathfrak{p}}^{\times}\right)^{(p)} \longrightarrow \mathbf{Z}_p[\Delta/D] \longrightarrow \{0\}.$$

As $\psi^*(p) = 1$, we see from (5) that

$$(\mathcal{W}_0 \cap \mathcal{U}_0)(\Psi^*) = \mathcal{V}_0(\Psi^*) = \{0\}.$$

Therefore, by the above exact sequence, we see that the *O*-module $\mathcal{W}_0(\Psi^*)$ is free of rank one (or $\mathcal{W}_0(\Psi^*) = \{0\}$). Hence, $\mathcal{W}_\infty(\Psi^*)$ is cyclic over Λ by Lemma 3 and Nakayama's lemma (cf. [14, Lemma 13.16]). By this and Proposition 2, $\mathcal{I}'(\Psi^*)$ is cyclic over Λ . Then, we obtain $\mathcal{I}'(\Psi^*) \cong \Lambda$ since $\mathcal{I} \subseteq \mathcal{I}'$ and $\mathcal{I}(\Psi^*) \cong \Lambda$ by (3) and (4).

Proof of Lemma 2. It is known (cf. [6, Proposition 3]) that

$$M(\Psi^*) = N(\Psi^*)L(\Psi^*).$$

Let $\psi^*(p) \neq 1$. Then, $N'(\Psi^*) = N(\Psi^*)$ and $L'(\Psi^*) = L(\Psi^*)$ by (1) and (2). Hence, the assertion follows from the above in this case. Let $\psi^*(p) = 1$. Then, by Lemma 1, $\mathcal{I}'(\Psi^*) \cong \Lambda$. On the other hand, $\mathcal{Z}'(\Psi^*)$ is finitely generated and torsion over Λ by [10, Theorems 5, 14]. Therefore, we obtain $\mathcal{Z}'(\Psi^*) \cap \mathcal{I}'(\Psi^*) = \{0\}$, and hence $M(\Psi^*) = N'(\Psi^*)L'(\Psi^*)$.

References

- A. Brumer, On units of algebraic number fields, Mathematika, 14 (1967), 121-124, MR 36 #3746, Zbl 0171.01105.
- [2] B. Ferrero and L. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. Math., **109** (1979), 377-395, MR 81a:12005, Zbl 0443.12001.

- [3] R. Gillard, Unités cyclotomiques, unités semi-locales et \mathbf{Z}_{ℓ} -extensions II, Ann. Inst. Fourier, **29** (1979), 1-15, MR 81e:12005b, Zbl 0403.12006.
- [4] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263-284, MR 53 #5529, Zbl 0334.12013.
- [5] H. Ichimura, On power integral bases of unramified cyclic extensions of prime degree, J. Algebra, 235 (2001), 104-112, MR 2001m:11199, Zbl 0972.11101.
- [6] _____, On a power integral bases problem over cyclotomic \mathbf{Z}_p -extensions, J. Algebra, **234** (2000), 90-100, CMP 1 799 479.
- [7] _____, On a quotient of the unramified Iwasawa module over an abelian number field, J. Number Theory, 88 (2001), 175-190, MR 2002b:11155, Zbl 0972.11104.
- [8] _____, A note on the ideal class group of the cyclotomic \mathbf{Z}_p -extension of a totally real number field, to appear in Acta Arith.
- H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, International J. Math., 7 (1996), 721-744, MR 98e:11128c, Zbl 0881.11075.
- [10] K. Iwasawa, On \mathbf{Z}_{ℓ} -extensions of algebraic number fields, Ann. Math., 98 (1973), 246-326, MR 50 #2120, Zbl 0285.12008.
- [11] J. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic fields, Compositio Math., 97 (1995), 135-155, MR 97g:11120, Zbl 0840.11043.
- [12] M. Kurihara, The Iwasawa λ-invariants of real abelian fields and the cyclotomic elements, Tokyo J. Math., 22 (1999), 259-277, MR 2001a:11182, Zbl 0941.11040.
- [13] H. Sumida, Greenberg's conjecture and the Iwasawa polynomial, J. Math. Soc. Japan, 49 (1997), 689-711, MR 98h:11137, Zbl 0907.11038.
- [14] L. Washington, Introduction to Cyclotomic Fields (2-nd edition), Springer, New York, 1996, MR 97h:11130, Zbl 0966.11047.

Received November 16, 2000 and revised November 28, 2001. The author was partially supported by Grant-in-Aid for Scientific Research (C), (No. 13640036), the Ministry of Education, Science, Sports and Culture of Japan.

DEPARTMENT OF MATHEMATICS YOKOHAMA CITY UNIVERSITY 22–2, SETO, KANAZAWA-KU, YOKOHAMA, 236–0027 JAPAN *E-mail address*: ichimura@yokohama-cu.ac.jp