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Let p be an odd prime number, k an imaginary abelian
field containing a primitive p-th root of unity, and k∞/k the
cyclotomic Zp-extension. Denote by L/k∞ the maximal un-
ramified pro–p abelian extension, and by L′ the maximal in-
termediate field of L/k∞ in which all prime divisors of k∞
over p split completely. Let N/k∞ (resp. N ′/k∞) be the
pro–p abelian extension generated by all p-power roots of
all units (resp. p-units) of k∞. In the previous paper, we
proved that the Zp-torsion subgroup of the odd part of the Ga-
lois group Gal(N ∩ L/k∞) is isomorphic, over the group ring
Zp[Gal(k/Q)], to a certain standard subquotient of the even
part of the ideal class group of k∞. In this paper, we prove
that the same holds also for the Galois group Gal(N ′∩L′/k∞).

1. Introduction.

Let p be a fixed odd prime number, k an imaginary abelian field containing
a primitive p-th root ζp of unity, and k∞/k the cyclotomic Zp-extension.
Let L/k∞ be the maximal unramified pro–p abelian extension, and L′ the
maximal intermediate field of L/k∞ in which all prime divisors of k∞ over
p split completely. We put

N = k∞(ε1/p
n ∣∣ ε ∈ E∞, n ≥ 1), N ′ = k∞(ε1/p

n ∣∣ ε ∈ E′∞, n ≥ 1),

where E∞ (resp. E′∞) is the group of units (resp. p-units) of k∞. Put

X = Gal(L/k∞), Y = Gal(N ∩ L/k∞),
X ′ = Gal(L′/k∞), Y ′ = Gal(N ′ ∩ L′/k∞),

and let X−, Y−, X ′−, Y ′− be the odd parts of the respective Galois groups.
It is well-known that X− is (finitely generated and) torsion free over Zp
(cf. Washington [14, Corollary 13.29]). It is also known (and is shown
similarly) that X ′− is torsion free over Zp. One naturally asks whether or
not the quotients Y− of X− and Y ′− of X ′− are also torsion free over Zp.
This question arised in the previous investigation [5], [6] on a power integral
basis problem over cyclotomic Zp-extensions.

Let A∞ be the ideal class group of k∞, and A+
∞ its even part. It is

conjectured by Greenberg [4] that A+
∞ = {0}, which is far from being settled
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in general. Under this conjecture, it is known that Y− = X− and Y ′− = X ′−,
and hence Y− and Y ′− are torsion free over Zp.

In the preceding paper [7], we proved that the Zp-torsion subgroup TorY−
of Y− is isomorphic, over the group ring Zp[Gal(k/Q)], to a certain stan-
dard subquotient of A+

∞ (under the assumption that p does not divide the
degree [k : Q]). Further, we gave some assertions on the vanishing of this
subquotient.

Let O∞ be the ring of integers of k∞, and O′∞ = O∞[1/p] the ring of
p-integers. The pairs (L,N) and (L′, N ′) are objects associated to O∞ and
O′∞, respectively. Since k∞/k is wildly ramified at p, it is often more natural
to use the p-integers O′∞ than O∞. Therefore, it is desirable to obtain a
corresponding result for the pair (X ′,Y ′). In this paper, we prove that the
Zp-torsion subgroup TorY ′− of Y ′− is also isomorphic to the above mentioned
subquotient of A+

∞ as a Zp[Gal(k/Q)]-module. Namely, TorY− and TorY ′−
are isomorphic to each other over Zp[Gal(k/Q)].

2. Results.

Let k be an imaginary abelian field with ζp ∈ k×, and ∆ = Gal(k/Q),
Γ = Gal(k∞/k). We assume that

p does not divide the degree [k : Q].(H)

Then, we have a canonical decomposition

Gal(k∞/Q) = ∆× Γ.

A Qp-valued character of ∆ defined and irreducible over Qp is simply called a
Qp-character. For a Qp-character Φ of ∆ and a Zp[∆]-module X, we denote
by X+, X− and X(Φ) the even part, the odd part and the Φ-component
eΦX of X, respectively. Here, eΦ is the idempotent of Qp[∆] defined by

eΦ =
1
|∆|

∑
σ∈∆

Φ(σ)σ−1,

which is an element of Zp[∆] by the assumption (H).
Throughout this paper, we fix an even Qp-character Ψ of ∆ and its irre-

ducible component ψ over the algebraic closure Qp. Denote by Ψ∗ and ψ∗

the odd characters of ∆ associated to Ψ and ψ by

Ψ∗(σ) = ω(σ)Ψ(σ−1), ψ∗(σ) = ω(σ)ψ(σ−1), (σ ∈ ∆),

respectively, where ω is the character of ∆ representing the Galois action on
ζp. We often regard ψ and ψ∗ as primitive Dirichlet characters.

Let kn (n ≥ 0) be the n-th layer of k∞/k with k0 = k, and An the Sylow
p-subgroup of the ideal class group of kn. Let

A∞ = lim
−→

An
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be the inductive limit with respect to the inclusion maps kn → km (n < m).
Denote by Ã0 the image of A0 in A∞. Let AΓ

∞ be the elements of A∞ fixed
by the action of Γ = Gal(k∞/k). It is known (cf. [4, Proposition 1]) that
(AΓ
∞)+ is a finite abelian group as a consequence of the Leopoldt conjecture

for (k, p) proved by Brumer [1]. Hence, so is (AΓ
∞/Ã0)(Ψ). On the other

hand, TorY(Ψ∗) and TorY ′(Ψ∗) are also finite since X− is finitely generated
over Zp by the theorem of Ferrero and Washington [2]. For the trivial
character Ψ0, it is known (cf. [14, Proposition 6.16]) that A∞(Ψ0) = {0}
and X (Ψ∗0) = {0}. So, in what follows, we assume that Ψ is nontrivial (and
even).

In [7], we proved the following:

Theorem 1. The finite abelian groups TorY(Ψ∗) and (AΓ
∞/Ã0)(Ψ) are iso-

morphic to each other.

As for the subquotient AΓ
∞/Ã0 of A∞, we proved in [7, Proposition 1] the

following:

Proposition 1. When ψ(p) 6= 1, we have (AΓ
∞/Ã0)(Ψ) = {0}.

For more on this subquotient, see [7, Proposition 3] and [8].
The main result of this paper is as follows.

Theorem 2. TorY ′(Ψ∗) is isomorphic to (AΓ
∞/Ã0)(Ψ) as an abelian group.

We obtain the following corollary from Theorems 1 and 2.

Corollary. The Zp[∆]-modules TorY ′− and TorY− are isomorphic to each
other.

We put

H = Gal(N/k∞) and H′ = Gal(N ′/k∞).

It is known (cf. [6, Claim (page 97)]) that, by the restriction map,

H′(Ψ∗) = H(Ψ∗).(1)

This is because the Leopoldt conjecture for (kn, p) holds for all n ≥ 0 by [1].
It is also known (see Section 4.2 (Proof of Lemma 1)) that, by the restriction
map,

X (Ψ∗) = X ′(Ψ∗) when ψ∗(p) 6= 1.(2)

Therefore, when ψ∗(p) 6= 1, we have Y ′(Ψ∗) = Y(Ψ∗). By this and Proposi-
tion 1, we see that Theorem 2 follows immediately from Theorem 1 and the
following:

Theorem 3. When ψ∗(p) = 1, Y ′(Ψ∗) is torsion free over Zp.
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Remark 1. Let A′n be the Sylow p-subgroup of the p-ideal-class group of
kn in the sense of Iwasawa [10, Section 4.3], and let A′∞ be the inductive
limit of A′n with respect to the inclusion maps kn → km (n < m). Denote
by Ã′0 the image of A′0 in A′∞. To talk about the Galois groups X ′, Y ′, it is
more natural to use A′∞ than A∞. However, it is known (cf. [4, Corollary])
that the natural projections

A+
∞ −→ A′+∞ and Ã+

0 −→ Ã′+0

are isomorphisms as a consequence of the Leopoldt conjecture for (kn, p)
(n ≥ 0).

Remark 2. It is conjectured that A+
∞ = {0} (cf. [4]). We have many

numerical examples of (k, p) with A+
∞ = {0}, but no counter examples (see

Kraft and Schoof [11], Kurihara [12], Sumida and the author [9]). However,
the conjecture is not yet proved to be true in general.

3. Proof of Theorem 3.

We recall a standard notation. Let O = Oψ be the subring of Qp generated
by the values of ψ over Zp. We identify the subring eΨ∗Zp[∆] of Zp[∆] with
O by sending eΨ∗σ to ψ∗(σ), (σ ∈ ∆). Then, for a Zp[∆]-module X, X(Ψ∗)
is regarded as an O-module. We fix a topological generator γ of Γ. We
identify, as usual, the completed group ring eΨ∗Zp[∆][[Γ]] with the power
series ring Λ = O[[T ]] by γ = 1+T and the above identification. Thus, for a
Zp[∆][[Γ]]-module X (such as several Galois groups over k∞), we can regard
X(Ψ∗) as a module over O or Λ. We denote by q the element of pZp such
that ζγ = ζ1+q for all ζ ∈ µp∞ .

Let M/k∞ be the maximal pro–p abelian extension unramified outside p.
The fields N , L, N ′ and L′ are intermediate fields of M/k∞. We put

G = Gal(M/k∞), Z ′ = Gal(M/N ′)
I = Gal(M/L), I ′ = Gal(M/L′).

For a Qp-character Φ of ∆, denote by M(Φ) the intermediate field of M/k∞
corresponding to

⊕′
Φ′ G(Φ′) by Galois theory where Φ′ runs over the Qp-

characters of ∆ with Φ′ 6= Φ. Then, Gal(M(Φ)/k∞) = G(Φ). We define
N(Φ), L(Φ), etc, in a similar way.

As we have mentioned in Section 2, H′(Ψ∗) = H(Ψ∗). Therefore, by the
assertion [6, Lemma 1] on H(Ψ∗), there exists an injective Λ-homomorphism

ι : H′(Ψ∗) ↪→
{

Λ, when ψ(p) 6= 1,
Λ⊕ Λ/(T − q), when ψ(p) = 1,

with a finite cokernel. This is the ∆-decomposed version of [10, Theorem
15]. In the next section, we prove the following two lemmas.
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Lemma 1. There exists a Λ-isomorphism:

I ′(Ψ∗) ∼=
{

Λ, when ψ(p) 6= 1,
Λ⊕ Λ/(T − q), when ψ(p) = 1.

Lemma 2. We have M(Ψ∗) = N ′(Ψ∗)L′(Ψ∗).

Proof of Theorem 3. Assume that ψ∗(p) = 1. We put

I ′(Ψ∗) = I ′(Ψ∗)Z ′(Ψ∗)/Z ′(Ψ∗).

Then, we have I ′(Ψ∗) ⊆ H′(Ψ∗), and

Y ′(Ψ∗) ∼= H′(Ψ∗)/I ′(Ψ∗).
As ψ∗(p) = 1, we see from Lemmas 1 and 2 that

I ′(Ψ∗) ∼= I ′(Ψ∗) ∼= Λ.

Let ι be an embedding of H′(Ψ∗) into Λ with a finite cokernel. By the
above, the image ι(I ′(Ψ∗)) of I ′(Ψ∗) equals a principal ideal (f) of Λ for
some f ∈ Λ. Therefore, we obtain an injective Λ-homomorphism

Y ′(Ψ∗) ↪→ Λ/(f)

with a finite cokernel. On the other hand, f is relatively prime to p by [2].
Hence, Y ′(Ψ∗) is torsion free over Zp. �

4. Proof of lemmas.

4.1. Preliminaries. In this subsection, we give and recall some assertions
on some groups of local universal norms of k∞/k and the Galois groups
I = Gal(M/L), I ′ = Gal(M/L′). For a while, we fix a prime ideal p of k
over p. We denote the unique prime ideal of kn over p simply by p. Let kn,p
be the completion of kn at p, and Un,p the group of principal units of kn,p.
Let

Vn,p =
⋂
m≥n

Nm/nUm,p and Wn,p =
⋂
m≥n

Nm/n((k
×
m,p)(p))

be the groups of universal norms. Here, Nm/n denotes the norm map from
k×m to k×n , and for an abelian group X, X(p) denotes the maximal pro–p
quotient. We put

Un =
∏
p|p

Un,p, Vn =
∏
p|p

Vn,p, Wn =
∏
p|p

Wn,p,

where p runs over the primes of k over p. These are closed subgroups of
the maximal pro–p quotient k̂×n = (

∏
p|p k

×
n,p)(p). Denote by ϕn the natural

embedding of k×n into k̂×n . Let En (resp. E′n) be the group of units (resp. p-
units) of kn, and let En (resp. E ′n) be the closure of ϕn(En) (resp. ϕn(E′n))
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in k̂×n . Let U∞, E∞, W∞, E ′∞ be the projective limits of Un, En, Wn, E ′n
with respect to the relative norms, respectively:

U∞ = lim
←−

Un (= lim
←−

Vn), E ′∞ = lim
←−

E ′n (= lim
←−

(Wn ∩ E ′n)), etc.

These groups are naturally regarded as modules over Zp[∆][[Γ]].

Lemma 3. The projection P : W∞ →W0 induces an isomorphism

W∞/WT
∞
∼= W0.

Proof. It is clear that the projection P is surjective and that WT
∞ ⊆ kerP .

So, it suffices to show that kerP ⊆ WT
∞. Let u = (un)n≥0 be an element

of kerP with un ∈ Wn. As u0 = 1, we see that un is contained in Un. We
can write un = wTn for some wn ∈

∏
p|p k

×
n,p by Hilbert Satz 90. Hence,

un = wTn , wn being the projection of wn in k̂×n . Denote by x(n) the element
of the product X =

∏
` k̂
×
` whose `-th component is Nn/`(wn) (resp. 1) for

` ≤ n (resp. ` > n). Since X is compact, {x(n)} has an accumulation point x
in X. We easily see that x ∈ W∞ and xT = u. Therefore, kerP ⊆ WT

∞. �

By class field theory, it is known (cf. [14, Corollary 13.6]) that the inertia
group I is canonically isomorphic to U∞/E∞ over Zp[∆][[Γ]]. As Ψ∗ is odd
and Ψ∗ 6= ω, it follows that E∞(Ψ∗) = {0} by a theorem on units of CM-fields
(cf. [14, Theorem 4.12]). Therefore, we obtain a Λ-isomorphism

I(Ψ∗) ∼= U∞(Ψ∗).(3)

On the Λ-structure of U∞, it is known (cf. Gillard [3, Proposition 1]) that

U∞(Ψ∗) ∼=
{

Λ, when ψ(p) 6= 1,
Λ⊕ Λ/(T − q), when ψ(p) = 1.(4)

It is also known (cf. [3, Proposition 2]) that

V0(Ψ∗) ∼=

 O, when ψ(p) 6= 1 and ψ∗(p) 6= 1,
O ⊕O/q, when ψ(p) = 1,
{0}, when ψ∗(p) = 1.

(5)

As for the decomposition group I ′, we need to prove the following:

Proposition 2. The reciprocity law map induces a canonical isomorphism

I ′ ∼= W∞/E ′∞
over Zp[∆][[Γ]].

Proof. Let Mn (resp. L′n) be the maximal abelian extension of kn contained
in M (resp. L′). It suffices to prove that

Gal(Mn/L
′
n) ∼= Wn/(Wn ∩ E ′n)(6)
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since I ′ is the projective limit of Gal(Mn/L
′
n) with respect to the restriction

maps. It suffices to show the assertion (6) only when n = 0 by considering
kn as the base field.

For an integer m (≥ 0), we put

W (m) =
∏
p|p

Nm/0k
×
m,p (⊇ Up

m

0 ).

For a prime divisor q of k relatively prime to p, let Uq be the group of local
units (resp. the multiplicative group) of the completion kq of k at q when
q is finite (resp. infinite). Let Jk be the group of idèles of k. We define its
subgroups A, B, C as follows:

A = W (m) ×
∏
q-p

{1}, B = Up
m

0 ×
∏
q-p

{1}, C =
∏
p|p

{1} ×
∏
q-p

Uq,

where p (resp. q) runs over the primes of k dividing p (resp. relatively prime
to p).

Denote by H the Hilbert p-class field of k. Let M0,m be the maximal
intermediate field of M0/H whose Galois group over H is of exponent pm.
Clearly, M0,m contains km. Let L′0,m be the maximal intermediate field of
M0,m/km in which all prime divisors of km over p split completely. We have
a natural isomorphism

Gal(M0/L
′
0) ∼= lim

←−
Gal(M0,m/L

′
0,m),(7)

the projective limit being taken with respect to the restriction maps.
It is known that the reciprocity law map induces isomorphisms

Gal(M0,m/k) ∼= (Jk/k×BC)(p) and Gal(L′0,m/k) ∼= (Jk/k×AC)(p).

For this, see Sumida [13, pp. 692-693]. Therefore, we obtain a canonical
isomorphism

Gal(M0,m/L
′
0,m) ∼= (k×AC/k×BC)(p) ∼= (A/(A ∩ (k×BC)))(p).

We easily see that

A ∩ (k×BC) = (W (m) ∩ (E′0 U
pm

0 ))×
∏
q-p

{1}.

Here, we are regarding E′0 as a subgroup of
∏

p|p k
×
0,p in the natural way.

Hence, we have

Gal(M0,m/L
′
0,m) ∼= (W (m)/(W (m) ∩ (E′0 U

pm

0 )))(p).

From this and (7), we obtain

Gal(M0/L
′
0) ∼= W0/(W0 ∩ E ′0)

by an elementary but tedious argument on the topology of k̂×0 =(
∏

p|p k
×
0,p)(p),

which we leave to the reader. �
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4.2. Proof of Lemmas 1 and 2.

Proof of Lemma 1 (and the formula (2)). LetBn be the subgroup ofAn con-
sisting of classes which contain a product of prime ideals of kn over p, and
let B∞ be the projective limit of Bn with respect to the relative norms.

From class field theory, we see that I ′/I is canonically isomorphic to B∞.
Let D (⊆ ∆) be the decomposition group of p at k. Then, we have a natural
surjection

Zp[∆/D] −→ B∞ ∼= I ′/I

over Zp[∆]. We see that Zp[∆/D](Ψ∗) = {0} or O according as ψ∗(p) 6= 1
or ψ∗(p) = 1. Let ψ∗(p) 6= 1. Then, from the above surjection, we see that
I ′(Ψ∗) = I(Ψ∗) (from which (2) follows). Hence, the assertion of Lemma 1
follows from (3) and (4) in this case.

Let ψ∗(p) = 1. We have the following exact sequence of Zp[∆]-modules.

{0} −→ U0 −→

∏
p|p

k×0,p

(p)

−→ Zp[∆/D] −→ {0}.

As ψ∗(p) = 1, we see from (5) that

(W0 ∩ U0)(Ψ∗) = V0(Ψ∗) = {0}.

Therefore, by the above exact sequence, we see that the O-module W0(Ψ∗)
is free of rank one (or W0(Ψ∗) = {0}). Hence, W∞(Ψ∗) is cyclic over Λ
by Lemma 3 and Nakayama’s lemma (cf. [14, Lemma 13.16]). By this and
Proposition 2, I ′(Ψ∗) is cyclic over Λ. Then, we obtain I ′(Ψ∗) ∼= Λ since
I ⊆ I ′ and I(Ψ∗) ∼= Λ by (3) and (4). �

Proof of Lemma 2. It is known (cf. [6, Proposition 3]) that

M(Ψ∗) = N(Ψ∗)L(Ψ∗).

Let ψ∗(p) 6= 1. Then, N ′(Ψ∗) = N(Ψ∗) and L′(Ψ∗) = L(Ψ∗) by (1) and
(2). Hence, the assertion follows from the above in this case. Let ψ∗(p) = 1.
Then, by Lemma 1, I ′(Ψ∗) ∼= Λ. On the other hand, Z ′(Ψ∗) is finitely
generated and torsion over Λ by [10, Theorems 5, 14]. Therefore, we obtain
Z ′(Ψ∗) ∩ I ′(Ψ∗) = {0}, and hence M(Ψ∗) = N ′(Ψ∗)L′(Ψ∗). �
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