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Let p be an odd prime number, k an imaginary abelian
field containing a primitive p-th root of unity, and ko /k the
cyclotomic Z,-extension. Denote by L/ko the maximal un-
ramified pro—p abelian extension, and by L’ the maximal in-
termediate field of L/ko, in which all prime divisors of ko
over p split completely. Let N/ko, (resp. N’/ko) be the
pro—p abelian extension generated by all p-power roots of
all units (resp. p-units) of ko,. In the previous paper, we
proved that the Z,-torsion subgroup of the odd part of the Ga-
lois group Gal(N N L/k) is isomorphic, over the group ring
Z,[Gal(k/Q)], to a certain standard subquotient of the even
part of the ideal class group of k... In this paper, we prove
that the same holds also for the Galois group Gal(N'NL’ /ks).

1. Introduction.

Let p be a fixed odd prime number, k£ an imaginary abelian field containing
a primitive p-th root ¢, of unity, and k. /k the cyclotomic Z,-extension.
Let L/ks be the maximal unramified pro—p abelian extension, and L’ the
maximal intermediate field of L/ks in which all prime divisors of k., over
p split completely. We put

N = koo (/7" ‘ €€ Ea, n>1), N =ko(/?" ‘ ecE_,n>1),

where Fo, (resp. E. ) is the group of units (resp. p-units) of koo. Put
X = Gal(L/kao), Y = Gal(N 1 L/koo),
X' = Gal(L' ko), V' = Gal(N' N L [koo),

and let XY=, Y, X’~, J'~ be the odd parts of the respective Galois groups.
It is well-known that X'~ is (finitely generated and) torsion free over Z,
(cf. Washington [14, Corollary 13.29]). It is also known (and is shown
similarly) that X'~ is torsion free over Z,. One naturally asks whether or
not the quotients Y~ of X~ and Y'~ of X'~ are also torsion free over Z,.
This question arised in the previous investigation [5], [6] on a power integral
basis problem over cyclotomic Z,-extensions.

Let Ao be the ideal class group of koo, and A} its even part. It is
conjectured by Greenberg [4] that AT = {0}, which is far from being settled
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in general. Under this conjecture, it is known that Y~ = X~ and )/~ = X',
and hence Y~ and )’ are torsion free over Z,.

In the preceding paper [7], we proved that the Z,-torsion subgroup Tory~
of Y~ is isomorphic, over the group ring Z,[Gal(k/Q)], to a certain stan-
dard subquotient of A% (under the assumption that p does not divide the
degree [k : Q]). Further, we gave some assertions on the vanishing of this
subquotient.

Let O be the ring of integers of ko, and O = O[1/p] the ring of
p-integers. The pairs (L, N) and (L', N') are objects associated to Oy and
O/, respectively. Since koo /k is wildly ramified at p, it is often more natural
to use the p-integers O/ than O. Therefore, it is desirable to obtain a
corresponding result for the pair (X’,)”). In this paper, we prove that the
Z,-torsion subgroup Tor)’~ of J’~ is also isomorphic to the above mentioned
subquotient of AL as a Z,[Gal(k/Q)]-module. Namely, TorY~ and Tor)'~
are isomorphic to each other over Z,[Gal(k/Q)].

2. Results.

Let k be an imaginary abelian field with ¢, € k*, and A = Gal(k/Q),
I' = Gal(koo/k). We assume that

(H) p does not divide the degree [k : Q].
Then, we have a canonical decomposition
Gal(ks/Q) = A x T.

A Q,-valued character of A defined and irreducible over Q,, is simply called a
Q,-character. For a Q,-character ® of A and a Z,[A]-module X, we denote
by X*, X~ and X(®) the even part, the odd part and the ®-component
ea X of X, respectively. Here, e is the idempotent of Q,[A] defined by

. -1
ep = WZ@(U)U ,

ocEA
which is an element of Z,[A] by the assumption (H).
Throughout this paper, we fiz an even Q,-character ¥ of A and its irre-

ducible component 1 over the algebraic closure Qp. Denote by ¥* and *
the odd characters of A associated to ¥ and v by

V(o) =w(0)¥(o™h), ¢ (o) =w(o)p(c™), (0€4),

respectively, where w is the character of A representing the Galois action on
Cp- We often regard 1 and ¢* as primitive Dirichlet characters.

Let ky (n > 0) be the n-th layer of ko /k with ko = k, and A,, the Sylow
p-subgroup of the ideal class group of k,,. Let

Ay =1lim A,
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be the inductive limit with respect to the inclusion maps k,, — k,, (n < m).
Denote by XO the image of Ag in A,. Let Ago be the elements of A fixed
by the action of I' = Gal(ks/k). It is known (cf. [4, Proposition 1]) that
(AL )T is a finite abelian group as a consequence of the Leopoldt conjecture

for (k,p) proved by Brumer [1]. Hence, so is (AL /Ag)(¥). On the other
hand, Tor) (¥*) and Tor)”(¥*) are also finite since X'~ is finitely generated
over Z, by the theorem of Ferrero and Washington [2]. For the trivial
character Wy, it is known (cf. [14, Proposition 6.16]) that A (%) = {0}
and X (¥§) = {0}. So, in what follows, we assume that ¥ is nontrivial (and
even).

In [7], we proved the following:

Theorem 1. The finite abelian groups TorY(¥*) and (AL, /Ay) (W) are iso-
morphic to each other.

As for the subquotient AL/ ﬁo of A, we proved in [7, Proposition 1] the
following:

Proposition 1. When ¢(p) # 1, we have (AL /Ay)(¥) = {0}.

For more on this subquotient, see [7, Proposition 3] and [8].
The main result of this paper is as follows.

Theorem 2. Tor)’ (U*) is isomorphic to (AL, /Ay)(¥) as an abelian group.
We obtain the following corollary from Theorems 1 and 2.

Corollary. The Zpy[A]-modules Tor)'~ and Tor)~ are isomorphic to each
other.

We put
H = Gal(N/ks) and H = Gal(N'/ks).
It is known (cf. [6, Claim (page 97)]) that, by the restriction map,
(1) H (T*) = H(T).

This is because the Leopoldt conjecture for (ky,p) holds for all n > 0 by [1].
It is also known (see Section 4.2 (Proof of Lemma 1)) that, by the restriction
map,

(2) X(U7) = X'(¥")  when v*(p) # 1.

Therefore, when ¢*(p) # 1, we have Y'(¥*) = Y(¥*). By this and Proposi-
tion 1, we see that Theorem 2 follows immediately from Theorem 1 and the
following;:

Theorem 3. When ¢*(p) = 1, V'(¥*) is torsion free over Z,.
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Remark 1. Let A/ be the Sylow p-subgroup of the p-ideal-class group of
k, in the sense of Iwasawa [10, Section 4.3], and let A’ be the inductive
limit of A/, with respect to the inclusion maps k, — ky, (n < m). Denote
by ﬁ{) the image of Af, in A’_. To talk about the Galois groups X’, )’ it is
more natural to use A’ than A.,. However, it is known (cf. [4, Corollary])
that the natural projections

AL — AL and A’(—)ir — gg"

are isomorphisms as a consequence of the Leopoldt conjecture for (ky,,p)
(n>0).

Remark 2. It is conjectured that Al = {0} (cf. [4]). We have many
numerical examples of (k,p) with AT = {0}, but no counter examples (see
Kraft and Schoof [11], Kurihara [12], Sumida and the author [9]). However,
the conjecture is not yet proved to be true in general.

3. Proof of Theorem 3.

We recall a standard notation. Let O = Oy, be the subring of Qp generated
by the values of ¢ over Z,. We identify the subring eg«Z,[A] of Z,[A] with
O by sending ey+o to ¢*(o), (0 € A). Then, for a Z,[A]-module X, X (¥*)
is regarded as an O-module. We fix a topological generator v of I'. We
identify, as usual, the completed group ring ey«Z,[A][[I']] with the power
series ring A = O[[T]] by v = 1+ T and the above identification. Thus, for a
Z,[A][[I']]-module X (such as several Galois groups over k), we can regard
X (¥*) as a module over O or A. We denote by ¢ the element of pZ, such
that ¢7 = (14 for all ¢ € pipee.

Let M /k be the maximal pro—p abelian extension unramified outside p.
The fields N, L, N and L’ are intermediate fields of M /k,. We put

G = Gal(M ko), 2’ = Gal(M/N')
T = Gal(M/L), T = Gal(M/L').

For a Q,-character ® of A, denote by M (®) the intermediate field of M /kx
corresponding to @y, G(®') by Galois theory where @' runs over the Q,-
characters of A with ® # ®. Then, Gal(M(®)/ks) = G(P). We define
N(®), L(®), etc, in a similar way.

As we have mentioned in Section 2, H'(¥*) = H(¥*). Therefore, by the
assertion [6, Lemma 1] on H(¥™), there exists an injective A-homomorphism

i A when /(p) 21,
L.H(\If)‘—>{ AaA/(T —q), when ¢ (p) =1,

with a finite cokernel. This is the A-decomposed version of [10, Theorem
15]. In the next section, we prove the following two lemmas.
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Lemma 1. There exists a A-isomorphism.:

T(0*) when 1(p) 7:é 1,

{ NOAT 0  when w1
Lemma 2. We have M(V*) = N'(¥*)L/(T*).
Proof of Theorem 3. Assume that ¢*(p) = 1. We put

() =T (V" Z'(U*) ) 2/ (T).
Then, we have Z/(¥*) C H'(¥*), and

V() = H (V) /T(T).
As ¢*(p) = 1, we see from Lemmas 1 and 2 that
T(U*) = T(U*) 2 A.

Let ¢ be an embedding of H'(¥*) into A with a finite cokernel. By the
above, the image ((Z'(V*)) of Z'(V*) equals a principal ideal (f) of A for
some f € A. Therefore, we obtain an injective A-homomorphism
V(") — A/(f)

with a finite cokernel. On the other hand, f is relatively prime to p by [2].
Hence, Y'(¥*) is torsion free over Z,,. O

4. Proof of lemmas.

4.1. Preliminaries. In this subsection, we give and recall some assertions
on some groups of local universal norms of ko /k and the Galois groups
T = Gal(M/L), 7' = Gal(M/L'). For a while, we fix a prime ideal p of k
over p. We denote the unique prime ideal of k;,, over p simply by p. Let kj, ;
be the completion of k, at p, and U, , the group of principal units of &y, ;.
Let

Vn,p = ﬂ Nm/numup and Wn,p = m Nm/n((k;;z,p)(p))
m>n m>n
be the groups of universal norms. Here, N, , denotes the norm map from

k) to k)X, and for an abelian group X, X (?) denotes the maximal pro—p

quotient. We put
Uy, = Hun,m V, = an,py Wi = HWW,P’
plp plp plp
where p runs over the primes of k over p. These are closed subgroups of
the maximal pro-p quotient kn = ([, k) ,)®). Denote by ¢, the natural

embedding of k¢ into k;;. Let E, (resp. E!) be the group of units (resp. p-
units) of k,, and let &, (resp. £],) be the closure of ¢, (FE,) (resp. ¢n(E!))
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in ky . Let Uso, Exoy Woo, EL, be the projective limits of Uy, En, Wh, &
with respect to the relative norms, respectively:

Uso = lim U, (=1im V), & =1lim &, (=lim W, NE))), ete.
These groups are naturally regarded as modules over Z,[A][[I']].

Lemma 3. The projection P : Wy, — Wy induces an isomorphism
Wao /WL =W

Proof. Tt is clear that the projection P is surjective and that WL C ker P.
So, it suffices to show that ker P C WZL. Let u = (un)n>0 be an element
of ker P with u, € W,,. As ug = 1, we see that u,, is contained in Uf,. We
can write u, = wl for some w, € Hp|p k‘,f’p by Hilbert Satz 90. Hence,
u, = WL, W, being the projection of w,, in k;;. Denote by (™ the element
of the product X = [, &k, whose ¢-th component is N, /(W) (resp. 1) for

¢ < n (resp. £ > n). Since X is compact, {z(™} has an accumulation point
in X. We easily see that 2 € Wy, and 27 = u. Therefore, ker P C WL. O

By class field theory, it is known (cf. [14, Corollary 13.6]) that the inertia
group 7 is canonically isomorphic to Us/Es over Zy[A][[T]]. As ¥* is odd
and U* # w, it follows that £ (¥*) = {0} by a theorem on units of CM-fields
(cf. [14, Theorem 4.12]). Therefore, we obtain a A-isomorphism

3) (V") = Uoo (T7).
On the A-structure of Uy, it is known (cf. Gillard [3, Proposition 1]) that

{ A, when ¥ (p) # 1,
®AN/(T—-q), whenty(p) =1.

It is also known (cf. [3, Proposition 2]) that

(4) Uso (07) =

0, when ¢(p) # 1 and ¢*(p) # 1,
(5) W(¥*) = ¢ O©0/q,  when(p) =1,
{0}, when 9*(p) = 1

As for the decomposition group Z’, we need to prove the following:
Proposition 2. The reciprocity law map induces a canonical isomorphism
T2 Wy /EL

over Zp[A][[I']].

Proof. Let M, (resp. L)) be the maximal abelian extension of k, contained
in M (resp. L'). It suffices to prove that

(6) Gal(My/Ly,) = Wi/ W N Ey)
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since 7 is the projective limit of Gal(M,,/L!,) with respect to the restriction
maps. It suffices to show the assertion (6) only when n = 0 by considering
k,, as the base field.

For an integer m (> 0), we put

W = T Nuwjoksnp QUG-
plp
For a prime divisor q of k relatively prime to p, let Uy be the group of local
units (resp. the multiplicative group) of the completion kq of k at q when
q is finite (resp. infinite). Let Ji be the group of ideéles of k. We define its
subgroups A, B, C as follows:

A=wm < [y, B=ul" <[}, ¢ =[[{1} <[] Vs
atp atp plp atp

where p (resp. q) runs over the primes of k dividing p (resp. relatively prime
to p).

Denote by H the Hilbert p-class field of k. Let My ,, be the maximal
intermediate field of My/H whose Galois group over H is of exponent p™.
Clearly, My, contains k,,. Let L67m be the maximal intermediate field of
Mo/ kr, in which all prime divisors of &, over p split completely. We have
a natural isomorphism

(7) Gal(Mo/Ly) = lim Gal(Mo /L ),

the projective limit being taken with respect to the restriction maps.
It is known that the reciprocity law map induces isomorphisms

Gal(Mon/k) = (Ji/k*BC)P)  and  Gal(L,,/k) = (Ji/k*AC)P).
For this, see Sumida [13, pp. 692-693]. Therefore, we obtain a canonical
isomorphism

Gal(Mom/Lj ) = (kX AC/k*BC)W = (A/(AN (k* BC)))®P).
We easily see that
AN (k*BC) = (W™ n(Egug™) x [J{1}-
qtp

Here, we are regarding Ej, as a subgroup of Hp|p kép in the natural way.
Hence, we have

Gal(Mo,m /L) = (W /(WO 0 (BgUg™)) ™.
From this and (7), we obtain
Gal(Mo/Lg) = Wo/(Wo N &)

by an elementary but tedious argument on the topology of kg = (][, ,1<:Ox7p)(1”)7
which we leave to the reader.
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4.2. Proof of Lemmas 1 and 2.

Proof of Lemma 1 (and the formula (2)). Let B,, be the subgroup of A,, con-
sisting of classes which contain a product of prime ideals of k,, over p, and
let By, be the projective limit of B,, with respect to the relative norms.

From class field theory, we see that Z’/Z is canonically isomorphic to Be.
Let D (C A) be the decomposition group of p at k. Then, we have a natural
surjection

Z,[A/D] — Boo =TT

over Z,[A]. We see that Z,[A/D](¥*) = {0} or O according as ¥*(p) # 1
or ¥*(p) = 1. Let ¥*(p) # 1. Then, from the above surjection, we see that
T'(¥*) = Z(¥*) (from which (2) follows). Hence, the assertion of Lemma 1
follows from (3) and (4) in this case.

Let ¢*(p) = 1. We have the following exact sequence of Z,[A]-modules.

(p)
{0} — o — | [Tk | — Zola/D] — {0}
plp
As ¢*(p) = 1, we see from (5) that

(Wo NUp)(¥*) = Vo (¥7) = {0}.

Therefore, by the above exact sequence, we see that the O-module Wy (¥*)
is free of rank one (or Wy(¥*) = {0}). Hence, Wu(¥*) is cyclic over A
by Lemma 3 and Nakayama’s lemma (cf. [14, Lemma 13.16]). By this and
Proposition 2, Z'(¥*) is cyclic over A. Then, we obtain Z'(¥*) = A since
Z C7Z' and Z(¥*) = A by (3) and (4). O

Proof of Lemma 2. It is known (cf. [6, Proposition 3]) that
M(U*) = N(U*)L(T™).

Let ¢*(p) # 1. Then, N'(¥*) = N(¥*) and L'(¥*) = L(¥*) by (1) and
(2). Hence, the assertion follows from the above in this case. Let ¢*(p) = 1.
Then, by Lemma 1, Z'(¥*) = A. On the other hand, Z/'(¥*) is finitely
generated and torsion over A by [10, Theorems 5, 14]. Therefore, we obtain
ZN(¥*)NZ'(v*) = {0}, and hence M (¥*) = N'(WU*)L/(U*). O
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