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M.P. de Oliveira and J.A. Verderesi

We calculate the Campbell-Baker-Hausdorff series for the
product of two exponentials appearing in the usual definition
of canonical kernel function.

1. Introduction.

The canonical kernel function of a bounded symmetric domain D in its
Harish-Chandra realization has been introduced by I. Satake in [8, 9, 10, 11]
and since then it has found several applications. Some of them would in-
clude reproducing kernels for Hilbert spaces of holomorphic functions on D
associated with the holomorphic discrete series representations, the commu-
tator of certain elements in the universal enveloping algebra of a complex
semisimple Lie algebra of hermitian type, expressions for the contravariant
form on a highest weight module over such a Lie algebra, among others (see
[1, 2]).

We will not comment on the importance of the Campbell-Baker-Hausdorff
series. Even though Goldberg’s formulas provide an algorithm to figure out
the coefficients of the series by recurrence, only in very few particular cases
they are “explicitly” known in terms of “sufficiently elementary functions”.
Moreover, as in the present case, there are certain linear relations among the
Lie monomials which are exclusive to the Lie algebra under consideration
and not regarded in the general setting.

From this point of view, it seems reasonable to us to work out the series
for the product of two exponentials like those in the definition of canonical
kernel function.

2. Preliminaries.

Let g be a real semisimple Lie algebra of hermitian type. By hermitian type
we mean that for some, and thus for any, Cartan decomposition g = k + p
there is an element H0 in the center c of k such that adH0 is a complex
structure on p. Fix one of them and let θ be the corresponding Cartan
involution.

Let c be the center of k and choose h ⊂ g a Cartan subalgebra of g
contained in k. Let gc, kc, cc, hc, pc be the complexifications of g, k, c, h, p and
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p+, p− the eigenspaces of adpcH0 with eigenvalues i and −i, respectively.
Denote with B the Killing form of gc.

Let Gc be the connected simply connected Lie group with Lie algebra gc

and P+, P− , Kc, G, K the analytic subgroups ofGc with Lie algebras p+, p−,
kc, g and k respectively. The exponential map of Gc induces a holomorphic
diffeomorphism of p+(p−) onto P+(P−) (see [6]).

By a theorem of Harish-Chandra, the map

ψ : P+ ×Kc × P− → Gc, ψ(p, k, q ) = pkq

is a holomorphic diffeomorphism onto an open dense subset of Gc and
G ⊂ P+KcP−. In general, given g ∈ Im ψ, we write g = g+ g0 g− for the
“P+KcP−” decomposition of g, where g+ ∈ P+, g0 ∈ Kc and g− ∈ P− . By
analogy, these results can be reformulated for a “P−KcP+” decomposition.

Now, it follows from the results mentioned above that we have the open
holomorphic embeddings:

D = G/K ' GKcP−/KcP− ↪→ P+KcP−/KcP− ' P+ ' p+ .(2.1)

One can prove that the image of the composition of these embeddings is a
bounded and holomorphically symmetric connected open subset of p+ which
is known as the Harish-Chandra realization of D as a bounded symmetric
domain (see [11]).

3. The canonical kernel function.

We define the canonical kernel function of a bounded symmetric domain in
its Harish-Chandra realization as

κ : D ×D → Kc, κ(z, w ) = ((exp−w exp z )0 )−1 ∈ Kc,(3.1)

which is well-defined on D ×D because, for z, w ∈ D,

exp−w exp z ∈ GKcP−GKcP− = P+KcGKcP− = P+KcP−.

In other words, κ(z, w ) is the inverse of the Kc-part of

exp−w exp z(3.2)

in the “P+KcP−” decomposition or, alternatively, the Kc-part of

exp−z expw(3.3)

in the “P−KcP+” decomposition.
In what follows, we are concerned about rewriting either of the prod-

ucts (3.2) or (3.3) as a single exponential. Notice that they represent the
same problem since an expression for one of them can readily be obtained
from an expression for the other (in this case by means of the inverse oper-
ation).
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4. Main results.

Lemma 4.1. Let

E =
(

0 1
0 0

)
, F =

(
0 0
1 0

)
.

Then

exp tE exp tF = exp C(t2)
(
tE +

1
2
[tE, tF ] + tF

)
, t ∈ R(4.1)

where C : (−4,∞) −→ R is the function given by

C(u) =
∑
n>0

(−1)n

n+ 1

(
2n+ 1
n

)−1

un, |u | < 4,(4.2)

C(u) = 2
log
(
1 + u/2 +

√
u2 + 4u /2

)
√
u2 + 4u

, u > 0.(4.3)

Proof. Let

A =
(
t2 t
t 0

)
.

log
(
exp tE exp tF

)
= log

((
1 t
0 1

)(
1 0
t 1

))
= log

(
I +A

)
.(4.4)

For each t ∈ R , the matrix A is symmetric with eigenvalues

λ+ =
1
2

(
t2 + t

√
t2 + 4

)
λ− =

1
2

(
t2 − t

√
t2 + 4

)
and, if t 6= 0, A has corresponding orthonormal eigenvectors

v+ =
(
λ+/

√
t2 + λ2

+, t/
√
t2 + λ2

+

)
v− =

(
λ−/

√
t2 + λ2

−, t/
√
t2 + λ2

−

)
forming the columns of the matrix

M =

 λ+/
√
t2 + λ2

+ λ−/
√
t2 + λ2

−

t/
√
t2 + λ2

+ t/
√
t2 + λ2

−

 .

Let D(a, b) be the diagonal matrix whose diagonal is (a, b), from the top.
Then for sufficiently small values of t

log
(
I +A

)
= log

(
I +MD(λ+, λ−)MT

)
= MD( log(1 + λ+), log(1 + λ−))MT

proving formula (4.1), with C given by (4.3), locally around zero, t 6= 0.
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To prove the development into series (4.2), maybe it is easier now to
develop one of the entries of expression (4.4) directly. It is worth listing the
entry at position (1, 2) for some of the powers of A:

A(1, 2) = t
A2(1, 2) = t3

A3(1, 2) = t5 + t3

A4(1, 2) = t7 + 2t5

A5(1, 2) = t9 + 3t7 + t5

A6(1, 2) = t11 + 4t9 + 3t7

A7(1, 2) = t13 + 5t11 + 6t9 + t7

A8(1, 2) = t15 + 6t13 + 10t11 + 4t9

=
.. . . . . . . . . . ....

...

Figure 1. (1, 2)−entry for powers of A.

One has

A2 = t2 (A+ I) and hence Am = t2 (Am−1 +Am−2), m > 2.(4.5)

From above expression, it follows

Am(1, 2) =
∞∑

n=0

C2n+1
m t2n+1, m > 1, where C2n+1

m = 0 for n > m.(4.6)

C2n+1
m = C2n−1

m−1 + C2n−1
m−2 , m > 3, n > 1.(4.7)

Now, define Bn
p as

Bn
p ≡ C2n+1

p+n+1, n > 0, p > 0.(4.8)

Since

Bn
p = Bn−1

p +Bn−1
p−1 , n > 1, p > 1,(4.9)

B0
p = C1

p+1 = 0, p > 1, B0
0 = 1,(4.10)

Bn
0 = C2n+1

n+1 = 1, n > 0,

one has

Bn
p =

(
n

p

)
, n > 0, p > 0.(4.11)

Because of the identity (see [4])
n∑

m=0

(
n

m

)
(−1)m

x+m
= x−1

(
x+ n

n

)−1

, x /∈ {0,−1, · · · − n},(4.12)
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it follows for small enough values of t

log (I +A)(1, 2) =
∑
n>0

(−1)n

n+ 1

(
2n+ 1
n

)−1

t 2n+1,(4.13)

and therefore C can be given by series (4.2), locally above zero. By analytic
continuation, C can be extended to (−4,∞) as described in the statement.
Also by analyticity, expression (4.1) is valid for any t ∈ IR. �

Remark 4.2. The last expression in Lemma 4.1 (Formula (4.3)) can alter-
natively be obtained noticing that

B = log(I +A) =
(
x y
y −x

)
satisfies

expB = I +A = cosh(r)I +
sinh(r)
r

B

where r =
√
x2 + y2.

Theorem 4.3 (Campbell-Baker-Hausdorff formula for z ∈ p+ and w ∈ p−).

exp z exp w = exp H(z, w), where(4.14)

H(z, w) = C
(

1
2

ad z adw
)
z +

1
2
C
(

1
2

ad z adw
)

[z, w] + C
(

1
2

adw ad z
)
w

(4.15)

for (z, w) ∈ p+ × p− such that ‖ad z adw / 2‖ < 4. Here the norm || ||
is the operator norm associated with the positive definite hermitian form
−B(X, θY ) on gc and C(X ) denotes the series

C(X ) =
∑
n>0

(−1)n

n+ 1

(
2n+ 1
n

)−1

X n

where X : gc → gc is a linear operator.

Proof. It is a corollary of Lemma 4.1. We use the strongly orthogonal root
technique: Fix a basis Φ for the root system ∆ of gc relative to hc such that

p+ =
∑

α∈∆+
n

gα p− =
∑

α∈∆+
n

g−α(4.16)

where ∆+
n is the set of positive noncompact roots. Now we can also de-

note with ∆+, ∆+
c the sets of positive roots and positive compact roots

respectively.
First, suppose that gc is a simple Lie algebra. Then there is exactly one

positive noncompact simple root. Recall that two distinct roots are strongly
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orthogonal if neither their sum nor difference is a root. Form the maximal
sequence

Γ = γ1 , . . . , γs

such that γ1 is the unique noncompact simple root and γj is the lowest
positive noncompact root strongly orthogonal to γ1 , . . . , γj−1 , j = 2, . . . , s
(there exists such a lowest element in the partial order prescribed by Φ). In
case gc =

⊕m
i=1 gi is a sum of simple ideals, consider Γi as the sequence of

strongly orthogonal roots of gi constructed as above and define

Γ = γ1, . . . , γs

as the sequence obtained concatenating Γ1,Γ2, . . . ,Γm.
By a result of Harish-Chandra, the number of roots in this sequence equals

the dimension of any maximal abelian subalgebra of p.
Choose elements Eβ ∈ gβ , E−β ∈ g−β , such that Eβ = E−β and nor-

malize them in such a way [[Eβ , E−β ], Eβ ] = 2Eβ, β ∈ ∆+
n . From the first

condition it follows that
∑s

i=1 R(Eγi + E−γi ) is a maximal abelian subal-
gebra of p. One has from the second one that Eβ, E−β and Hβ = [Eβ , E−β ]
form a Lie algebra isomorphic to sl(2,C ), for ±β ∈ ∆+

n . From Lemma 4.1
and the fact that the group SL(2,C) is simply connected, it follows

exp tiEγi exp tiE−γi = exp C(t2i )
(
tiEγi +

1
2
[tiEγi , tiE−γi ] + tiE−γi

)
where ti are real numbers, i = 1, . . . , s. Now for

z =
s∑

i=1

tiEγi

one has

z =
s∑

i=1

tiE−γi .

By strongly orthogonality of the roots γi, we conclude that for small |ti|

exp z exp z = exp H(z, z), where(4.17)

H(z, z) = C
(

1
2

ad z ad z
)
z +

1
2
C
(

1
2

ad z ad z
)

[z, z] + C
(

1
2

ad z ad z
)
z.

(4.18)

Since for any z ∈ p+, there is k ∈ K such that

z = Ad k

(
s∑

i=1

tiEγi

)
,

expression (4.17) is actually valid for z ∈ p+, locally at zero.



THE CBH FORMULA IN THE CK FUNCTION 193

Because of this, the equality to be proved is valid locally at zero, since both
of its sides are holomorphic in z and antiholomorphic in the auxiliary variable
z2 ∈ p+ such that w = z2. But then they coincide on the (connected) subset

Ω =
{

(z, w) ∈ p+ × p−

∣∣∣ ∥∥∥∥1
2

ad z adw
∥∥∥∥ < 4

}
.

�

Remark 4.4. In above notation, one can describe the bounded symmetric
domain D and the canonical kernel function in “coordinates” as

D =

{
Ad k

(
s∑

i=1

tiEγi

) ∣∣∣∣ k ∈ K, ti ∈ R, |ti| < 1

}
(see [5]),(4.19)

(4.20) κ

(
s∑

i=1

tiEγi ,

s∑
i=1

uiEγi

)
= exp

s∑
i=1

log (1− tiui )[Eγi , E−γi ],

ti, ui ∈ R, |ti|, |ui| < 1 (cf [12]).

They confirm that, in fact, the canonical kernel function is defined on the
subset D×D of p+× p+ but cannot be extended to all points of its closure.

On the other hand, the bounded symmetric domain can alternatively be
characterized as

D = {z ∈ p+ | ||ad z|| <
√

2} (see [1]),(4.21)

which means that the domain Ω contains pairs of points where the canonical
kernel function’s expression is not defined, for instance, for pairs (z, z ) such
that z lies on the boundary of D.

Remark 4.5. Equality (4.14) is still valid if we consider g(z, w), the free
3−graded Lie algebra generated by variables z of degree 1 and w of degree
−1. In this case, series (4.15) and the exponentials above are formal series
with terms in g(z, w) and U(g(z, w)), the universal enveloping algebra of
g(z, w), respectively (see [2]).

Remark 4.6. The results above can also be obtained via Goldberg’s re-
currently computable coefficients of the commutator-free log(exey), as in
[3], but one still has to take into account the dependence among the terms
which are specific to gc. To obtain series (4.15), for instance, it is enough to
consider the identities:

i) (adz)3 = (adw )3 = 0,

ii) adz adw ( adz adw )k [z, w ] = adw adz ( adz adw )k [z, w ], k > 0,

for z ∈ p+ and w ∈ p−. The relations in the second family can be proved
using the strongly orthogonal root technique, as in the proof of (4.14).
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