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In this note, we compute the Tian’s αG(M)-invariant on
CP2#2CP2. Our result is an improvement of Abdesselem’s
result in Abdesselem (1997). As a consequence, we obtain a
good estimate of Ricci curvature on CP2#2CP2 by studying
certain complex Monge–Ampère equation.

1. Introduction.

It is well-known that the αG(M)-invariant introduced by Tian plays an im-
portant role in the study of the existence of Kähler-Einstein metrics on
complex manifolds with positive first Chern class ([T1], [T2], [TY]). Based
on the estimate of αG(M)-invariant, Tian in 1990 proved that any complex
surface with c1(M) > 0 always admits a Kähler-Einstein metric except in
two cases CP2#1CP2 and CP2#2CP2, i.e., the blow-ups of CP2 at one point
and two points respectively ([T2]). Instead of Kähler-Einstein metric, Koiso
constructed a Kähler-Ricci soliton on CP2#1CP2 ([Ko]). But it is still un-
known that there is a Kähler-Ricci soliton on CP2#2CP2 or not. Recently,
the author studied a sufficient condition for the existence of Kähler-Ricci
soliton on a complex manifold with c1(M) > 0 in the sense of Tian’s αG(M)-
invariant ([Zh]). In this note, we compute the Tian’s αG(M)-invariant on
CP2#2CP2 and wish that our estimate was an important step towards find-
ing the Kähler-Ricci soliton on CP2#2CP2. Kähler-Ricci soliton can be
regarded as a good replacement when a Kähler manifold with c1(M) > 0
doesn’t admit a Kähler-Einstein metric ([Ca], [Ha]). The uniqueness prob-
lem of such metrics was solved by Tian and the author recently ([TZ1],
[TZ2], [TZ3]). Our result is also an improvement of Abdesselem’s result
([Ab]). As a consequence, we obtain a good estimate of Ricci curvature on
CP2#2CP2 by studying certain complex Monge-Ampère equation.

2. Reduction to a local estimate.

Let M be the blow-up of CP2 at two points and let π be its natural projec-
tion. Without loss of generality, we may assume the two points p1 = [0, 0, 1]
and p2 = [0, 1, 0]. Then M \(π∗p1∪π∗p2) is isomorphic to CP2\({p1}∪{p2}).
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If we choose an inhomogeneous coordinates (z1, z2) = [1, z1, z2] of CP2, the
Kähler metric

ωg0 =
√
−1
2π

∂∂(log(1 + |z1|2) + log(1 + |z2|2) + log(1 + |z1|2 + |z2|2))

can be extended to a Kähler metric g on M which belongs to c1(M). Clearly,
if we take the transformation of inhomogeneous coordinates ρ1 : (w2, w1) =
[w2, w1, 1]→ (z1, z2) = [1, z1, z2], i.e., z1 = w1

w2
, z2 = 1

w2
, then we get a Kähler

metric on C2 \ {(0, 0)}, given by

ωg1 =
√
−1
2π

∂∂(log(1 + |w2|2) + log(|w1|2 + |w2|2) + log(1 + |w1|2 + |w2|2)).

Similarly, after the transformation of inhomogeneous coordinates ρ2 :
(w2, w1) = [w2, 1, w1] → (z1, z2) = [1, z1, z2], i.e., z1 = 1

w2
, z2 = w1

w2
, then

we also get a Kähler metric on C2 \ {0, 0}, given by

ωg2 =
√
−1
2π

∂∂(log(1 + |w2|2) + log(|w1|2 + |w2|2) + log(1 + |w1|2 + |w2|2)).

Let γj,θ(j = 0, 1, 2) and σ0 be automorphisms of CP2 given by,

γj,θ : [z0, zj , z2] → [z0, e
iθzj , z2],

σ0 : [z2, 1, z1] → [z2, z1, 1].

Then γj,θ and σ0 generalize a maximal compact subgroups G of automor-
phisms group of M . Let

PG(M, g) =
{

φ ∈ C∞(M)| ωg +
√
−1
2π

∂∂φ > 0, sup
M

φ = 0,

and φ is G-invariant
}

.

In [T1], Tian introduced a holomorphic invariant

αG(M) = sup
{

α
∣∣∣ ∫

M
e−αφdvg ≤ C(α), ∀ φ ∈ PG(M, g)

}
,

which is independent of the choice of Kähler form ωg. In this note, we shall
estimate the number of αG(M).

Let xi (i = 1, 2) = |zi|2 (resp. yi = |wi|2). Then any G-invariant function
is of form φ(x1, x2) and the integral can be divided into three parts,∫

M
e−αφdvg =

∫
0≤x1≤1,0≤x2≤1

e−αφdvg0

+
∫

0<y1≤1,0<y2≤1
e−αφdvg1 +

∫
0<y1≤1,0<y2≤1

e−αφdvg2 .

So it suffices to estimate each of these three parts of the integral. Note that
the computation of part three of the integral is similar to part two.
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Let K0(x1, x2) = log(1+x1+x2)+log(1+x1)+log(1+x2) and K(x1, x2) =
K0(x1, x2)+φ(x1, x2). Then functions xi

∂K(x1,x2)
∂xi

(i = 1, 2) are both strictly
increasing for variable xi ∈ [0,+∞). Clearly,

x1
∂K0(x1, x2)

∂x1
=

x1

1 + x1 + x2
+

x1

1 + x1
,

x2
∂K0(x1, x2)

∂x2
=

x2

1 + x1 + x2
+

x2

1 + x2
.

Since

x1
∂φ(x1, x2)

∂x1
|x1=+∞ = 0,

x2
∂φ(x1, x2)

∂x2
|x2=+∞ = 0,

by using the monotonicity, we get

0 ≤ x1
∂K(x1, x2)

∂x1
≤ 2,(2.1)

0 ≤ x2
∂K(x1, x2)

∂x2
≤ 2.

Furthermore, we have:

Lemma 2.1.
∂K

∂x1
≤ 3

2x1
, x1 ≤ x2;

∂K

∂x2
≤ 3

2x2
, x2 ≤ x1.

Proof. Since φ is G-invariant, by the transformatiom, w1 = z1
z2

, w2 = 1
z2

, i.e.,

y1 =
x1

x2
, y2 =

1
x2

,

we have φ(y1, y2) = φ
(

1
y1

, y2

y1

)
(for simplicity, we still use φ(y1, y2) to mean

φ(x1(y1, y2), x2(y1, y2)) here; similarly, K(y1, y2) and K0(y1, y2) will denote
K(x1(y1, y2), x2(y1, y2)) and K0(x1(y1, y2), x2(y1, y2)), respectively). It fol-
lows

(2.2) 2∂1φ(1, y2) + y2∂2φ(1, y2) = 0,

and

2∂1K(1, y2) + y2∂2K(1, y2) = 2∂1K0(1, y2) + y2∂2K0(1, y2) = 3.

On the other hand, by using the convexity of K, one can check the function
with variable u,

u
d

du
K(u2y1, uy2) = 2u2y2∂1K(u2y1, uy2) + uy2∂2K(u2y1, uy2)
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is strictly increasing (cf. [Re]). Hence we obtain that for any y1 ≤ 1,

2y1∂1K(y1, y2) + y2∂2K(y1, y2) ≤ 2∂1K(1, y2) + y2∂2K(1, y2) = 3.

In particular, for any 0 < y1 ≤ 1, we have

(2.3) ∂1K(y1, y2) ≤
3

2y1
.

Since
∂K(x1, x2)

∂x1
=

1
x2

∂K(y1, y2)
∂y1

,

by (2.3), we get
∂K(x1, x2)

∂x1
≤ 3

2x1
, x1 ≤ x2.

On the other hand, by using the symmetry of K(x1, x2) for variables x1

and x2, we have

∂K(x1, x2)
∂x2

=
∂K(x2, x1)

∂x2
=

1
x1

∂K(y1, y2)
∂y1

.

Again by (2.3), we get

∂K

∂x2
≤ 3

2x2
, x2 ≤ x1.

�

Lemma 2.2. Let C1 = {[z0, 1, 0]},C2 = {[0, 1, z2]}, C3 = {[z0, 0, 1]} be three
lines of CP2. Then φ ∈ PG(M, g) are uniformly locally bounded away from
the set of five curves ∪3

i=1π
∗Ci ∪2

i=0 π∗pi.

Proof. Since φ are almost subharmonic functions, by the normalization con-
dition supM φ = 0, one sees that there is a subset K ⊂ [0, 2] × [0, 2] with
Lebseque measure bigger than 1 such that φ are uniform bounded on K.
Then by (2.1), it is easy to see that φ(x1, x2) are uniform locally bounded
on [0, 2]× [0, 2] \ ((x1, 0) ∪ (0, x2)). On the other hand, similar to (2.1), we
have

0 ≤ y1
∂K(y1, y2)

∂y1
≤ 2,

0 ≤ y2
∂K(y1, y2)

∂y2
≤ 3.

Hence we can also prove that φ(y1, y2) are uniform locally bounded on [0, 2]×
[0, 2] \ ((y1, 0) ∪ (0, y2)). This completes the proof of lemma. �

Proposition 2.1. For any α < 4
7 , there is a uniform C such that∫

0<x1≤1,0<x2≤1
e−αφdvg0 ≤ C.



RICCI CURVATURE ON THE BLOW-UP OF CP2 249

Proof. Let (x1, x2) ∈ S = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, x1 ≤ x2}. Then by
Lemma 2.1, we have

−K(x1, x2) =
∫ 1

x2

∂2K(x1, y)dy +
∫ 1

x1

∂1K(x1, 1)dx−K(1, 1)

≤ −3
2
lnx1 − 2lnx2 −K(1, 1).

Similarly, if (x1, x2) ∈ S′ = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, x2 ≤ x1}, we have

−K(x1, x2) ≤ −3
2
lnx2 − 2lnx1 −K(1, 1).

Since dvg0 ≤ C1dx1 ∧ dx2 ∧ dΘ (where dΘ = dθ1 ∧ dθ2, 0 ≤ θ1 ≤ 2π, 0 ≤
θ2 ≤ 2π), we have ∫

0≤x1≤1,0≤x2≤1
e−αφdvg0

≤ C2

(∫
S

+
∫

S′

)
e−αK(x1,x2)dx1dx2

≤ 2C2

∫ 1

0

∫ x2

0
x
−3α

2
1 x−2α

2 dx1dx2

=
4

2− 3α
C2

∫ 1

0
x

1− 3α
2
−2α

2 dx2.

Clearly, if α < 4
7 , we get∫

0≤x1≤1,0≤x2≤1
e−αφdvg0 ≤ C.

�

3. Blow-up transformation.

Lemma 3.1. Let k < 1 be a positive number and ∆k = {0 < y1 ≤ k, 0 <
y2 ≤ 1, and y1 ≤ ky2}. Then for any (y1, y2) ∈ ∆k, it holds

y2∂2K(y1, y2) ≤
3
2

+
2 + 3k

4 + 2k
+

k

2 + 2k
.

Proof. Make transformation y′1 = y2 ≤ 1, y′2 = y1

y2
≤ k. Then y1 = y′1y

′
2, y2 =

y′1. Moreover, one can check

φ(y′1, y
′
2) = φ

(
1
y′1

,
y′2
y′1

)
.

Hence

(3.1) 2∂1φ(1, y′2) + y′2∂2φ(1, y′2) = 0.
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Since

K̃0(y′1, y
′
2) = logy′1 + log(1 + y′1) + log(1 + y′2) + log(1 + y′1y

′
2 + y′1)

= logy′1 + K0(y′1, y
′
2),

then

y2∂2K(y1, y2) = y′1
∂y′1
∂y2

∂1K̃(y′1, y
′
2) + y2

∂y′2
∂y2

∂2K̃(y′1, y
′
2)(3.2)

= y′1∂1K(y′1, y
′
2)− y′2∂2K(y′1, y

′
2) + 1

≤ y′1∂1K(y′1, y
′
2) + 1

≤ ∂1K(1, y′2) + 1

≤ ∂1K(1, y′2) +
y′2
2

∂2K(1, y′2) + 1.

On the other hand,

2∂1K0(1, y′2) + y′2∂2K0(1, y′2)(3.3)

= 1 +
2 + 3y′2
2 + y′2

+
y′2

1 + y′2
.

Hence combining (3.1), (3.2), (3.3), the lemma is proved. �

Lemma 3.2. Let 0 < δ < 3
2 . Then for any (y1, y2) ∈ ∆k, we have

−K(y1, y2) ≤

{
−3

2 logy1 − (3
2 − δ)logy2 −K(k, 1), or

−1
2(3

2 + δ)logy1 − cklogy2 −K(k, 1),

where ck = 3
2 + 2+3k

4+2k + k
2+2k .

Proof. First we assume that ∂2K(k, 1) ≥ 3
2 − δ. Then by the fact

2k∂1K(k, 1) + ∂2K(k, 1) ≤ 3,

we have

k∂1K(k, 1) ≤ 1
2

(
3
2

+ δ

)
.

By using the monotonicity, we get

(3.4) x∂1K(x, 1) ≤ 1
2

(
3
2

+ δ

)
, ∀ 0 < x ≤ k.

On the other hand, by Lemma 3.1, for any 0 < y ≤ 1, we have

(3.5) ∂2K(y1, y) ≤ 1
y

(
3
2

+
2 + 3k

4 + k
+

k

2 + 2k

)
.
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Combining (3.4) and (3.5), we get

−K(y1, y2)

=
∫ 1

y2

∂2K(y1, y)dy +
∫ k

y1

∂1K(x, 1)dx−K(k, 1)

≤ −1
2

(
3
2

+ δ

)
logy1 −

(
3
2

+
2 + 3k

4 + 2k
+

k

2 + k

)
logy2 −K(k, 1).

In the other case of ∂2K(k, 1) < 3
2 − δ, by the monotonicity, we have

∂2K(k, y) <

(
3
2
− δ

)
1
y
, ∀ 0 < y ≤ 1.

Combining ∂1K(y1, y2) ≤ 3
2y1

, we get

−K(y1, y2)

=
∫ 1

y2

∂2K(y1, y)dy +
∫ k

y1

∂1K(x, 1)dx−K(k, 1)

≤ −3
2
logy1 −

(
3
2
− δ

)
logy2 −K(k, 1).

The lemma is proved. �

Lemma 3.3. Let k > 1 and ∆k = {0 < y1 ≤ 1
2 , 0 < y2 ≤ 1

2k , and y1 ≤
ky2}. Then for any (y1, y2) ∈ ∆k, we have

−K(y1, y2)

<


−3

2 logy1 − b1logy2 −K(1
2 , 1

2k ), if 1
2k∂2K(1

2 , 1
2k ) < b1

−1
2(3− bj)logy1 − bj+1logy2

−K(1
2 , 1

2k ), if bj ≤ 1
2k∂2K(1

2 , 1
2k ) < bj+1,

where b1 = 2
3 − δ, and bj+1 = 3−

(
1
2

)j (3− b1), j = 1, 2, . . . .

Proof. The proof is similar to that of Lemma 3.2. We omit it. �

Lemma 3.4. There are a positive number α > 1
2 and a uniform constant

C such that ∫
∆ 1

4

e−αφdvg1 ≤ C,

where ∆ 1
4

= {0 < y1 ≤ 1
4 , 0 < y2 ≤ 1, and y1 ≤ 1

4y2}.

Proof. Let c0 = 2 + 19
90 < 9

4 . Then it is clear that there are two positive
numbers α0 > 1

2 and δ0 such that c0 − 1
4 < 1

α0
− 1

2δ0. We first suppose that
for all (y1, y2) ∈ (0, 1

4 ]× (0, 1],

−K(y1, y2) ≤
3
2
logy1 −

(
3
2
− δ0

)
logy2 −K

(
1
4
, 1

)
.
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Since

dvg1 ≤ C1e
−K0dy1 ∧ dy2 ∧ dΘ ≤ C ′

1(y1 + y2)−1dy1 ∧ dy2 ∧ dΘ,

we have ∫
0<y1≤ 1

4
,0<y2≤1

e−αφdvg1∫
0<y1≤ 1

4
,0<y2≤1

e−αKe−(1−α)K0dy1 ∧ dy2 ∧ dΘ

≤ C2

∫ 1
4

0

∫ 1

0
(y1 + y2)−(1−α)y

− 3α
2

1 y
−( 3

2
−δ0)

2 dy1dy2

≤ C3

∫ 1
4

0

∫ 1

0
y
− 3α

2
− 1−α

s
1 y

−( 3
2
−δ0)− 1−α

t
2 dy1dy2,

where s and t are two positive numbers satisfying 1
s + 1

t = 1. By choosing
t < 2 sufficiently closely to 2, we see that there are positive numbers s, t and
α > 1

2 such that

3α

2
+

1− α

s
< 1, and α

(
3
2
− δ0

)
+

1− α

t
< 1.

Hence we obtain a uniform constant such that

(3.6)
∫

0<y1≤k,0<y2≤1
e−αφdvg1 ≤ C.

By (3.6) and Lemma 3.2, we may assume that for any (y1, y2) ∈ ∆ 1
4
,

−K(y1, y2) < −
(

3
2

+ δ0

)
logy1 − c0logy2 −K

(
1
4
, 1

)
.

Let p = 1− α0
2 (3

2 + δ0) > 0. Then∫
∆ 1

4

e−α0φdvg1(3.7)

≤ C4

∫ 1

0
dy2

∫ 1
4
y2

0
(y1 + y2)−(1−α0)y

−α0
2

( 3
2
+δ0)

1 y−c0α0
2 dy1

=
C4

p

∫ 1

0
dy2

∫ 1
4p yp

2

0
(y

1
p

1 + y2)−(1−α0)y−c0α0
2 dy1

≤ C5

p

∫ 1

0
dy2

∫ 1
4p yp

2

0
y
−(1−α0)

ps

1 y
− 1−α0

t
2 y−c0α0

2 dy1

≤ C6

∫ 1

0
y

p−α0c0−(1−α0)
2 dy2,
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where s and t are two positive numbers satisfying 1
s + 1

t = 1. By the choice
of numbers δ0 and α0, it is clear p− α0c0 − (1− α0) > −1. Hence

(3.8)
∫

∆ 1
4

e−α0φdvg1 ≤ C.

By combining (3.6) and (3.8), the lemma is proved. �

Lemma 3.5. For any positive number ε, there is a uniform constant C
depending only on ε such that∫

∆5

e−( 1
2
−ε)φdvg1 ≤ C,

where ∆5 = {0 < y1 ≤ 1
2 , 0 < y2 ≤ 1

10 , and y1 ≤ 5y2}.

Proof. From the proof of Lemma 3.4, we may assume that

bj ≤
1
10

∂2K

(
1
2
,

1
10

)
< bj+1,

for some integer j, and

−K(y1, y2) < −1
2
(3− bj)logy1 − bj+1logy2 −K

(
1
2
,

1
10

)
,

where bj+1 = 3−
(

1
2

)j (3− b1), and b1 = 3
2 − δ.

Let α0 = 1
2 − ε and p = 1 − α0

2 (3 − bj) > 0. Then one can check p −
α0bj+1− (1−α0) ≥ −1 + ε′, for some positive number ε′ depending only on
ε. Hence similar to (3.7), we get,∫

∆5

e−α0φdvg1 ≤ C

∫ 1
10

0
y

p−α0bj+1−(1−α0)
2 dy2 ≤ C ′.

The lemma is proved. �

Lemma 3.6. There is a positive number α > 1
2 and a uniform constant C

such that ∫
∆′

5

e−αφdvg1 ≤ C,

where ∆′
5 = {0 < y1 ≤ 1, 0 < y2 ≤ 1

5 , and y1 ≥ 5y2}.

Proof. As in the proof of Lemma 3.1, we make a transformation, y′1 =
y1, y

′
2 = y2

y1
≤ 1

5 . Then y1 = y′1, y2 = y′1y
′
2. Moreover, one can check

φ(y′1, y
′
2) = φ

(
1
y′1

,
y′2
y′1

)
.

Hence
2∂1φ(1, y′2) + y′2∂2φ(1, y′2) = 0.
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Since

K0(y′1, y
′
2) = log(1 + y′2) + log(1 + y′1y

′
2) + log(1 + y′1y

′
2 + y′1),

then, for any y′2 ≤ 1
5 ,

2∂1K0(1, y′2) + y′2∂2K0(1, y′2) = 1 +
2y′2

2 + y′2
+

4y′2
1 + y′2

< 2.

It follows that for any y′1 ≤ 1, and y′2 ≤ 1
5 ,

2y′1∂1K(y′1, y
′
2) + y′2∂2K(y′1, y

′
2) < 2.

In particular, there is a positive number δ such that

∂1K(y′1, y
′
2) <

1− δ

y′1
and ∂2K(y′1, y

′
2) <

2(1− δ)
y′2

.

Hence one can choose a positive number α > 1
2 such that∫

∆′
5

e−αφdvg1 ≤ C1

∫ 1
5

0
dy′2

∫ 1

0
e−αK(y′1,y′2)dy′1 ≤ C.

�

Combining Lemma 3.4, Lemma 3.5 and Lemma 3.6, we obtain:

Proposition 3.1. For any positive number ε, there is a uniform constant
C depending only on ε such that∫

0<y1≤1,0<y2≤1
e−( 1

2
−ε)φdvg1 ≤ C.

Proof. By Lemma 3.4, Lemma 3.5 and Lemma 3.6, it suffices to prove that
for any (y1, y2) ∈ (0, 1] × (0, 1] \ (∪∆ 1

4
∪ ∆5 ∪ ∆′

5), φ(y1, y2) is uniformly
bounded. This follows from Lemma 2.2 immediately. �

Combining Propositions 2.1 and 3.1, we prove:

Theorem 3.1. Let M be the blow-up of CP 2 at two points. Then αG(M) ≥
1
2 .

Remark 3.1. In [Ab], Abdesselem proved α(M) ≥ 1
4 on CP2#2CP2. The-

orem 3.1 is an improvement of Abdesselem’s result. we guess that αG(M) =
1
2 on CP2#2CP2.
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4. Estimate of Ricci curvature.

In this section, we prove:

Theorem 4.1. Let M = CP2#2CP2. Then there exists a Kähler metric
with its Kähler form ω ∈ c1(M) such that Ricci curvature of ω is not less
than 3

4 .

Proof. Choose a G-invariant Kähler form ωg ∈ c1(M) of M . Then there is
a smooth function h such that{

Ric(ωg)− ωg =
√
−1
2π ∂∂h,∫

M ehωn
g =

∫
M ωn

g .

We consider the following complex Monge-Ampère equations with one pa-
rameter t ∈ [0, 1], {

det(gij + φij) = det(gij)e
h−tφ,

det(gij + φij) > 0.

Then by a result in [T1] together with Theorem 3.1, we conclude that for
any t < 3

4 , there is a smooth function φ solves the above equation on t. It
follows

Ric(ωφ) = tωφ + (1− t)ωg > tωφ.

The theorem is proved. �
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