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We built a counterexample to the corona theorem for op-
erators in H∞(L(H2(Dn−1)) for n ≥ 4, which is close to a
counterexample to the corona theorem for functions in the
sense that the associated subspaces are invariant by all the
shifts.

Let Ω be a domain in Cn and H∞(Ω) be the algebra of the bounded
holomorphic functions in Ω; we recall the corona problem:
Given g1, . . . , gN ∈ H∞(Ω) such that:

∀z ∈ Ω, |g1(z)|2 + · · ·+ |gN (z)|2 ≥ δ2 > 0,(CH)

find f1, . . . , fN ∈ H∞(Ω) such that:

f1g1 + · · ·+ fNgN = 1.(C)

L. Carleson [3] proved this is possible in the case n = 1 for the unit disc
D in the complex plane C but the question is still open for n > 1, even for
as simple domains as the unit ball or the unit polydisc Dn.

One can also consider the operators corona problem as follows [7], [13].
Let E and E′ be Hilbert spaces, L(E′, E) the space of bounded linear

operators from E′ to E and H∞(L(E′, E)) the space of bounded holo-
morphic functions on the unit disc taking values in L(E′, E), given G ∈
H∞(L(E′, E)) such that:

∀λ ∈ D, ∀e ∈ E, ‖G(λ)∗e‖2 ≥ c2 ‖e‖2(1)

find X ∈ H∞(L(E,E′)) such that:

∀λ ∈ D, X(λ)∗G(λ)∗ = 1E .(2)

The classical formulation of the operator corona problem given by Sz.
Nagy is about left invertibility of analytic operator-valued functions and
our formulation is about left invertibility of antianalytic operator-valued
functions, the G(λ)∗.

However the function λ−→G(λ)∗ being analytic the two formulations are
equivalent, and the one we choose is best suited for our geometric point of
view.
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For dimE < ∞, dimE′ = 1, it is the Carleson corona problem for func-
tions in the disc.

Using Carleson’s result, Fuhrmann [4] proved the result for dimE′ < ∞
and dimE <∞.

By a different method using a modification of the Wolff’s proof of the
corona theorem, Tolokonnikov [12] and Uchiyama ([7], appendice 3) inde-
pendently, gave an affirmative answer in the case dimE ≤ ∞, dimE′ = 1.

Using Tolokonnikov-Uchiyama theorem (dimE = ∞), Vasyunin ([7], ap-
pendice 3) proved the result for dimE ≤ ∞, dimE′ <∞.

We emphasize that the results of Tolokonnikov-Uchiyama are scalar re-
sults while the ones by Fuhrmann-Vasyunin are matrix.

In the case when both spaces are infinitely dimensional, the answer is
negative and a counterexample is given by Treil [13].

For us it is more convenient to split the function G into N parts G =
(G1, . . . , GN ) and the formulation of the problem is now:
Given G1, . . . , GN ∈ H∞(L(E′, E)) such that:

∀λ ∈ D, ∀e ∈ E, ‖G1(λ)∗e‖2 + · · ·+ ‖GN (λ)∗e‖2 ≥ c2 ‖e‖2(OCH)

find X1, . . . , XN ∈ H∞(L(E,E′)) such that:

∀λ ∈ D, X1(λ)∗G1(λ)∗ + · · ·+XN (λ)∗GN (λ)∗ = 1E .(OC)

In order to introduce our results, we need the following notations:
Let H2(Dn) the Hardy space of the polydisc, i.e., with T := ∂D:

H2(Dn) :=
{
f holomorphic in Dn s.t.

‖f‖2
2 := supr<1

∫
Tn

|f(rζ)|2 dσ(ζ) <∞
}
.

If E is a separable Hilbert space with orthonormal basis {εj , j ∈ N} then
we can define [7]:

H2(E) :=
{
f =

∑
j∈N

fj(·)εj s.t. fj ∈ H2(D) and

‖f‖2
2 :=

∑
j∈N

‖fj‖2
2 <∞

}
.

If E = H2(Dn−1) then H2(E) can be seen as H2(Dn).
For E, E′ Hilbert spaces, G(·) ∈ H∞(L(E′, E)) then we know [7] that

the subspace GH2(E′) of H2(E) is invariant by the shift operator “multi-
plication by z”: f ∈ H2(E)−→zf .

One way to connect the corona problem for functions and the corona
problem for operators is to associate to a function gi(z1, z′) ∈ H∞(Dn), z′ =
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(z2, . . . , zn) the operator Gi(z1) acting on E := H2(Dn−1) by multiplication
by gi(z1, ·).

In this situation, all the shifts “multiplication by zk”, k = 1, . . . , n operate
on H2(E) and if Gi is the operator of multiplication by a function gi(z1, ·)
then of course the subspace GiH

2(E) is invariant by multiplication by z1
but also by all the other shifts.

We construct operator-valued functions G1, G2 on the unit disc (whose
values are operators on H2(Dn−1), n ≥ 4) satisfying Operator Corona Hy-
pothesis (OCH) but not satisfying the conclusion (OC). Theses operator-
valued functions Gi, i = 1, 2 are not just arbitrary ones, they are close in
some sense to scalar functions in H∞(Dn) because the associated subspaces
GiH

2(Ei) ⊂ H2(Dn) are invariant with respect to all the multiplication by
zk, k = 1, . . . , n.

Theorem 0.1. Let E = H2(Dn−1), n ≥ 4, there exist Ei ⊂ E i = 1, 2 and
Gi ∈ H∞(L(Ei, E)) such that (OCH) is true but (OC) is not.

Moreover the GiH
2(Ei) ⊂ H2(Dn), i = 1, 2 are invariant by multiplication

by all coordinates.

This result will be a special case in a general class of counterexamples
(Theorem 2.1); its proof is given in Section 3. The key point to deduce
Theorem 0.1 from Theorem 2.1 is the link between Bergman interpolating
sequences, precisely caracterized by K. Seip [9] and unconditional systems
of representing kernels in H2(Dn) (these definitions are given in Sections 1
and 3).

Our construction is inspired by the Treil’s one but there are two important
differences. The first one, and the most interesting for our point of view, is
the invariance with respect to all shifts which is a necessary condition for
operators coming from multiplication by scalar functions.

The second one is that Treil based his counterexample by making a se-
quence of vectors in a Hilbert space which is uniformly minimal but is not
an unconditional system. The uniform minimality implies that (OCH) is
true and the non-unconditionality implies that (OC) is false. But in our
case uniform minimality always implies unconditionality as we proved in
Corollary 3.2 together with Theorem 4.1 and Corollary 4.2.

Unfortunately in order to get a result for the corona problem for scalar
functions in the polydisc the method must be refined. Operators that come
from multiplication by scalar functions satisfying the corona hypothesis al-
ways satisfy the operator corona conclusion [2].

We want to thank the referee for his constructive critics and for pointing
out interesting open questions (see Remark 4.4).
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1. Interpolating sequences and unconditional system.

If {ei, i ∈ N} is a sequence of unit vectors in the Hilbert space H, we say
that {ei, i ∈ N} is uniformly minimal if there exists a constant δ > 0 such
that:

∀i, dist{ei, span{ek, k 6=i}} ≥ δ,(3)

we say that {ei, i ∈ N} is an unconditional system if there are two positive
constants A and B such that:

A2
∑

i

|αi|2 ≤

∥∥∥∥∥∑
i

αiei

∥∥∥∥∥
2

≤ B2
∑

i

|αi|2.(4)

This is equivalent to say that {ei, i ∈ N} is an unconditional basis of
span {ei, i ∈ N} and this is also equivalent to say that the collection of all
moment sequences {〈h, ei〉, i ∈ N}, for h ∈ H, coincide with the whole l2

space.
To a = (a1, . . . , an) ∈ Dn we associate ka(z) the normalized reproducing

kernel in H2(Dn). If n = 1 this is the normalized Cauchy kernel:

a ∈ D, z ∈ D, ka(z) :=

√
1− |a|2
1− az

,

otherwise:

k(a1,...,an)(z1, . . . , zn) = ka1(z1) . . . kan(zn).(5)

We notice that the reproducing property gives, with Z the operator of
multiplication by z:
∀a ∈ D, ∀h ∈ H2(D), ah(a) = 〈zh, ka〉 = 〈h,Z∗ka〉 and ah(a) = 〈h, aka〉,

hence Z∗ka = aka which means that ka is an eigenvector for the backward
shift.

The same if e ∈ E, a ∈ D then kae is also an eigenvector for the backward
shift in H2(E).

This implies immediately that the reproducing kernels in H2(Dn) are
eigenvectors for all backward shifts and this will be used later in Section 3.

Let H = H2(Dn), σ := {ai, i ∈ N} ⊂ Dn and ∀i ∈ N, ei = kai ; saying
that {ei, i ∈ N} is an unconditional system in H means that the operator
Tσ : H−→CN defined by:

Tσh := {〈h, ei〉, i ∈ N} =
{
h(ai)

√
1−

∣∣a1
i

∣∣2 . . .√1− |an
i |

2, i ∈ N
}

where ai = (a1
i , . . . , a

n
i ) ∈ Dn, is continuous and onto l2(N).

This leads naturaly to the following definitions [1]:

Definition 1.1. We say that σ := {ai, i ∈ N} ⊂ Dn isH2(Dn) interpolating
if the range of Tσ contains l2(N); we say that σ is strongly interpolating if
moreover Tσ is continuous from H2(Dn) onto l2(N).
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If n = 1, these two notions coincide [11]. If n > 1 and σ lies on the
diagonal ∆ of Dn, ∆ := {z = (z1, . . . , zn) ∈ Dn s.t. z1 = · · · = zn}, then
again these two notions coincide, as we shall prove it in Corollary 3.2, and
we shall be mainly interested in that case.

2. A general counterexample.

Let S1 := {ei, i ∈ N}, S2 := {fi, i ∈ N} be two sequences of unit vectors
in E, an Hilbert space, and Γ1 := {ai, i ∈ N}, Γ2 := {bi, i ∈ N} be two
sequences of points in D. Let F1 := span{kaiei, i ∈ N}, F2 := span{kbi

fi, i ∈
N} ⊂ H2(E), they are invariant subspaces with respect to the adjoint of the
shift operator, because as we seen the kaiei are eigenvectors for it; the same
for kbi

fi.
Hence the orthogonal complement of Fi in H2(E) are invariant by the

shift and we can use the Beurling Halmos Lax theorem [7]:
For i = 1, 2, there exists subspaces Ei ⊂ E and inner functions Gi ∈

H∞(L(Ei, E)) such that the orthogonal complement of Fi can be represented
by GiH

2(Ei).
Here inner means that the boundary values of the operators Gi, which

exist a.e. [7], are isometries, and the Gi are unique up to a constant unitary
function.

Of course we can assume Ei = E provided we extend Gi as 0 on E 	Ei,
but then we loose the inner property.

This can be rewritten as Fi = H2(E)	GiH
2(Ei).

Recall that the Gleason (pseudo) distance in the unit disc D is

∀a, b ∈ D, dg(a, b) :=
∣∣∣∣ a− b

1− ab

∣∣∣∣ .
Now we can state:

Theorem 2.1. If the following hypothesis are satisfied:

1. S1 and S2 are unconditional systems in E,
2. Γ1 and Γ2 are separated: ∃δ > 0 s.t. ∀i ∈ N,∀j ∈ N, dg(ai, bj) ≥ δ,
3. {kaiei, i ∈ N}∪{kbi

fi, i ∈ N} is not an unconditional system in H2(E),

then we have for Gi defined as above:

∀λ ∈ D,∀e ∈ E, ‖G1(λ)∗e‖2 + ‖G2(λ)∗e‖2 ≥ c2 ‖e‖2(OCH)

but there are no operators Xi ∈ H∞(L(E,Ei)), i = 1, 2 such that

X1(λ)∗G1(λ)∗ +X2(λ)∗G2(λ)∗ = 1E .(OC)

Points 1 and 2 will give us (OCH), Points 1 and 3 will give us that (OC)
is false.
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2.1. Proof of Theorem 2.1: 1 and 2 imply (OCH). It will be an easy
consequence of the following lemma:

Lemma 2.2. If ‖G1(λ)∗e‖ < t ‖e‖ for 0 < t < 1 there exists j0 ∈ N such
that d2

g(λ, aj0) < c(A,B)t.

Proof of 1 and 2 imply (OCH). Let e ∈ E and suppose that ‖Gi(λ)∗e‖ <
t ‖e‖ for i = 1, 2 and a t such that 0 < t < 1, then using the lemma above
we get that there exist j, k ∈ N with

d2
g(λ, aj) < c(A,B)t and d2

g(λ, bk) < c(A,B)t.

Because dg verifies dg(aj , bk) ≤ 2(dg(aj , λ)+dg(λ, bk)) we get a contradiction
with the hypothesis of separation for t small enough. �

Proof of the lemma. We already know that ([13, Lemma 19.1, p. 269]):

‖G1(λ)∗e‖ = dist(kλe, F1).(6)

Let us assume ‖e‖ = 1 and decompose e ∈ E as:

e =
∞∑
i=1

αiei + e⊥ with e⊥ orthogonal to span {ei, i ∈ N},

and let PF1 the orthogonal projection on F1, PF1(kλe) =
∑∞

i=1 βikaiei.
With (6) the hypothesis can be written∥∥∥∥∥

∞∑
i=1

(αikλ − βikai)ei

∥∥∥∥∥
2

+
∥∥∥kλe

⊥
∥∥∥2
< t2.(7)

Because the sequence {ei, i ∈ N} is an unconditional system (7) implies:∑
i,αi 6=0

|αi|2
∥∥∥∥kλ−

βi

αi
kai

∥∥∥∥2

<
t2

A2
.(8)

Formula (7) implies also that
∥∥e⊥∥∥2

< t2 but ‖
∑∞

i=1 αiei‖2 = 1 −
∥∥e⊥∥∥2

and using again that {ei, i ∈ N} is an unconditional system:

1− t2

B2
<

∑
i

|αi|2 ≤
1
A2

.(9)

But now Formulas (8) and (9) imply that

∃j0 ∈ N :
∥∥∥∥kλ−

βj0

αj0

kaj0

∥∥∥∥2

<
t2B2

(1− t2)A2
.(10)
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To simplify notations let us denote βj0
αj0

by γ, aj0 by µ and t2B2

(1−t2)A2 by

s2. Then

‖kλ − γkµ‖2
H2(D) = 1 + |γ|2 − 2Re(γ 〈kλ, kµ〉),

Re(γ 〈kλ, kµ〉) = Re
(
γε

√
1− d2

g(λ, µ)
)
, with |ε| = 1,

hence

1 + |γ|2 − 2 |γ|
√

1− d2
g(λ, µ) < s2=⇒|1− |γ|| < s; d2

g(λ, µ) <
s2

1− s

and the conclusion. �

Remark 2.3. We also proved that e is “near” ej0 .

2.2. Proof of Theorem 2.1: 1 and 3 imply (OC) false. Let us recall
that if F1, F2 are two subspaces of E, the angle between F1 and F2 is the
number α, 0 ≤ α ≤π

2 such that:

cosα = supx∈F1,y∈F2

|〈x, y〉|
‖x‖ ‖y‖

.(11)

Lemma 2.4. Let {hi, i ∈ N}, {li, i ∈ N} be two unconditional systems in
E and F1 := span{hi, i ∈ N}, F2 := span{li, i ∈ N} then the angle between
F1 and F2 is strictly positive if and only if {hi, i ∈ N} ∪ {li, i ∈ N} is an
unconditional system in E.

Proof. Let x :=
∑

i
αihi, y :=

∑
i βili, then we get:

‖x‖2 + ‖y‖2 − 2cosα ‖x‖ ‖y‖ ≤ ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 + 2cosα ‖x‖ ‖y‖

hence ‖x+ y‖2 ≤ 2
(
‖x‖2 + ‖y‖2

)
. Now, without lost of generality, suppose

that ‖x‖ ≥ ‖y‖ then:

‖x‖2 + ‖y‖2 − 2cosα ‖x‖ ‖y‖ = (‖y‖ − cosα ‖x‖)2 + sin2α ‖x‖2

≥sin2α

2

(
‖x‖2 + ‖y‖2

)
hence:

sin2α

2
A2

∑
i

(
|αi|2 + |βi|2

)
≤

∥∥∥∥∥∑
i

αihi +
∑

i

βili

∥∥∥∥∥
2

(12)

≤ 2B2
∑

i

(
|αi|2 + |βi|2

)
and the lemma. �
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Proof of 1 and 3 imply (OC) false. S1 unconditional system implies {kaiei,
i ∈ N} is an unconditional system because∥∥∥∥∥∥

∞∑
j=1

αjkajej

∥∥∥∥∥∥
2

=
∫

∂D

∥∥∥∥∥∥
∞∑

j=1

αjkaj (e
iθ)ej

∥∥∥∥∥∥
2

E

dθ

2π
(13)

hence

∫
∂D
A2

∑
j

∣∣∣αjkaj (e
iθ)

∣∣∣2 dθ
2π

≤

∥∥∥∥∥∥
∑

j

αjkajej

∥∥∥∥∥∥
2

≤
∫

∂D
B2

∑
j

∣∣∣αjkaj (e
iθ)

∣∣∣2 dθ
2π

(14)

A2
∑

j

|αj |2 ≤

∥∥∥∥∥∥
∑

j

αjkajej

∥∥∥∥∥∥
2

≤ B2
∑

j

|αj |2 .

The two systems {kaiei, i ∈ N} and {kbi
fi, i ∈ N} are then unconditional.

The fact that {kaiei, i ∈ N} ∪ {kbi
fi, i ∈ N} is not an unconditional

system implies by Lemma 2.4 that the angle between F1 and F2 is zero and
by the following lemma of Treil, the norm of the operators Xi cannot be
bounded. �

Lemma 2.5 (Treil [13], Lemma 17.1). Let Θ1 and Θ2 be inner functions in
H∞(L(E1, E)) and in H∞(L(E2, E)) respectively. Then the angle between
the spaces KΘ1 := H2(E) 	 Θ1H

2(E1) and KΘ2 := H2(E) 	 Θ2H
2(E2)

is non-zero iff there exist two functions ψ1 ∈ H∞(L(E,E1)) and ψ2 ∈
H∞(L(E,E2)) such that Θ1ψ1 + Θ2ψ2 = I.

Moreover the skew projection of H2(E) onto KΘ2 with kernel KΘ1 is equal
to the least possible norm of such ψ1 (or, indifferently ψ2).

3. The polydisc case.

Let Γ1 := {ai, i ∈ N} and Γ2 := {bi, i ∈ N} be two sequences in the disc
D and S1 := {ei := k(ai,ai,ai), i ∈ N}, S2 := {fi := k(bi,bi,bi), i ∈ N} be the
two sequences of reproducing kernels in H2(D3) of the points (ai, ai, ai) and
(bi, bi, bi). In this section we shall prove that sequences Γi, Si, i = 1, 2 exist
verifying Points 1, 2 and 3 of Theorem 2.1 and this will imply a proof of
Theorem 0.1.

Moreover the choice of kaiei and of kbi
fi automatically warranty the

invariance of GiH
2(Ei) by multiplication by all the coordinates because

these vectors are eigenvectors for all backward shifts.
We already seen the link between unconditional systems of reproducing

kernels and H2(Dn) strongly interpolating sequences and we shall state and
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use the link between H2(Dn) interpolating sequences and interpolating se-
quences for weighted Bergman spaces Aα(D) defined by:

(15) Aα(D) :=
{
f holomorphic in D : ‖f‖2

α

:=
∫

D
|f(z)|2

(
1− |z|2

)2α−1
dm(z) <∞

}
.

This link is provided by the following result:

Theorem 3.1 (C. Horowitz & D. Oberlin [6]). For n ≥ 2, the linear oper-
ator D : H2(Dn)−→An−1

2
(D) defined by

∀f ∈ H2(Dn), ∀ζ ∈ D, Df(ζ) := f(ζ, . . . , ζ)(16)

is bounded and onto.

Corollary 3.2. The sequence {a′i := (ai, . . . , ai), i ∈ N} ⊂ Dn is H2(Dn)
interpolating iff {ai, i ∈ N} ⊂ D is An−1

2
(D) interpolating.

Moreover in that case interpolating implies strongly interpolating.

Proof. First recall that S′ := {a′i := (ai, . . . , ai), i ∈ N} ⊂ Dn is H2(Dn)
interpolating means that:

TS′ : H2(Dn)−→CN defined by TS′f := {(1− |ai|2)n/2f(a′i), i ∈ N}
has l2(N) in its range, and S := {ai, i ∈ N} ⊂ D is An−1

2
(D) interpolating

means that:

TS : An−1
2

(D)−→CN defined by TSf := {(1− |ai|2)n/2f(ai), i ∈ N}

has l2(N) in its range.
Now given {λi, i ∈ N} such that

∑
i∈N (1− |ai|2)n |λi|2 < ∞, if S :=

{ai, i ∈ N} ⊂ D is An−1
2

(D) interpolating there is a function f ∈ An−1
2

(D)
such that ∀i ∈ N, f(ai) = λi, hence by the theorem of Horowitz & Oberlin
the surjectivity of the mapping gives that there is a function F ∈ H2(Dn)
such that F (z, . . . , z) = f(z) hence ∀i ∈ N, F (ai, . . . , ai) = λi, which means
that S′ is H2(Dn) interpolating. The same for the other way, using this time
the continuity of the mapping.

For weighted Bergman spaces an interpolating sequence is separated and
this implies that the operator T is continuous ([5, Lemma 5.19]), hence in
this case interpolating sequence and strongly interpolating sequences coin-
cide, thus we get the same for H2(Dn) if the sequence lies in the diagonal of
Dn. �

Now in order to have Conditions 1 to 3 of Theorem 2.1 we just have to
found sequences Γ1 = {ai, i ∈ N} and Γ2 = {bi, i ∈ N} in D, separated,
such that for i = 1, 2, Γi are interpolating sequences of A 3−1

2
(D) = A1(D)
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in order to fill Condition 1 and such that Γ1 ∪ Γ2 is not interpolating for
A 4−1

2
(D) = A3/2(D) in order to have 3−.

For this we shall use the following example by Seip [10] in the upper half
plane U := {z ∈ C : Imz > 0} and we send it in the unit disc D by the
Cayley transform. We note Aα(U) the image by the Cayley transform of
Aα(D).

Theorem 3.3 (Seip [10], Th. 1.2). Let Γ(a, b) := {am(bn + i), n,m ∈ Z},
then Γ(a, b) is a set of interpolation for Aα(U) if and only if b ln a >2π

α .

First of all one can remark that if {zn, n ∈ N} is interpolating for Aα(U)
then for any c > 0 the sequence {czn, n ∈ N} is also interpolating for Aα(U)
by the change of variables z−→ z

c .
Now choose a and b such that blna ≤4π

3 but 2blna > 2π, then we have:
Λ1 := {znm := a2m(bn+ i), n,m ∈ Z} is interpolating for A1(U) because

blna2 >2π
1 ,

Λ2 := {znm := a × a2m(bn + i), n,m ∈ Z} is interpolating for A1(U)
because Λ2 = aΛ1,

but Λ1 ∪ Λ2 is not interpolating for A 3
2
(U) because blna ≤4π

3
, which ends

the proof of Theorem 0.1. �

Remark 3.4. For n = 2 we cannot have Theorem 2.1 when S1 = {kαi , i ∈
N} and S2 = {kβi

, i ∈ N} are unconditional systems of reproducing kernels
in H2(D). Because in that case the sequences {αi} and {βi} are interpo-
lating sequences in H2(D) thus in H∞(D). Then {(ai, αi)} and {(bi, βi)}
are interpolating sequences in H∞(D2) and by Hypothesis 2 they are sep-
arated in H∞(D2). The union of these two sequences is then interpolating
for H∞(D2), [14], hence strongly interpolating for H2(D2) ([1], Theorem 1).
Thus, Hypothesis 3 is violated and by Lemma 2.4, (OC) is always true.

Remark 3.5. By Corollary 3.2 if S′1 := {(ai, ai), i ∈ N} ⊂ D2 is H2(D2)
interpolating then Λ1 := {ai, i ∈ N} ⊂ D is A 1

2
(D) interpolating. With the

Seip’s characterization, by mean of his density D+ [9], we have D+(Λ1) <1
2 .

The same if S′2 := {(bi, bi), i ∈ N} is H2(D2) interpolating then Λ2 :=
{bi, i ∈ N} ⊂ D is also A 1

2
(D) interpolating hence D+(Λ2) <1

2 . Then
D+(Λ1 ∪ Λ2) <1

2 + 1
2= 1 and again by Seip’s characterization Λ1 ∪ Λ2 is

A1(D) interpolating which is equivalent to {(ai, ai, ai), i ∈ N} ∪ {(bi, bi, bi),
i ∈ N} is H2(D3) interpolating. This is why whe have to go up to D4 to get
a counterexample by this method.

4. Uniform minimality.

Let us denote by φa ∈ Aα(D) the normalized reproducing kernel of a ∈ D
for the weighted Bergman space Aα(D).
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Theorem 4.1. The sequence {zj}j∈N ⊂ D is interpolating for Aα(D) if and
only if the associated sequence of normalized reproducing kernels {φzj}j∈N
is uniformly minimal in Aα(D).

Corollary 4.2. Let Si := {ci, i ∈ N} ⊂ D be a sequence of points in D such
that the sequence {φci , i ∈ N} is not uniformly minimal in An−1

2
(D) then

the sequence {k(ci,...,ci), i ∈ N} is not uniformly minimal in H2(Dn).

Proof. It is a consequence of k(c,...,c) = D∗φc where D is the bounded linear
operator defined in Theorem 3.1. �

Proof of Theorem 4.1. Let Φa(z) = a−z
1−az a conformal map exchanging a and

0 and GΣ the unique solution of the extremal problem

sup{Reg(0) : g(zj) = 0 ∀zj ∈ Σ, ‖g‖Aα(D) ≤ 1}(17)

where Σ is a sequence not containing 0. The main result of Schuster-Seip [8]
associated to the note following it, states:

Theorem 4.3 (Schuster & Seip). The sequence Γ = {zj}j∈N ⊂ D is inter-
polating for Aα(D) if and only if there is a δ > 0 such that ∀k ∈ N, Gk(0) ≥
δ, where:

Gk(z) := GΦzk
(Γ\{zk})(z).(18)

If the sequence {zj , j ∈ N} is interpolating for Aα(D) then {φzj , j ∈ N}
is an unconditional system, hence it is uniformly minimal (U.M.).

For the converse we shall give the proof in our context α =n−1
2 .

Let S := {ek}k∈N be unit vectors; saying that S is U.M. is equivalent to say
that there is a conjugate system S∗ := {hk}k∈N defined by 〈hk, em〉 = δk,m

which verifies ∀k, ‖hk‖α ≤M .
The normalized reproducing kernels associated to the sequence Γ =

{zj}j∈N ⊂ D are

ej =
√
n− 1

(1− |zj |2)n/2

(1− zjz)n
.(19)

First it is easy to see that if the sequence of vectors {ej , j ∈ N} is U.M.
then ∀k ∈ N, Gk(0)6=0.

Moreover associated to the system {hk}k∈N one can construct functions
Hk (depending on a parameter C) defined by

hk(z) =
√
n− 1
C

{(Hk × (Φ′
zk

)1−n/2) ◦ Φzk
(z)} × Φ′

zk
(z)(20)

thus Hk(Φzk
(zj)) = 0 ∀j 6=k, Hk(0) = C and ‖hk‖2

α =n−1
C2 ‖Hk‖2

α.

With C =
√

n−1
M we have ‖Hk‖α ≤ 1 and by the maximal property of Gk,

∀k ∈ N, Gk(0) ≥
√

n−1
M > 0.

The sequence Γ = {zj}j∈N ⊂ D is then interpolating by Theorem 4.3. �
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Remark 4.4. An open interesting question pointed out by the referee is:
Does the uniform minimality of sequences of reproducing kernels k(ai,bi)

in H2(D2) implies that it is an unconditional system even if ai 6=bi?
Moreover the study of the non-diagonal case may give an answer for the

critical case of our method, n=3 (i.e., Remark 3.5).
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