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Let F be a finite extension of Qp and K a quadratic ex-
tension of F . If (Π, V ) is a representation of GL2(K), H a
subgroup of GL2(K) and µ a character of the image subgroup
det(H) of K∗, then Π is said to be µ-distinguished with re-
spect to H if there exists a nonzero linear form l on V such
that l(Π(g)v) = µ(det g)l(v) for g ∈ H and v ∈ V . We provide
new proofs, using entirely local methods, of some well-known
results in the theory of non-archimedean distinguished repre-
sentations for GL(2).

1. Introduction.

Let K/F be a quadratic extension of non-archimedean local fields of char-
acteristic zero. For a local field F , OF will be the ring of integers of F
and PF the maximal ideal of OF . Let πF be a generator of PF . Let vF

be the valuation of F such that vF (πF ) = 1. The cardinality of OF /PF is
denoted by qF . Let σ be the nontrivial element of the Galois group of K
over F . By ωK/F we denote the nontrivial character of F ∗

NK/F (K∗) , where
NK/F is the norm from K to F . Fix a nontrivial additive character ψ of
F and set ψK = ψ ◦ trK/F , where trK/F is the trace from K to F . Let
(Π, V ) be an irreducible, admissible representation of GL2(K) and let ωΠ

denote the central character of Π. Then (Π̃, Ṽ ) denotes the representation
contragredient to Π. The representation Πσ is defined by Πσ(g) = Π(gσ)
for g ∈ GL2(K), where σ acts on g elementwise. For characters λ of K∗,
γ(Π ⊗ λ, ψK) denotes the gamma factor involved in the functional equa-
tion for functions in the Kirillov model K(Π, ψK) of Π with respect to ψK .
We use the notation Π(χ1, χ2) and

∑
(χ1, χ2) to denote principal series and

special representations, respectively, of GL2(K) (where χ1,χ2 are characters
of K∗) (see [10]) and π(µ1, µ2) and σ(µ1, µ2) for the corresponding repre-
sentations of GL2(F ). In general, Π would be an irreducible, admissible
representation of GL2(K) and π a similar representation of GL2(F ).

Let µ be a character of F ∗. We say that Π is µ-distinguished with re-
spect to GL2(F ) if there exists a nonzero linear form l on the space of
Π such that l(Π(g)v) = µ(det g)l(v) for all v ∈ V and g ∈ GL2(F ). By
a distinguished representation we mean a 1-distinguished representation.
We will also consider distinguishedness with respect to another subgroup of
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GL2(K), namely, the unitary group in two variables U(2,K/F ). Recall that
U(2,K/F ) is the subgroup of fixed points of the involution τ on GL2(K)

given by gτ = w tg−σ w−1, where w =
(

0 1
−1 0

)
. Thus for a character

η of the group of norm one elements of K∗, η-distinguished representations
of GL2(K) with respect to U(2,K/F ) can be defined as above. Sometimes
we do not specify the subgroup with respect to which the representation is
distinguished if the subgroup is GL2(F ).

We would like to stress that none of the theorems stated in this paper
are new. All these are known results whose existing proofs use a mixture of
local and global methods. We provide local proofs in those instances where
only global proofs exist.

Throughout this paper we consider only infinite dimensional representa-
tions. We prove:

Theorem 1.1. Let µ be a character of F ∗. Let Π be an irreducible, admis-
sible representation of GL2(K) with ωΠ = µ ◦ NK/F . Then the following
statements are equivalent:

(1) Π is a base change lift of a representation of GL2(F ) with central
character µωK/F .

(2) γ(Π ⊗ λ−1, ψK)λ(−1) = 1 for all characters λ of K∗ which satisfy
λ|F ∗ = µ.

(3) Π is µ-distinguished with respect to GL2(F ).

The equivalence of (2) and (3) follows from Theorem 4.1 of Hakim [8]. As
has been pointed out by the referee, the global analogue of the equivalence
of (1) and (3) is contained in the paper of Harder, Langlands and Rapoport
[9]. Alternative proofs of the global result appeared in Ye’s thesis [18], [19]
and in Flicker [4]. The first purely local proof of (1) implies (2) appears in
Saito’s Corollary 2.4 [15]. Modulo the assertion on the central character,
(3) implies (1) by a result of Hakim (Theorem 2.1 in [8]). To prove the
assertion on the central character, we give a new argument which combines
Tunnell’s formula [17] as well as Saito’s proof of it. The next theorem brings
distinguishedness with respect to the unitary group into the picture.

Theorem 1.2. Let µ be a character of F ∗ and Π an irreducible, admissible
representation of GL2(K) with central character ωΠ = µ ◦NK/F . Then the
following are equivalent:

(1) Π ∼ Πσ, i.e., Π is a base change lift from GL2(F ).

(2) Π is distinguished with respect to U(2,K/F ).

(3) Π is µ-distinguished or µωK/F -distinguished.
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Note that the equivalence of (1) and (2) above is vacuously true if ωΠ

does not factor through the norm map NK/F . This equivalence and the
next theorem, which can easily be deduced from the equivalence of (1) and
(3) of Theorem 1.2, are, in fact, conjectured to be true in the context of
GL(n) and this conjecture has been proved in many cases (cf. [11], [12] and
[14]).

Theorem 1.3. Let Π be an irreducible, admissible representation of
GL2(K) with ωΠ |F ∗ = 1. Then Π̃ ∼ Πσ if and only if Π is distinguished or
ωK/F -distinguished with respect to GL2(F ).

Formulated in the language of the base change theory for U(2,K/F ) [2],
Theorem 1.3 says that an irreducible, admissible representation of GL2(K)
is distinguished or ωK/F -distinguished with respect to GL2(F ) if and only if
it is a base change of a representation of U(2,K/F ). There are precisely two
base change maps from the class of admissible representations of U(2,K/F )
to the class of admissible representations of GL2(K), namely the stable
and unstable base change maps. The following theorem, due to Flicker [3,
Theorem 7], is thus stronger than Theorem 1.3.

Theorem 1.4. An irreducible, admissible representation Π of GL2(K) is
distinguished with respect to GL2(F ) if and only if it is an unstable base
change lift of a representation of U(2,K/F ).

In the context of GL(n) it is believed that unstable (resp. stable) base
change lifts from U(n,K/F ) are precisely the distinguished representations
with respect to GLn(F ) when n is even (resp. when n is odd) (cf. [3]).
In [3] Flicker deduces Theorem 1.4 from a similar global theorem. In this
paper we will give a different proof which is purely local. For principal series
representations and special representations of GL2(K) this will follow from
two results due to Flicker and Hakim [2, 5], whereas for supercuspidals, we
adopt a method due to Saito [15] to get the desired result. Since the most
substantial part of this paper deals with the proof of this theorem, we give
the main ideas of the proof here.

Corresponding to the quadratic extension K of F we fix an embedding i
of K∗/F ∗ in U(2,K/F ) given by

i(aF ∗) =
(

x y
∆2y x

) (
a−1 0
0 a−1

)
where a = x+ ∆y ∈ K∗.

If g =
(

∆ 0
0 ∆

) (
−a−1 0

0 1

)
w, then observe that ggτ (where τ is the

involution g → wtg−σw−1) and i(aF ∗) are conjugate in GL2(K). By means
of the base change theory of U(2,K/F ), we get two formulae — one in the
stable base change case and the other in the unstable base change case — for
χ{π}(i(aF ∗)), where {π} is the packet of representations of U(2,K/F ) that
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base changes to Π and χ{π} is the sum of characters of the representations in
the packet of π. These formulae must be seen as the analogues of Tunnell’s
formula for characters of GL(2). Flicker’s theorem can be derived as a
corollary to the proof of these formulae, just as Saito deduces Proposition 2.1
(Corollary 2.4 in [15]) from his proof of Tunnell’s formula.

2. Proof of Theorem 1.1.

We will prove Theorem 1.1 through a series of propositions. We start with
a result of Saito [15, Corollary 2.4].

Proposition 2.1. Let π be a supercuspidal representation of GL2(F )
with the central character ωπ, and let Π be the base change lift of π to
GL2(K). Then for characters λ of K∗ which satisfy λ|F ∗ = ωπωK/F ,
ε(Π⊗ λ−1, ψK)λ(−1) is independent of λ.

The epsilon factor is related to the gamma factor by [10]

γ(Π⊗ λ−1, ψK) = ε(Π⊗ λ−1, ψK)
L(1

2 , Π̃⊗ λ)
L(1

2 ,Π⊗ λ−1)
.

The one dimensional epsilon factors and gamma factors are related by

γ(χ, ψK) = ε(χ, ψK)
L(1

2 , χ
−1)

L(1
2 , χ)

.

Our convention for the 1-dim ε-factor is the one used by Langlands. Thus
for a character χ of F ∗ and an additive character ψ of F we have ε(χ, ψ) =
χ(c) t

|t| , where t =
∫
UF
χ−1(u)ψ(u/c) du, UF being the group of units in the

ring of integers of F , du a Haar measure on UF and c an element of F of
valuation a(χ)+n(ψ). Here a(χ) is the conductoral exponent of χ and n(ψ)
the conductoral exponent of ψ. We refer to [16] for the basic properties of
these ε-factors. For instance, we have

(i) ε(χ, ψK) = ε(χσ, ψK),
(ii) ε(χ, ψK)ε(χ−1, ψK) = χ(−1).

For the following two properties of ε-factors associated to representations of
GL(2) refer to [10].

(iii) ε(Π, ψK)ε(Π̃, ψK) = ωΠ(−1).
(iv) ε(Π, (ψK)a) = ωΠ(a)ε(Π, ψK) where (ψK)a(x) = ψK(ax).

Also we have
(v) (Frohlich-Queyrut [6, Theorem 3].) For any character χ of K∗ which

is trivial on F ∗ and any ∆ ∈ K∗ with trK/F (∆) = 0, ε(χ, ψK) = χ(∆).

Now we claim that the value of ε(Π⊗λ−1, ψK)λ(−1) in Proposition 2.1 is
precisely 1. To prove this, write ωΠ = µ1µ2, where µ1 and µ2 are characters
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of K∗ such that µi|F ∗ = ωπωK/F , (i = 1, 2). Then for characters λ of K∗

with very small conductors which satisfy λ|F ∗ = ωπωK/F , we have

ε(Π⊗ λ−1, ψK)λ(−1) = ε(µ1λ
−1, ψK)ε(µ2λ

−1, ψK)λ(−1)

by a result of Jacquet and Langlands [10, Proposition 3.8, p. 116]. Note
that µiλ

−1|F ∗ = 1 for i = 1, 2. Thus, by Property (v) above, ε(µiλ
−1, ψK)

= µiλ
−1(∆), where ∆ is any trace zero element of K. Thus

ε(Π⊗ λ−1, ψK)λ(−1) = µ1λ
−1(∆)µ2λ

−1(∆)λ(−1)

= µ1µ2(∆)λ−1(−∆2)

= ωΠ(∆)λ−1(NK/F (∆))

= ωΠ(∆)ωπ
−1(NK/F (∆))

= 1

whenever λ|F ∗ = ωπωK/F and the conductor of λ is sufficiently small. This
proves our claim. If Π is principal or special, then ε(Π⊗λ−1, ψK)λ(−1) = 1
whenever λ|F ∗ = ωπωK/F can be proved by a direct epsilon factor compu-
tation, and the condition that it be independent of λ is not needed. For
then either Π = Π(χ1, χ2), where χ1 and χ2 are characters of K∗ such
that χi = χi

σ(i = 1, 2), or Π =
∑

(χ1, χ2), where χ1χ2
−1 = | |K and if

χ = χ1| |−1/2
K = χ2| |1/2

K , then χ = µ ◦ NK/F for a character µ of F ∗. Now
consider ε(Π⊗ λ−1, ψK)λ(−1) for characters λ of K∗ with λ|F ∗ = ωπωK/F .
The condition on λ means that λλσ = ωΠ . If Π is the principal series repre-
sentation considered here or the special representation with χλ−1 ramified,
then the GL(2) ε-factor factorises into the GL(1) factors as follows:

ε(Π⊗ λ−1, ψK) = ε(χ1λ
−1, ψK)ε(χ2λ

−1, ψK).

We have χ2λ
−1 = χ1

−1λσ and hence

ε(χ2λ
−1, ψK) = ε(χ1

−1λσ, ψK) = ε(χ1
−σλ, ψK) = ε(χ1

−1λ, ψK),

since χ1 = χ1
σ. Therefore,

ε(Π⊗ λ−1, ψK)λ(−1) = ε(χ1λ
−1, ψK)ε(χ1

−1λ, ψK)λ(−1)

= χ1λ
−1(−1)λ(−1) = χ1(−1) = 1.

If Π =
∑

(χ1, χ2) with χλ−1 unramified, then K/F is necessarily unramified
since χλ−1|F ∗ = ωK/F in this situation. So we can take πK to be πF itself.
Note that ωK/F (πF ) = −1. Now we have the factorisation (see [10, p. 109])

ε(Π⊗ λ−1, ψK) = ε(χ1λ
−1, ψK)ε(χ2λ

−1, ψK)
L(1

2 , χ1
−1λ)

L(1
2 , χ2λ−1)

.
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Therefore

ε(Π⊗ λ−1, ψK)λ(−1) = ε(χ1λ
−1, ψK)ε(χ2λ

−1, ψK)
1− ωK/F (πF )
1− ωK/F (πF )

λ(−1)

= ε(χ1λ
−1, ψK)ε(χ2λ

−1, ψK)λ(−1)

= χλ−1(−1)λ(−1) = χ(−1)
= 1.

If Π is a base change lift of a representation π of GL2(F ), then Π ∼ Πσ and
therefore, Π̃⊗ λ = (Π⊗ λ−1)σ when λ|F ∗ = ωπωK/F . Hence L(1

2 , Π̃⊗ λ) =
L(1

2 ,Π⊗λ
−1). Thus it follows that in our situation ε(Π⊗λ−1, ψK)λ(−1) =

γ(Π⊗ λ−1, ψK)λ(−1). Now if Π is an irreducible, admissible representation
of GL2(K) with ωΠ = µ ◦ NK/F , and if Π ∼ Πσ, then Π is a base change
lift of a representation π of GL2(F ) and ωπ can be either µ or µωK/F . Thus
from the preceding discussion we get:

Proposition 2.2. Let µ be a character of F ∗ and let Π be an irreducible,
admissible representation of GL2(K) with ωΠ = µ◦NK/F such that Π ∼ Πσ.
Then γ(Π⊗λ−1, ψK)λ(−1) = 1 for all characters λ of K∗ with λ|F ∗ = µ or
γ(Π⊗ λ−1, ψK)λ(−1) = 1 for all characters λ of K∗ with λ|F ∗ = µωK/F .

Next we prove:

Proposition 2.3. Let µ be a character of F ∗ and let Π be an irreducible,
admissible representation of GL2(K) with ωΠ = µ ◦ NK/F . Then Π is µ-
distinguished with respect to GL2(F ) if and only if γ(Π⊗λ−1, ψK)λ(−1) = 1
for all characters λ of K∗ with λ|F ∗ = µ.

Proof. This is immediate from a result of Hakim [8, Theorem 4.1] which
states that a representation Π of GL2(K) with trivial central character is
distinguished if and only if γ(Π⊗λ−1, (ψK)∆) = 1 for all characters λ of K∗

with λ|F ∗ = 1. Though Hakim assumes that ωΠ = 1, the same proof works
under the milder condition ωΠ |F ∗ = 1. Here (ψK)∆ is the additive character
of K given by (ψK)∆(x) = ψK(∆x). Suppose Π is an irreducible, admissible
representation of GL2(K) with ωΠ = µ ◦NK/F . Let µ̃ be a character of K∗

such that µ̃|F ∗ = µ. Now Π is µ-distinguished if and only if Π ⊗ µ̃−1 is
distinguished. Note that ω

Π⊗eµ−1 |F ∗ = 1. Thus, by the result of Hakim, Π
is distinguished if and only if γ(Π ⊗ µ̃−1λ−1, (ψK)∆) = 1 for all characters
λ of K∗ which satisfy λ|F ∗ = 1, i.e., Π is µ-distinguished if and only if
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γ(Π⊗ λ−1, (ψK)∆) = 1 for all characters λ of K∗ with λ|F ∗ = µ. Also

γ(Π⊗ λ−1, (ψK)∆) = ω
Π⊗λ−1 (∆)γ(Π⊗ λ−1, ψK)

= (ωΠλ
−2)(∆)γ(Π⊗ λ−1, ψK)

= µ(NK/F (∆))λ(−1)λ−1(NK/F (∆))γ(Π⊗ λ−1, ψK)

= γ(Π⊗ λ−1, ψK)λ(−1)

and the proposition follows.

Proposition 2.4. Let µ be a character of F ∗, and let Π be an irreducible,
admissible representation of GL2(K) with ωΠ = µ ◦ NK/F . Suppose Π is
µ-distinguished. Then Π is a base change lift of a representation of GL2(F )
with central character µωK/F .

Proof. This also follows from a result due to Hakim which says that Π̃ ∼ Πσ

for a distinguished representation Π [8, Theorem 2.1], [3, Prop. 12]. Now let
Π be µ-distinguished. Then Π⊗ µ̃−1is distinguished, where µ̃ is an extension
of µ to K∗ and hence ˜(Π⊗ µ̃−1) ∼ (Π⊗ µ̃−1)σ, i.e., Π̃ ∼ Πσ ⊗ (µ̃µ̃σ)−1. But
Π̃ ∼ Π⊗ ωΠ

−1 and ωΠ = µ ◦NK/F = µ̃µ̃σ. Thus it follows that Π ∼ Πσ.

What remains to be proved is the assertion on the central character. To
this end we will make use of two results which we state now. The first one is
due to Flicker and Hakim [5, Proposition B17] and the second is Tunnell’s
formula for characters of GL(2) proved by Saito in full generality [15, 17].

Theorem 2.5. The principal series representation Π(χ, χ−σ) of GL2(K) is
distinguished (and ωK/F -distinguished). The principal series representation
Π(χ1, χ2), χ1 6= χ2 is distinguished precisely when χi|F ∗ = 1 (i = 1, 2).
The special representation σ(χ| |1/2

K , χ| |−1/2
K ) is distinguished precisely when

χ|F ∗ = ωK/F .

Fix an embedding of K∗ in GL2(F ).

Theorem 2.6. Let π be an irreducible, admissible representation of GL2(F )
and χπ its character. Let Π be the base change lift of π to K. Then

χπ|(K∗−F ∗) =
∑

λ|F∗=ωπ

1 + ε(Π⊗ λ−1, ψK)λ(−1)
2

λ

where the summation on the right is by partial sums over all characters of
K∗ of conductoral exponent ≤ n.

In order to prove our assertion on the central character for the principal
series and special representations of GL2(K), we need to show the following:

(i) The principal series representation Π(χ, χσ) (χ 6= χσ)of GL2(K) is
χ|F ∗-distinguished and not χ|F ∗ωK/F - distinguished. (This is because
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Π(χ, χσ) is the base change lift of a supercuspidal representation with
central character χ|F ∗ωK/F .)

(ii) The principal series representation Π(χ1, χ2) of GL2(K) with χ1 =
µ1 ◦ NK/F , χ2 = µ2 ◦ NK/F (where µ1, µ2 are characters of F ∗) is
µ1µ2-distinguished as well as µ1µ2ωK/F -distinguished.

(iii) The representation
∑

(χ| |1/2
K , χ| |−1/2

K ) with χ = µ ◦NK/F (where µ is
a character of F ∗) is µ2ωK/F -distinguished and not µ2-distinguished.

Π(χ, χσ) ⊗ χ−1 = Π(1, χ−1χσ) is distinguished by Theorem 2.5. Now
take an extension ω̃K/F of ωK/F to K∗ and consider Π(χ, χσ)⊗χ−1ω̃K/F

−1.
This is Π(ω̃K/F

−1
, χ−1χσω̃K/F

−1) and since the restriction to F ∗ of these
two characters are not trivial, it follows by Theorem 2.5 that Π(χ, χσ) ⊗
χ−1ω̃K/F

−1 is not distinguished, or equivalently, Π(χ, χσ) is not χ|F ∗ωK/F -
distinguished.

If Π = Π(χ1, χ2) with χ1 = µ1 ◦NK/F , χ2 = µ2 ◦NK/F (µ1, µ2 are char-
acters of F ∗), then for characters λ of K∗ with λ|F ∗ = µ1µ2,

γ(Π⊗ λ−1, ψK)λ(−1) = γ(χ1λ
−1, ψK)γ(χ2λ

−1, ψK)λ(−1)

= γ(χ1λ
−1, ψK)γ(χ1

−1λ, ψK)λ(−1)

= χ1λ
−1(−1)λ(−1)

= χ1(−1) = 1

since χ2λ
−1 = χ1

−1λσ and χ1 = χ1
σ. The same argument works if we take

λ such that λ|F ∗ = µ1µ2ωK/F . Thus Π is both µ1µ2- distinguished and
µ1µ2ωK/F -distinguished by Proposition 2.3.

For a character µ̃ of K∗, the special representation
∑

(χ| |1/2
K , χ| |−1/2

K )⊗
µ̃−1 is distinguished precisely when χµ̃−1|F ∗ = ωK/F by Theorem 2.5, i.e.,∑

(χ| |1/2
K , χ| |−1/2

K )⊗µ̃−1 is distinguished precisely when µ̃|F ∗ = χ|F ∗ωK/F =

µ2ωK/F . Thus
∑

(χ| |1/2
K , χ| |−1/2

K ) is µ2ωK/F -distinguished and not µ2-
distinguished.

Now suppose that Π is a supercuspidal representation of GL2(K) with
ωΠ = µ ◦ NK/F which is µ-distinguished. We must show that Π is a base
change lift of a representation of GL2(F ) with central character µωK/F . By
what has already been shown, Π is a base change lift of a representation
of GL2(F ) (say π). Since ωΠ = µ ◦ NK/F , ωπ can be either µ or µωK/F .
What we need to show is that ωπ = µωK/F and not µ. This will follow from
Saito’s proof of Tunnell’s formula [15]. Using the relation ωΠ = µ ◦ NK/F
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in Saito’s proof, we will finally get the identity

χπ(a) =
∑

λ|F∗=µ

1 + ε(Π⊗ λ−1, ψK)λ(−1)
2

λ(a)

+
∑

λ|F∗=µωK/F

1 + ε(Π⊗ λ−1, ψK)λ(−1)
2

λ(a)

where χπ is the character of π and a ∈ K∗ − F ∗.
Since γ-factor and ε- factor are the same for supercuspidals, and since Π

is given to be µ- distinguished, ε(Π ⊗ λ−1, ψK)λ(−1) = 1 for all characters
λ of K∗ with λ|F ∗ = µ by Proposition 2.3. Thus the first sum in the above
identity vanishes and we get

χπ|(K∗−F ∗) =
∑

λ|F∗=µωK/F

1 + ε(Π⊗ λ−1, ψK)λ(−1)
2

λ.

Comparing with Tunnell’s formula (Theorem 2.6), we have ωπ = µωK/F .
This finishes the proof of Proposition 2.4.

Theorem 1.1 follows from the above propositions.

3. Proofs of Theorems 1.2 and 1.3.

We now prove that Statements (2) and (3) in Theorem 1.2 are equivalent.
Recall that

U(2,K/F ) =
{
g =

(
a b
c d

)
∈ GL2(K) | w tg−σ w−1 = g

}
where w =

(
0 1

−1 0

)
and gσ =

(
aσ bσ

cσ dσ

)
. Thus

U(2,K/F ) =
{
g ∈ GL2(K) | 1

σ(det g)
gσ = g

}
and the centre of U(2,K/F ) is{(

a 0
0 a

)
∈ GL2(K) | NK/F (a) = 1

}
.

Therefore, if a representation Π of GL2(K) is distinguished with respect to
U(2,K/F ), ωΠ factors through the norm map NK/F . Define GL+

2 (F ) to be
the subgroup of GL2(F ) consisting of matrices whose determinant lies in
NK/FK

∗. We observe that Z(GL2(K))GL+
2 (F ) = Z(GL2(K))U(2,K/F ),

where Z(GL2(K)) is the centre of GL2(K). Hence if (Π, V ) is µ-disting-
uished, and l is a nonzero linear functional on V such that l(Π(g)v) =
µ(det g)l(v) for g ∈ GL2(F ), then l(Π(g)v) = l(v) for g ∈ U(2,K/F ).
The case when Π is µωK/F -distinguished is similar. Conversely, if Π is
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distinguished for U(2,K/F ), and l is a nonzero linear functional on the
space of Π such that l(Π(g)v) = l(v) for g ∈ U(2,K/F ), then l(Π(g)v) =
µ(det g)l(v) for g ∈ GL+

2 (F ). We define a linear functional l′ on the space
of Π by

l′(v) = l(v) + µ−1(a)l
(

Π
((

a 0
0 1

))
v

)
where a ∈ F ∗ − NK/FK

∗. Then it is easy to check that l′(Π(g)v) =
µ(det g)l′(v) for g ∈ GL2(F ). Thus if l′ 6= 0, then Π is µ-distinguished.
If l′ = 0 then

l

(
Π

((
a 0
0 1

))
v

)
= µωK/F (a)l(v)

and so Π is µωK/F -distinguished.
The above together with the proof of Theorem 1.1 completes the proof of

Theorem 1.2.
We now prove Theorem 1.3. Let Π be an irreducible, admissible repre-

sentation of GL2(K) with ωΠ |F ∗ = 1. Since ωΠ |F ∗ = 1, we have ωΠ = η−1ησ

for a character η of K∗ (by Hilbert 90). Note that

ωΠ⊗η = ωΠη
2

= ηησ

= η|F ∗ ◦NK/F .

Hence

Π is dist. or ωK/F -dist. ⇔ Π⊗ η is (η|F ∗)-dist. or (η|F ∗)ωK/F -dist.

⇔ Π⊗ η is a base change lift for GL2(F )

⇔ (Π⊗ η)σ ∼ Π⊗ η

⇔ Πσ ∼ Π⊗ ω−1
Π

⇔ Πσ ∼ Π̃.

If a supercuspidal Π is a base change of π and π′, then π′ = π⊗ωK/F . In
particular, ωπ′ = ωπ. Therefore, from the above argument we conclude that
Π is either distinguished (when Π ⊗ η is a base change of a representation
of central character η|F ∗ωK/F ) or ωK/F -distinguished (when Π⊗ η is a base
change of a representation of central character η|F ∗), but not both. This
discussion together with Theorem 2.5 proves the following proposition.

Proposition 3.1. Let Π be an irreducible, admissible representation of
GL2(K). Then Π is both µ-distinguished and µωK/F -distinguished with
respect to GL2(F ) exactly when Π = Π(µ1 ◦ NK/F , µ2 ◦ NK/F ) for some
characters µ1 and µ2 of F ∗ with µ = µ1µ2.
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4. A local proof of Flicker’s Theorem.

First let us view Theorem 1.3 in the language of base change theory for
U(2,K/F ). The local base change lift is defined in [2] in terms of character
identities and the existence of this lifting is proved there. The image of the
base change map from the class of admissible representations of U(2,K/F )
to the class of admissible representations of GL2(K) consists of τ -invariant
Π, where we recall that τ is the involution g → wtg−σw−1 of GL2(K). The
central character of any irreducible, admissible representation Π of GL2(K),
which is in the image of the base change map, is trivial on F ∗. If Π is τ -
invariant and ωΠ |F ∗ = 1, then Π is obtained as the base change of a unique
L-packet of U(2,K/F ). This L-packet consists of one or two irreducible,
admissible representations of U(2,K/F ). If Π is an admissible represen-
tation of GL2(K) such that Π ∼ Πτ , then take an intertwining operator
between the spaces of Π and Πτ , and use this operator to extend Π to the
semi direct product GL2(K)×Gal(K/F ), where Gal(K/F ) acts on GL2(K)
by σ.g = gτ . Let χΠ,σ denote the character of this extended representation.
There are precisely two base change maps - stable and unstable - from the
class of admissible representations of U(2,K/F ) to the class of admissible
representations of GL2(K). Let ω̃K/F be an extension of ωK/F to K∗. We
say that Π is a stable base change of a representation π of U(2,K/F ) if

χΠ,σ(g) = χ{π}(gg
τ )

whenever g is such that ggτ is regular in U(2,K/F ). Here {π} is the L-
packet of π and χ{π1,π2} = χπ1 + χπ2 . The character χ{π} depends only on
the conjugacy class of ggτ in GL2(K). Further, Π is said to be an unstable
base change lift of π if

χΠ,σ(g) = ω̃K/F (det g)χ{π}(gg
τ )

for all g ∈ GL2(K) with ggτ regular in U(2,K/F ).
Thus Theorem 1.3 can be reformulated as follows.

Theorem 4.1. Let Π be an irreducible, admissible representation of
GL2(K). Then Π is a base change lift of a representation of U(2,K/F ) if
and only if Π is distinguished or ωK/F -distinguished with respect to GL2(F ).

But something more is true. In the above theorem, distinguished repre-
sentations with respect to GL2(F ) correspond to the unstable base change
lift from U(2,K/F ), and the ωK/F -distinguished representations with re-
spect to GL2(F ) correspond to the stable base change lift from U(2,K/F ).
This is proved by Flicker [3, Theorem 7] by global means. We produce a
purely local proof of this theorem. Our proof essentially imitates Saito’s
proof of Tunnell’s formula [15].

We start with a proposition (cf. [3, p. 161], [2, p. 717]).
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Proposition 4.2.

(i) The principal series representation Π(χ, χ−σ) of GL2(K) is in the im-
age of both the stable and the unstable base change maps.

(ii) The principal series representation Π(χ1, χ2) with χ1 6= χ2 and χi|F ∗ =
1 (i = 1, 2) is in the image of the unstable base change map and it is
not obtained by the stable lifting.

(iii) The special representation σ(χ| |1/2
K , χ| |−1/2

K ) is obtained through the
unstable lifting precisely when χ|F ∗ = ωK/F .

Comparing this proposition with Theorem 2.1, we see that Theorem 1.4
is verified for principal series and special representations. We need to verify
Theorem 1.4 for supercuspidal representations of GL2(K).

Let Π be a supercuspidal representation of GL2(K) which is a base change
lift of a representation of U(2,K/F ). Then Π ∼ Πτ and ωΠ |F ∗ = 1, i.e.,
Π ∼ ωΠ ⊗ Πσ and ωΠ |F ∗ = 1. So by the uniqueness of the Kirillov model,
K(Π, ψK) = K(ωΠ ⊗ Πσ, ψK). Note that Iσ, defined on the Kirillov model
K(Π, ψK) of Π by Iσf(x) = ωΠ(x)f(xσ), gives an intertwining operator from
(Π,K(Π, ψK)) to (ωΠ ⊗ Πσ,K(Π, ψK)). Also I2

σ= identity since ωΠ|F ∗ = 1
and Π(σ.h) = IσΠ(h)Iσ. We extend Π to GL2(K)×Gal(K/F ) by Π(g, σ) =
Π(g)Iσ. Now we compute the value of the twisted character χΠ,σ at

g =
(

0 −a−1∆
−∆ 0

)
=

(
∆ 0
0 ∆

) (
−a−1 0

0 1

) (
0 1

−1 0

)
where a ∈ K∗,∆ ∈ K∗ such that trK/F (∆) = 0.

Since Π is a supercuspidal representation, K(Π, ψK) coincides with the
space of Schwartz-Bruhat functions S(K∗) on K∗, and a basis of this space
is given by the set of following functions

ξ
(n)
λ (x) =

{
λ(x) if vK(x) = −n
0 otherwise.

Here n varies over all integers and λ varies over a complete set of represen-
tatives of all characters of K∗ modulo ∼, where λ1 ∼ λ2 if and only if λ1λ

−1
2

is unramified. We have the lemma [15, Lemma 2.1]:

Lemma 4.3. Π(w)ξ(n)
λ = ε(Π ⊗ λ−1, ψK)ξ(m)

ω
Π

λ−1 where m = f(Π ⊗ λ−1) +
2n(ψK)− n.

Here f(Π⊗λ−1) and n(ψK) denote the conductoral exponents of Π⊗λ−1

and ψK respectively.
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Using this lemma we compute Π(g)Iσξ
(n)
λ .

Π(g)Iσξ
(n)
λ = Π

(
∆ 0
0 ∆

)
Π

(
−a−1 0

0 1

)
Π(w)Iσξ

(n)
λ

= Π
(

∆ 0
0 ∆

)
Π

(
−a−1 0

0 1

)
Π(w)ξ(n)

ωΠλσ

= ε(Π⊗ ωΠ

−1λ−σ, ψK)Π
(

∆ 0
0 ∆

)
Π

(
−a−1 0

0 1

)
ξ
(m)
λ−σ

(where m = f(Π⊗ ωΠ

−1λ−σ) + 2n(ψK)− n )

= ωΠ(∆)ε(Π⊗ ωΠ

−1λ−σ, ψK)λ−σ(−a−1)ξ(m−vK(a))
λ−σ .

But Π ⊗ ωΠ
−1λ−σ ∼ Π̃ ⊗ λ−σ ∼ Πσ ⊗ λ−σ = (Π ⊗ λ−1)σ. Therefore,

ε(Π⊗ ωΠ
−1λ−σ, ψK) = ε(Π⊗ λ−1, ψK) and f(Π⊗ ωΠ

−1λ−σ) = f(Π⊗ λ−1).
Thus, Π(g)Iσξ

(n)
λ = ωΠ(∆)ε(Π ⊗ λ−1, ψK)λσ(−a)ξ(m−vK(a))

λ−σ where m =
f(Π⊗ λ−1) + 2n(ψK)− n.

We have thus proved:

Lemma 4.4. For a ∈ K∗ − F ∗,

Π
((

∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)
Iσξ

(n)
λ

= ωΠ(∆)ε(Π⊗ λ−1, ψK)λσ(−a)ξ(m−vK(a))
λ−σ

where m = f(Π⊗ λ−1) + 2n(ψK)− n.

We want to compute χΠ,σ(g), where g =
(

∆ 0
0 ∆

) (
−a−1 0

0 1

)
w.

There is a standard method to do this and we refer to [15, pp. 102-103] for

the details. Set Γn =
(

1 + Pn
K Pn

K
Pn

K 1 + Pn
K

)
∩GL2(OK). Let K(Π, ψK)n be

the subspace of K(Π, ψK) consisting of elements invariant under Γn.
Let

Bn =
{
ξ
(m)
λ

∣∣∣ conductor of λ ≤ n
f(Π⊗ λ−1) + n(ψK)− n ≤ m ≤ n(ψK) + n

}
.

Then Bn gives a basis of K(Π, ψK)n for n sufficiently large, and
⋃

nBn gives
a basis of K(Π, ψK).

Let Pn be the projection of K(Π, ψK) onto K(Π, ψK)n defined by
R
Γn

Π(g)dgR
Γn

dg
,

where dg is a Haar measure on GL2(K). Then the value of χΠ,σ(g) can be
calculated as trace(Π(g)IσPn) with respect to this basis for a sufficiently
large n.

Suppose ξ(n)
λ contribute to χΠ,σ

((
∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)
. Then we

have:
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(i) n = n(ψK) + 1
2(f(Π⊗ λ−1)− vK(a));

(ii) λ|O∗
K

= λ−σ|O∗
K

.
First assume that K/F is unramified. Then from (ii) we have λ|O∗

F
= 1.

As a representative of the class of λ, take λ such that λ(πF ) = 1. Then we
have λ−σ = λ. Thus the contribution to

χΠ,σ

((
∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)
of ξ(n)

λ for the above λ is equal to{
ωΠ(∆)ε(Π⊗ λ−1, ψK)λσ(−a) if vK(a) ≡ f(Π⊗ λ−1)(mod 2)
0 otherwise.

Since K/F is unramified, we have an extension ω̃K/F of ωK/F to K∗ which
is unramified. Then

ε(Π⊗ λ−1ω̃K/F
−1
, ψK) = (−1)f(Π⊗λ−1)ε(Π⊗ λ−1, ψK).

Therefore the contribution of ξ(n)
λ to χΠ,σ

((
∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)
is

equal to
1
2
ωΠ(∆)(ε(Π⊗ λ−1, ψK)λσ(−a) + ε(Π⊗ λ−1ω̃K/F

−1
, ψK)(λω̃K/F )σ(−a)).

Thus

χΠ,σ

((
∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)

= ωΠ(∆)

 ∑
λ|F∗=1

ε(Π⊗ λ−1, ψK)
2

λσ(−a)

+
∑

λ|F∗=ωK/F

ε(Π⊗ λ−1, ψK)
2

λσ(−a)


=

∑
λ|F∗=1

ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a)

+
∑

λ|F∗=ωK/F

ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a)

=
∑

λ|F∗=1

1 + ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a)

+
∑

λ|F∗=ωK/F

1 + ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a)



ON DISTINGUISHEDNESS 283

since
∑

λ|F∗=1λ
σ = 0 and

∑
λ|F∗=ωK/F

λσ = 0.
Now suppose K/F is a ramified extension. Let πF be a uniformizing

element of F that is contained in the norm of K. Condition (ii) implies
λ|NK/F (O∗

K) = 1. Therefore, λ|O∗
F

= 1 or ωK/F |O∗
F
. In the class of λ satisfying

(ii) there are exactly two characters satisfying λi(πF ) = 1, (i = 1, 2) and
they satisfy λi = λ−σ

i . Since λ1 and λ2 belong to the same class, λ1λ
−1
2 is

unramified. Hence, λ1λ
−1
2 (π2

K) = λ1λ
−1
2 (πF ) = 1. Thus λ1λ

−1
2 (πK) = ±1.

But λ1λ
−1
2 (πK) = 1 implies that λ1 = λ2 which is not true and so λ1(πK) =

−λ2(πK). Thus λ2 = λ1η where η(x) = (−1)vK(x). Now the contribution of

ξ
(n)
λ to χΠ,σ

((
∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)
is

1
2
ωΠ(∆)(ε(Π⊗ λ−1

1 , ψK)λσ
1 (−a) + ε(Π⊗ λ−1

2 , ψK)λσ
2 (−a))

and λ1|F ∗ = λ2|F ∗ . But λ1|F ∗ can be 1 or ωK/F . So the total contribution
is once again∑

λ|F∗=1

ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a) +
∑

λ|F∗=ωK/F

ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a).

Thus, as in the unramified case, we get

χΠ,σ

((
∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)
=

∑
λ|F∗=1

1 + ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a)

+
∑

λ|F∗=ωK/F

1 + ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a).

Fix an embedding i of K∗/F ∗ into U(2,K/F ) given by

i(aF ∗) =
(

x y
∆2y x

) (
a−1 0
0 a−1

)
where a = x+ ∆y ∈ K∗.

If g =
(

∆ 0
0 ∆

) (
−a−1 0

0 1

)
w, then observe that ggτ =

(
a−1aσ 0

0 1

)
is conjugate to the image of aF ∗ under i.

If Π is a stable base change of a representation π of U(2,K/F ), then

χΠ,σ

((
∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)
= χ{π}(i(aF

∗)),

and if Π is an unstable base change of π, then

χΠ,σ

((
∆ 0
0 ∆

) (
−a−1 0

0 1

)
w

)
= ω̃K/F (a−1)χ{π}(i(aF

∗)).
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Thus we get the following two identities, the first obtained when Π is a
stable base change, and the second, when Π is an unstable base change.

χ{π}(i(aF
∗)) =

∑
λ|F∗=1

1 + ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a)

+
∑

λ|F∗=ωK/F

1 + ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a)

χ{π}(i(aF
∗)) = ω̃K/F (a)

∑
λ|F∗=1

1 + ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a)

+ ω̃K/F (a)
∑

λ|F∗=ωK/F

1 + ε(Π⊗ λ−1, (ψK)∆)
2

λσ(a).

Let r ∈ F ∗ − NK/F (K∗) and change a to ar. In both these identities the
left side remain unchanged, whereas a change of sign occurs in the second
sum of the first identity and in the first sum of the second identity. Thus
it follows that the second sum vanishes in the first identity and the first
sum vanishes in the second identity. Thus we get γ(Π ⊗ λ−1, (ψK)∆) = 1
for all characters λ of K∗ with λ|F ∗ = ωK/F (respectively λ|F ∗ = 1) if Π is
a stable (resp. unstable) base change lift of a representation of U(2,K/F ).
(Note that the γ- factor is the same as the ε-factor since Π is supercuspidal.)
Hence, if Π is a stable base change, then it is ωK/F -distinguished, and if Π
is an unstable base change, then it is distinguished (by the result of Hakim
cited in the proof of Proposition 2.3).

Remark. Here ε(Π⊗ λ−1, (ψK)∆) = ±1 when λ|F ∗ = 1 or ωK/F .

Proof. We have ε(Π⊗ λ−1, ψK)ε( ˜(Π⊗ λ−1), ψK) = ω
Π⊗λ−1 (−1).

But ˜(Π⊗ λ−1) ∼ Π̃⊗ λ ∼ Πσ ⊗ λ.

Therefore ε( ˜(Π⊗ λ−1), ψK) = ε(Π⊗ λσ, ψK) = ε(Π⊗ λ−1, ψK).
Therefore ε(Π⊗ λ−1, ψK)2 = 1.
Now ε(Π⊗ λ−1, (ψK)∆) = ωΠ(∆)λ(−1)ε(Π⊗ λ−1, ψK) = ±1.

What remains to show in order to prove Theorem 1.4 is that a represen-
tation Π of GL2(K), distinguished with respect to GL2(F ), is obtained by
the unstable base change map. Now by Theorem 4.1, we know that Π is
a base change lift of a representation of U(2,K/F ). We must show that
Π is in the image of the unstable base change map and not in the image
of the stable base change map. Suppose Π is a stable base change lift of
a representation of U(2,K/F ). Then by what has been proved already,
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Π is ωK/F -distinguished with respect to GL2(F ). Thus Π is both distin-
guished and ωK/F -distinguished, which contradicts Proposition 3.1. This
proves Theorem 1.4.
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Blumenthal-Flächen, J. Reine Angew. Math., 366 (1986), 53-120, MR 87k:11066,
Zbl 0575.14004.

[10] H. Jacquet and R. Langlands, Automorphic Forms on GL(2), Lect. Notes Math.,
114, Springer, 1970, MR 53 #5481, Zbl 0236.12010.

[11] H. Jacquet and Y. Ye, Une remarque sur le changement de base quadratique, C.R.
Acad. Sci. Paris, 311, Série 1, (1990), 671-676, MR 92j:11046, Zbl 0715.11026.

[12] , Distinguished representations and quadratic base change for GL(3), Trans.
Amer. Math. Soc., 348(3) (1996), 919-939, MR 96h:11041, Zbl 0861.11033.

[13] D. Prasad, Distinguished representations for quadratic extensions, Compositio Math.,
119 (1999), 335-345, MR 2001b:22016, Zbl 0969.22008.

[14] , On a conjecture of Jacquet about distinguished representations of GLn, Duke
Math J., 109(1) (2001), 67-78, MR 2002g:22036.

[15] H. Saito, On Tunnell’s formula for characters of GL(2), Compositio Math., 85 (1993),
99-108, MR 93m:22021, Zbl 0795.22009.

http://www.ams.org/mathscinet-getitem?mr=2002h:11122
http://www.ams.org/mathscinet-getitem?mr=84i:22016
http://www.emis.de/cgi-bin/MATH-item?0502.12013
http://www.ams.org/mathscinet-getitem?mr=92i:22019
http://www.emis.de/cgi-bin/MATH-item?0725.11026
http://www.ams.org/mathscinet-getitem?mr=89m:11049
http://www.emis.de/cgi-bin/MATH-item?0674.10026
http://www.ams.org/mathscinet-getitem?mr=95i:22028
http://www.emis.de/cgi-bin/MATH-item?0837.11030
http://www.ams.org/mathscinet-getitem?mr=48:253
http://www.emis.de/cgi-bin/MATH-item?0256.12010
http://www.ams.org/mathscinet-getitem?mr=92c:22037
http://www.emis.de/cgi-bin/MATH-item?0724.22016
http://www.ams.org/mathscinet-getitem?mr=87k:11066
http://www.emis.de/cgi-bin/MATH-item?0575.14004
http://www.ams.org/mathscinet-getitem?mr=53:5481
http://www.emis.de/cgi-bin/MATH-item?0236.12010
http://www.ams.org/mathscinet-getitem?mr=92j:11046
http://www.emis.de/cgi-bin/MATH-item?0715.11026
http://www.ams.org/mathscinet-getitem?mr=96h:11041
http://www.emis.de/cgi-bin/MATH-item?0861.11033
http://www.ams.org/mathscinet-getitem?mr=2001b:22016
http://www.emis.de/cgi-bin/MATH-item?0969.22008
http://www.ams.org/mathscinet-getitem?mr=2002g:22036
http://www.ams.org/mathscinet-getitem?mr=93m:22021
http://www.emis.de/cgi-bin/MATH-item?0795.22009


286 U.K. ANANDAVARDHANAN AND R. TANDON

[16] J. Tate, Number theoretic background, in ‘Automorphic Forms, Representations,
and L-functions’ (Corvallis), AMS Proc. Symp. Pure Math., 33 (1979), 3-26,
MR 80m:12009, Zbl 0422.12007.

[17] J. Tunnell, Local epsilon factors and characters of GL(2), Amer. J. Math., 105 (1983),
1277-1307, MR 86a:22018 , Zbl 0532.12015.

[18] Y. Ye, Kloosterman Integrals and Base Change, Ph.D. thesis, Columbia University,
1986.

[19] , Kloosterman integrals and base change for GL(2), J. Reine Angew. Math.,
400 (1989), 57-121, MR 90i:11134, Zbl 0665.10020.

Received January 11, 2001 and revised November 28, 2001.

Department of Mathematics and Statistics
School of MCIS
University of Hyderabad
Hyderabad-500046
India
E-mail address: sm022s@uohyd.ernet.in

Department of Mathematics and Statistics
School of MCIS
University of Hyderabad
Hyderabad-500046
India
E-mail address: rtsm@uohyd.ernet.in

http://www.ams.org/mathscinet-getitem?mr=80m:12009
http://www.emis.de/cgi-bin/MATH-item?0422.12007
http://www.ams.org/mathscinet-getitem?mr=86a:22018
http://www.emis.de/cgi-bin/MATH-item?0532.12015
http://www.ams.org/mathscinet-getitem?mr=90i:11134
http://www.emis.de/cgi-bin/MATH-item?0665.10020
mailto:sm022s@uohyd.ernet.in
mailto:rtsm@uohyd.ernet.in

