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In this paper we study a family of algebraic deformations
of regular coadjoint orbits of compact semisimple Lie groups
with the Kirillov Poisson bracket. The deformations are re-
strictions of deformations on the dual of the Lie algebra. We
prove that there are non isomorphic deformations in the fam-
ily. The star products are not differential, unlike the star
products considered in other approaches. We make a com-
parison with the differential star product canonically defined
by Kontsevich’s map.

1. Introduction.

Coadjoint orbits of Lie groups are symplectic manifolds that can be used to
model physical systems that have a continuous group of symmetries. The
Kirillov-Kostant orbit principle allows in many cases to associate canonically
a unitary representation to the orbit. The Hilbert space of the representa-
tion can then be thought as the Hilbert space of the quantum theory. A
quantization map which takes a class of functions on the phase space to
operators in such Hilbert space can be constructed. This is the approach of
geometric quantization (see reference [24] for a review).

On the other hand, the pioneering work by Bayen et al. [3] on deforma-
tion quantization raised the problem of quantizing the coadjoint orbits with
a radically different method. However, being based on the same physical
principles, it is natural to expect a relation between the two approaches. In
fact, it was thought that deformation quantization, which “forgets” about
the Hilbert space on which the quantum algebra is represented, could never-
theless throw light on the Kirillov-Kostant orbit principle [14]. The algebra
that appears in geometric quantization is defined as the quotient of the en-
veloping algebra by a prime ideal which is contained in the kernel of the
corresponding representation [24]. The method of geometric quantization is
however more general than the Kirillov-Kostant orbit principle. A compar-
ison with deformation quantization for the case of R2n with the standard
symplectic structure was done in reference [15].

In the work of Bayen et al. [3] only flat symplectic manifolds were studied.
The existence of a deformation quantization of general symplectic manifolds
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was first established by De Wilde and LeComte [9], and using different
methods by Omori, Maeda and Yoshioka [22] and by Fedosov [10]. For a
comparison between the methods of De Wilde and Le Comte and Fedosov,
see reference [8]. In reference [21], the existence of tangential deformations
for any regular Poisson manifold was proven. In reference [19], Kontse-
vich settled the fundamental question of the existence of deformations for
arbitrary (formal) Poisson manifolds. In all these works the deformations
are taken to be differential, that is, the product structure in the deformed
algebra is defined through bidifferential operators.

Explicit star products for non flat manifolds are not easy to construct.
In reference [16], Gutt constructed a star product on the cotangent bundle
of a Lie group. In reference [5], Cahen and Gutt constructed a deformation
of the algebra of polynomials on the regular coadjoint orbits of compact
semisimple groups, using the fact that the universal enveloping algebra is
a deformation of the algebra of polynomials on the dual of the Lie algebra
[17]. They showed that, although the deformation on the whole space is
differential, the one induced on the orbit is not. Moreover, in reference
[6] they show that for semisimple groups “tangential” deformations (that
is, deformations on the ambient space that restrict well to the orbits) that
are at the same time differential and that extend over the origin do not
exist. Deformations of coadjoint orbits were also studied in [2] in terms of a
polarization of the orbit (also used in geometric quantization). The resulting
star product is covariant. More generally, deformations of Kähler manifolds
were studied in [7].

In reference [12] a family of star products on coadjoint orbits of semisimple
Lie groups was constructed as a quotient of the enveloping algebra by a
suitable ideal. With a certain choice inside the family of deformations one
obtains the same star product as in reference [5]. For another choice, in
the special case of SU(2), the deformed algebra turns out to be the one of
geometric quantization [12]. In this case we can associate to the deformation
quantization a unitary representation in the spirit of Berezin [4].

In the present work we further study the properties of this family of
deformations. The organization of the paper is as follows. In Section 2,
we review the construction of the algebraic star products on the orbit [12]
and show that there exist non equivalent products associated with a given
algebraic Poisson bracket. We also show that the ideal used to quotient the
enveloping algebra is prime. In fact, in geometric quantization the quantum
algebra is the enveloping algebra modulo a prime ideal; this ideal is contained
in the kernel of the representation. In Section 3, we use Kontsevich’s theorem
on differential star products to show that the Kirillov Poisson structure on
the dual space of the Lie algebra of a semisimple Lie group has only one
possible deformation. In Section 4, we study the algebraic star products on
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the orbit and show that they are not, in general, differential. In Section 5,
we show different ways of constructing star products on the orbit.

2. Deformation of the polynomial algebra of a regular orbit.

In this section we review the results of reference [12] where a family of defor-
mations of the polynomial algebra of a regular coadjoint orbit of a semisimple
Lie group was constructed. We show that the different deformations in the
family are not necessarily equivalent by exhibiting a counterexample.

Let G be a complex semisimple Lie group of dimension n and rank m,
G its Lie algebra and U the enveloping algebra of G. Let TC(G) be the full
tensor algebra of G over C. Consider the algebra TC(G)[[h]] and its proper
two sided ideal

L[h] =
∑

X,Y ∈G
TC(G)[[h]]⊗ (X ⊗ Y − Y ⊗X − h[X,Y ])⊗ TC(G)[[h]].(1)

We define U[h] = TC(G)[[h]]/L[h].

Definition 2.1. An associative algebra A[h] over C[[h]] is a formal defor-
mation of a Poisson algebra (A, { , }) over C if there exists an isomorphism
of C[[h]]-modules ψ : A[[h]] −→ A[h] satisfying the following properties

(a) ψ(f1f2) = ψ(f1)ψ(f2) mod (h).
(b) ψ(f1)ψ(f2)− ψ(f2)ψ(f1) = hψ({f1, f2}) mod(h2).

Because of its relation with the problem of quantization, A[h] is sometimes
called a deformation quantization of A.

Notice that in the above definition we can substitute C[[h]] by C[h]. The
algebra is then a module over C[h] which will be denoted as Ah. We will
say that Ah is a C[h]-deformation of A. Notice that a C[h]-deformation
extends to a formal deformation, but the converse is not always true. Also,
a C[h]-deformation can be specialized to any value of the parameter h, since
the ideal generated by the element h−h0 is proper in Ah. One obtains then
a complex algebra, Ah0 = Ah/(h− h0).

It is well-known that U[h] is a formal deformation of C[G∗][[h]] equipped
with the Kirillov Poisson bracket [17].

We denote by pi, i = 1, . . .m the algebraically independent homogeneous
generators of the subalgebra of invariant polynomials on G∗,

I = {p ∈ C[G∗] | p(Ad∗(g)ξ) = p(ξ) ∀ξ ∈ G∗, g ∈ G} = C[p1, . . . pm],(2)

given by Chevalley’s theorem. If S(G) is the algebra of symmetric tensors
on G, we can identify canonically Pol(G∗) = C[G∗] ≈ S(G).

Let {X1, . . . , Xn} be a basis for G and let {x1, . . . , xn} be the correspond-
ing generators of C[G∗]. Then the symmetrizer map Sym : C[G∗] −→ TC(G)
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is given by

Sym(x1 . . . xp) =
1
p!

∑
s∈Sp

Xs(1) ⊗ · · · ⊗Xs(p)(3)

where Sp is the group of permutations of order p. The composition of
the symmetrizer with the natural projection TC(G) −→ U is a linear iso-
morphism that gives the identification C[G∗] ≈ U . Moreover, it sends
the invariant polynomials I isomorphically into the center of U (see for
example reference [23]). We can extend the symmetrizer map as Sym:
C[G∗][[h]] −→ TC(G)[[h]], and the projection πh : TC(G)[[h]] −→ U[h]. Then
Pi = πh ◦Sym(pi) are also central elements. Note that πh ◦Sym can be used
as the isomorphism ψ in Definition 2.1, ψ : C[G∗][[h]] → U[h].

We consider now the compact real form of G with Gr the real Lie algebra
(G still denotes the complex Lie algebra). The coadjoint orbits are algebraic
manifolds given by the constrains,

pi(x1, . . . xn) = c0i , c0i ∈ R, i = 1, . . .m.

There is a one to one correspondence from the set of orbits with the ele-
ments of a Weyl chamber in the Cartan subalgebra. Regular orbits are the
orbits of elements in the interior of a Weyl chamber, and they have maximal
dimension. Non regular orbits are given by constants c0i satisfying some con-
strains. This means that if c0i define a regular orbit, there is a neighborhood
of the orbit that is foliated with regular orbits. We will use this property in
the next section.

Let Θr be a regular orbit. Then, the ideal of polynomials in R[Gr∗] that
vanish on Θr is generated by the elements pi − c0i [20], so we can define

I0 = (pi − c0i , i = 1, . . . ,m) ⊂ R[Gr∗],

and the algebra of restrictions of polynomials to the orbit is R[Θr] =
R[Gr∗]/I0. We take the complexification of this algebra C[G∗]/I0 (we denote
still by I0 the ideal in the complexified algebra), which is the algebra of poly-
nomials on the complex orbit Θ, C[Θ]. Consider a regular orbit and define
the two sided ideal in U[h] generated by the elements Pi− ci(h) i = 1, . . . ,m

I[h] = (Pi − ci(h), i = 1, . . . ,m) ⊂ U[h],(4)

where ci(h) ∈ C[[h]] is such that ci(0) = c0i and Pi = Sym(pi). In [12] it was
shown the following:

Theorem 2.1. The algebra U[h]/I[h] is a formal deformation of C[Θ] =
C[G∗]/I0. Uh/Ih is a C[h]-deformation of C[Θ] = C[G∗]/I0.

Regularity is a technical assumption to show that U[h]/I[h] is a free module
isomorphic to C[Θ][[h]].
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The ideal I0 ⊂ C[G∗] is prime since the corresponding algebraic variety
is irreducible. We want to show now that the ideal Ih ∈ Uh is prime. We
define first a grading in Uh. If {Xi, i = 1, . . . , n} is a basis of G we set
deg(Xi) = deg(h) = 1. This is a set of generators for TC(G)[h]. Notice that
the relations in Lh (1) are homogeneous with respect to this grading, so a
grading is defined on Uh. The degree of an inhomogeneous element in Uh
is the maximal degree occurring in all of its monomials. Let us restrict to
modules over C[h].

Proposition 2.1. Assume that deg(ci(h)) ≤ deg(Pi). Then if FG ∈ Ih,
either F ∈ Ih or G ∈ Ih. Hence Ih is prime.

Proof. Consider first the projection ρ : Uh → Uh/hUh ≈ C[G∗]. One has
that for any F ∈ Uh, deg(ρ(F )) ≤ deg(F ).

Since ρ(Pi) = pi, i = 1, . . . ,m, we have ρ(Ih) = I0. Since deg(ci(h)) ≤
deg(Pi), if f ∈ I0 there exists F ′ ∈ Ih with ρ(F ′) = f and deg(F ′) = deg(f).
If f =

∑
i f

i(pi − ci0) one can take for example F =
∑

i πh ◦ Sym(fi)(Pi −
ci(h)).

Assume that FG ∈ Ih. Then

ρ(FG) = ρ(F )ρ(G) =: fg ∈ I0,

where we denote the projections by small case letters. Since I0 is a prime
ideal, either f ∈ I0 or g ∈ I0.

Assume that f ∈ I0. Then there exists F ′ ∈ Ih with ρ(F ′) = f and
deg(F ′) = deg(f) ≤ deg(F ). Denote F − F ′ = h∆F ; it is clear that
deg(∆F ) < deg(F ). If ∆F ∈ Ih then F itself is in Ih and we are through;
otherwise observe that

h∆FG = FG− F ′G ∈ Ih.
Since Uh/Ih is without torsion ([12]), we can “divide” by h, and it follows
that ∆FG ∈ Ih.

We can now proceed to show that either ∆F or G is in Ih. But notice
that we have reduced the total degree. We can apply the argument again
until we arrive to the situation that one of the factors has degree zero (it
is a number). Then it follows that the other factor is in Ih and eventually
that F or G are in Ih, as we wanted to prove. �

We now want to show that there exists two different C[h]-deformations
on the same orbit that are not isomorphic. We consider G = sl2(C). Let

Ih = (P − µ0), I ′h = (P − µ0 −
√

2h),

where P is the quadratic Casimir. Assume that Uh/Ih ∼= Uh/I
′
h. Since any

isomorphism will send the ideal (h−1) into the ideal (h−1), the quotient of
both algebras by (h−1) must be isomorphic. But the algebra U/(P−µ0) has
finite dimensional representations only for certain values of µ0. In particular,
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for µ0 irrational, it has no finite dimensional representations [23]. It is
enough to take µ0 such that Uh/Ih has finite dimensional representations
and we reach a contradiction.

The same is true for formal deformations. In fact, with the same reasoning
as in reference [23] we have that U[h]/(P − µ(h)) admits finite dimensional
representations only for appropriate µ(h) = µ0.

3. Star products and equivalence.

Definition 3.1. Given A[h], a formal deformation of a Poisson algebra A
and a C[[h]]-module isomorphism ψ : A[[h]] −→ A[h] as in Definition 2.1, we
say that the associative product in A[[h]] defined by

a ? b = ψ−1(ψ(a) · ψ(b)), a, b ∈ A[[h]]

is a star product on A[[h]].

It follows from property a in Definition 2.1 that a star product can always
be written as

a ? b = ab+
∑
n>0

hnBn(a, b)(5)

where Bn are bilinear operators and by juxtaposition ab we denote the
commutative product in A[[h]]. Property b in Definition 2.1 implies that
{a, b} = B−

1 (a, b) := B1(a, b)−B1(b, a).
For a given A[h] there are many choices of the isomorphism ψ (it is not

canonical). Once ψ is given, the star product ? is defined and one regards
A[[h]] as an associative non commutative C[[h]]-algebra. Let ? and ?′ be
different star products corresponding to the same deformation, defined by
the maps

ψ : A[[h]] −→ A[h], a ? b = ψ−1(ψ(a) · ψ(b)),

ψ′ : A[[h]] −→ A[h], a ?′ b = ψ′
−1(ψ′(a) · ψ′(b)).

They define isomorphic algebras. The isomorphism T : A[[h]] −→ A[[h]] is
given by

T = ψ′
−1 ◦ ψ, T (a ? b) = T (a) ?′ T (b).

T can also be expressed as a power series

T =
∑
n≥0

hnTn(6)

in terms of the linear operators Tn. It is easy to show that T0 is an auto-
morphism of the commutative algebra A[[h]]

T0(ab) = T0(a)T0(b), a, b ∈ A[[h]]
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and of the Poisson algebra A
T0{a, b} = {T0(a), T0(b)}, a, b ∈ A.

Definition 3.2. If ? and ?′ are two isomorphic star products on A[[h]], the
isomorphism being T : A[[h]] −→ A[[h]] as in (6), we say that they are gauge
equivalent if T0 = Id.

A star product is differential if A = C∞(M) for a smooth manifold M ,
and the operators Bn in (5) are bidifferential operators. An example of
differential star product is the one induced on G∗ by the map (3). It is in
principle defined on polynomials, but it can be extended to C∞(M) through
operators Bi that are bidifferential. It was shown in reference [8] that with
a gauge transformation any differential star product can be brought to a
form under which the bilinear operators Bn are null on the constants (that
is, the zero degree doesn’t appear).

One can consider gauge equivalence inside the class of differential star
products by considering only differential maps T . For this case, it was
shown by Kontsevich in [19] the following important theorem:

Theorem 3.1. The set of gauge equivalence classes of differential star prod-
ucts on a smooth manifold M can be naturally identified with the set of
equivalence classes of Poisson structures depending formally on h,

α = hα1 + h2α2 + . . .

modulo the action of the group of formal paths in the diffeomorphism group
of M , starting at the identity isomorphism.

In particular, for a given Poisson structure α1, we have the equivalence
class of differential star products canonically associated to hα1.

We explain briefly the concept of formal paths in the diffeomorphism
group of M . For further details we refer to reference [19, 1]. Let m be
the maximal ideal in R[[t]]. Consider L the algebra of polyvector fields
with the Schouten-Nijenhuis bracket. It is a differential graded Lie algebra
with zero differential. We recall that a Poisson structure is a bivector field
such that its Schouten-Nijenhuis bracket with itself is zero. Let L0 be the
algebra of vector fields on M . They are the 0-cochains of the complex.
Consider L0 ⊗ m. The exponential of this algebra is the group of formal
paths in the diffeomorphism group starting with the identity. L1 is the set of
(skew-symmetric) bivector fields. L0 acts on L1 with the Schouten-Nijenhuis
bracket,

Z(B)(f1, f2) = Z(B(f1, f2))−B(Z(f1), f2)−B(f1, Z(f2)),
Z ∈ L0, B ∈ L1, f1, f2 ∈ C∞(M)

and this action can be exponentiated to the group.
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3.1. Uniqueness of the deformation of the Kirillov Poisson struc-
ture. We want to determine whether the equivalence class of the Kirillov
Poisson bracket in G∗ is the only class of formal Poisson structures whose
first order term is the Kirillov Poisson bracket (as it happens, for example,
in any flat symplectic manifold [3]). This is actually the case, at least for
algebraic Poisson structures (we say that a Poisson structure β is algebraic if
β(p, q) is a polynomial whenever p and q are polynomials) and G semisimple.

Proposition 3.1. Let G be a real semisimple algebra. Let β be an algebraic
differential formal Poisson structure

β =
∞∑
i=0

hi+1βi,

such that β0 is the Kirillov Poisson structure in G∗. Then β is equivalent to
β0.

Proof. The Jacobi identity at first order is satisfied since β0 itself is a Poisson
structure and at second order it implies that β1 is a two-cocycle in the
Chevalley cohomology of β0. If β1 is a coboundary, then

β1(f1, f2) = δZ(f1, f2) = Z(β0(f1, f2))− β0(Z(f1), f2)− β0(f1, Z(f2)),

with Z a 0-cochain. Then a gauge transformation (formal path in the dif-
feomorphism group) of the form

ϕ = Id + hZ + . . .

shows that β is equivalent to a formal Poisson structure without term of
order h2, i.e., we can assume that β1 = 0. But then β2 is a cocycle and we
can proceed recursively. Hence, to prove that β ∼ β0 it is actually sufficient
to show that the Chevalley cohomology of β0 is zero. Since β is a bivector
field and it is algebraic, it is sufficient to check that there is no non trivial
algebraic two cocycle with order of differentiability (1,1). We will show that
this is the case.

Such a cocycle is an antisymmetric bidifferential map, null on the con-
stants and with polynomial coefficients,

C2 : Sym(G)⊗ Sym(G) −→M

where M = Sym(G) is a left (Lie algebra) Sym(G)-module, with the action
given by the Poisson bracket β0. If C2 has order of differentiability (1,1),
we can restrict C2 non trivially to first order polynomials. We denote that
restriction by

Ĉ2 : G ⊗ G −→ Sym(G).

Then Ĉ2 is a cocycle in the Lie algebra cohomology of order two of G with
values in Sym(G). Since G is semisimple, as a consequence of Whitehead’s
lemma, this cohomology is zero (see for example reference [18]). Hence Ĉ2 is
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trivial, i.e., there exists a 1-cochain Ĉ1 : G −→ Sym(G) such that Ĉ2 = δĈ1.
If Ĉ1 is given on a basis of G by Ĉ1(Xi) = Ĉ1

i , this means that

Ĉ2(Xi, Xj) = δĈ1 = Ĉ1([Xi, Xj ])− β0(Xi, Ĉ
1
j )− β0(Ĉ1

i , Xj),

and Ĉ1 can be extended to a 1-cochain in the Chevalley complex by

C1(f) = Ĉ1
k

∂f

∂xk
, f ∈ Sym(G).

We then have C2 = δC1, showing that C2 is trivial. Hence β is equivalent
to β0, as we wanted to show. �

Using Theorem 3.1, we conclude that there is only one equivalence class of
star products whose first order term is the Kirillov Poisson bracket. All these
star products give algebra structures on the polynomials on G∗ isomorphic
to U[h].

4. Star products on the orbit.

A star product on the orbit Θ associated to the deformation of Theorem 2.1
is given by a linear isomorphism

ψ̃ : C[Θ][[h]] −→ U[h]/I[h].

In particular, if {xi1 . . . xik , (i1, . . . ik) ∈ S} is a basis of C[Θ] for some set of
multiindices S, then {Xi1 . . . Xik , (i1, . . . ik) ∈ S} is a basis of U[h]/I[h] [12].
This defines a particular isomorphism ψ̃(xi1 . . . xik) = Xi1 . . . Xik and the
corresponding star product.

This star product can be seen as the restriction to the orbit of a star
product on C[G∗]. We have only to extend the map ψ̃ to an isomorphism
ψ : C[G∗][[h]] −→ U[h]. This is guaranteed since C[G∗] = C[Θ] ⊕ I0, U[h] =
U[h]/I[h] ⊕ I[h], and I0 and I[h] are also isomorphic as C[[h]]-modules (we
denote with the same symbol I0 the ideal generated by (pi − ci) both in
C[G∗] and in C[G∗][[h]]).

We have then that the following diagram

C[G∗][[h]] ψ−−−→ U[h]yπ yπh

C[Θ][[h]]
eψ−−−→ U[h]/I[h]

(7)

commutes. In general, we say that a star product on G∗ is tangential to the
orbit Θ if it defines a star product on Θ by restriction. So the star product
in (7) is tangential.

Example 4.1. Star product on an orbit of SU(2).
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Consider the Lie algebra of SU(2),

[X,Y ] = Z, [Y, Z] = X, [Z,X] = Y.

The subalgebra of invariant polynomials on G∗ is generated by p = x2 +
y2 + z2, so the corresponding Casimir is P = X2 + Y 2 + Z2. We con-
sider the orbit p = c2, c ∈ R, c 6= 0. A basis of I0 is B1 = {xryszt(p −
c2), r, s, t = 0, 1, 2, . . . } and one can complete it to a basis in G∗ by adding
B2 = {xryszν , ν = 0, 1, r, s = 0, 1, 2, . . . }. The equivalence classes of the
elements in B2 are a basis of C[G∗]/I0.

Let I[h] be the ideal in U[h] generated by P − c2. We can define the
isomorphism ψ : C[G∗][[h]] −→ U[h] as

ψ(xryszt(p− c2)) = XrY sZt(P − c2), r, s, t = 0, 1, 2, . . .(8)

ψ(xryszν) = XrY sZν , ν = 0, 1, r, s = 0, 1, 2, . . . .

Clearly ψ(I0) = I[h], so the star product defined by ψ is tangential to the
orbit. It is easy to check that if we move to a neighboring orbit, p = c′2, then
ψ, as defined in (8) doesn’t preserve the new ideal, that is, ψ(I ′0) 6= I ′[h].

One can construct a star product that is tangential to all the orbits in a
neighborhood of the regular orbit (this is in fact the definition of “tangential
star product” given in [6]). If pi = c0i , i = 1, . . .m define the regular orbit
Θ(c01,...c

0
m) with ideal I(c01,...c

0
m) one can construct a map ψ such that

ψ(I(c1,...cm)) = I(c1,...cm),h(9)

for (c1, . . . cm) in a neighborhood of (c01, . . . c
0
m) and I(c1,...cm),h an ideal in

U[h] of the type required in Theorem 2.1. The construction follows similar
lines to the one in [5]. We consider the decomposition C[G∗] = I ⊗ H
where I is the subalgebra of invariant polynomials as in (2) and H is the
set of harmonic polynomials (this result is due to Kostant [20]). Harmonic
polynomials are in one to one correspondence with the polynomials on the
orbit, so we have in fact

C[G∗] ≈ I ⊗ C[Θ(c01,...c
0
m)].

Consider now the basis in I {(pi1 − ci1) . . . (pik − cik), i1 ≤ · · · ≤ ik} and the
basis in C[Θ(c01,...c

0
n)] as before, {xj1 . . . xjl , (j1, . . . jl) ∈ S}. We define the

C[[h]]-module isomorphism

ψ
(
(pi1 − c0i1) . . . (pik − c0ik)⊗ xj1 . . . xjl

)
(10)

= (Pi1 − ci1(h)) . . . (Pik − cik(h))⊗ (Xj1 . . . Xjl).

It is obvious that it preserves the ideal, ψ(I(c01,...c
0
n)) = I(c01,...c

0
m),h. A closer

look reveals that, in fact ψ(I(c1,...cm)) = I(c1,...cm),h, and then ψ̃ in (7) is well-
defined for any (c1, . . . cm) in a neighborhood of (c01, . . . c

0
m). Consequently
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we have a star product that is tangential to all the orbits in a neighborhood
of the regular orbit.

In [5] it is shown that for SU(2) a star product of this type (with cil(h) =
c0il) is not differential. More generally, it was shown in [6] the following
theorem:

Theorem 4.1. If G is a semisimple Lie algebra there is no differential star
product on any neighborhood of the origin in G∗ which is tangential to the
coadjoint orbits.

The only property of tangential star products that is used in the proof
of this theorem is that if f is a function that is constant on the orbits (in
particular, the quadratic Casimir p1), then, g ? f = gf. It is easy to show
that the tangential star products defined by (10) satisfy this property on all
G∗ (in particular in a neighborhood of 0), so they are not differential.

On any regular Poisson manifold there exists a star product that is tangen-
tial and differential [21]. But on all of G∗, which is not regular, Theorem 4.1
states that a star product with both properties does not exist. To induce
a star product on a particular orbit, it is enough to assume that the star
product on G∗ is tangent to only such orbit. One can find star products on
Pol(G∗) isomorphic to Uh that restrict well to only one orbit (in the sense
of (7)). Example 4.2 shows one of such star products for G=su(2). We
prove that it is not differential, so at least in this case, the relaxation of the
tangentiality condition does not allow in general for differentiability. In Sec-
tion 5 we will investigate how these deformations are related to differential
deformations on the orbit.

Example 4.2. Non differential star product on G∗ = su(2)∗.

Consider again the Lie algebra of SU(2), with the same notation, and the
orbit Θr given by p = 1. It is a 2-sphere in R3. Fix the star product ? on Θ
by choosing the C[[h]]-isomorphism

ψ̃ : C[Θ][[h]] −→ U[h]/I[h]

xnymzν 7→ XnY mZν , ν = 0, 1, m, n = 0, 1, 2, . . . .

We regard the Cartesian coordinates x and y as functions on the sphere and
let V be an open set in Θ where (x, y) are coordinates. On this open set V
the 1-forms dx and dy form a basis for the module of 1-forms. Let ∂x and
∂y be the elements of the dual basis, that is, ∂x and ∂y are vector fields on
V such that

〈∂x, dx〉 = 〈∂y, dy〉 = 1, 〈∂y, dx〉 = 〈∂x, dy〉 = 0.
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Any differential operator on V is an element of the algebra generated by
functions and by ∂x and ∂y. The advantage of ∂x and ∂y is that they behave
well on polynomials in x and y. We have

0 = ∂x(1) = ∂x(x2 + y2 + z2) = 2x+ 2z∂x(z),

hence ∂x(z) = −x
z and ∂y(z) = −y

z . Observe that ∂x and ∂y commute.
Assume that ? is differential,

f ? g =
∑
i≥0

hiBi(f, g)

where Bi are bidifferential operators. To determine Bi it is enough to com-
pute them on the monomials x and y. With the following lemma we compute
B1.

Lemma 4.1. Let p1, p2 be two polynomials in x and y, then we have:

p1 ? p2 = p1p2 − hz∂y(p1)∂x(p2) mod(h2).

Proof. It is enough to show it for p1, p2 monomials. Let p1 = xnym, p2 =
xrys. We use induction on N = m + r. For N = 0 it is clear. Let N > 0.
By the definition of ?,

p1 ? p2 = xnym ? xrys = xn(ym ? xr)ys = xn[(ym ? xr−1) ? x]ys.

By induction we have:

p1 ? p2 = xn[(xr−1ym − hzm(r − 1)ym−1xr−2) ? x]ys mod(h2),

and by induction again we have:

p1 ? p2 = xn[xrym − hzmym−1xr−1 − hzm(r − 1)ym−1xr−1]ys mod(h2)
= xn[xrym − hzmrym−1xr−1]ys mod(h2)
= xn+rym+s − hzmrym−1+sxr−1+n mod(h2),

which is what we wanted to prove. �

According to the previous lemma

z ? z = z2 − h
xy

z
mod(h2) = 1− x2 − y2 − h

xy

z
mod(h2),

on the other hand, by definition,

z ? z = ψ̃−1(ψ̃(z)ψ̃(z)) = ψ̃−1(Z2) = 1− x2 − y2,

a contradiction that shows that ? cannot be differential.
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5. Algebraic and differential star products on the regular orbit.

Let us consider the regular orbit Θr as a symplectic manifold. By Theo-
rem 3.1 we can associate to the Poisson structure a (equivalence class of)
differential star product. It was already known [9, 10] that a star product
exists for any symplectic manifold. In fact, differential star products are
not in general unique. The space of equivalence classes of differential star
products such that

f ? g − g ? f = h{f, g},
being { · , · } a symplectic Poisson bracket, are classified by the sequences
{ωn}n≥1 of de Rham cohomology classes in H2(M) such that ω1 is the
symplectic form associated to the Poisson bracket. In fact, the space of
equivalence classes of star products is a principal homogeneous space under
the group H2(M)[[h]] [9, 8].

The symplectic two form is not defined in arbitrary Poisson manifolds,
so the natural structure to consider is the Poisson bivector. We want to
describe the space of equivalence classes of star products for symplectic
manifolds in terms of the Poisson bivector, being this approach closer to the
one of Kontsevich’s theorem for arbitrary manifolds. Let M be a symplec-
tic manifold and consider ωh =

∑
j≥0 h

jωj ∈ H2(M)[[h]], where ω0 is the
original symplectic two form and ωj are closed two forms. Since ω0 is non
degenerate, ωh defines an invertible map between tangent and cotangent
vector fields in the usual way,

µh : Γ(TM)[[h]] −→ Γ(T ∗M)[[h]],

which can be extended to tensors. In fact, by closedness of ωh, the map

(f, g) 7→ {f, g}h = hωh(µ−1
h (df), µ−1

h (dg))

is a formal Poisson structure in the sense of Kontsevich and this formal
Poisson structure is gauge equivalent to zero (the gauge group is the group
of formal paths in the diffeomorphism group starting with the identity) if
and only if all the ωj are exact. We have then that the set of equivalence
classes in H2(M)[[h]] is in one to one correspondence with the set of formal
Poisson structures modulo the action of the gauge group. So for symplectic
manifolds both descriptions, in terms of the symplectic form or in terms of
the Poisson bivector are equivalent.

Coadjoint orbits of compact groups are an example of manifolds that
admit inequivalent quantizations. In fact they have a non trivial de Rham
cohomology H2(Θr). In particular, the symplectic form is a closed, non
exact form, so we have many inequivalent deformations.

Let Θr be the orbit defined by

pi(x1, . . . xn) = c0i , c0i ∈ R, i = 1, . . .m,
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Θr is regular if and only if the differentials dpi are independent. One can
consider all the regular orbits given by the constraints pi = ci, i = 1, . . .m
with (c1, . . . cm) in a neighborhood of (c01, . . . c

0
m) where the differentials are

still independent. The set of these points is a neighborhood NΘr ≈ Θr ×
Rm of the regular orbit. NΘr is a regular Poisson manifold. The Poisson
structure on NΘr can be seen as a symplectic structure on Θr which depends
on certain parameters, the invariant polynomials pi, which determine the leaf
of the foliation in NΘr .

We now want to examine various star products that can be defined on the
open set NΘr . We can consider the star product ?S induced by Uh by means
of the map (3). It is differential, but not tangential. It was shown in reference
[19] that the canonical deformation of the Kirillov Poisson structure on G∗
is isomorphic to Uh.

We can also consider the quantization of the Kirillov symplectic structure
on the orbit given by Kontsevich’s theorem. From the local expression of
Kontsevich’s quantization, one can see that it is a smooth with respect to
the parameters pi. Interpreting the parameters as transverse coordinates,
Kontsevich’s theorem applied on Θr gives indeed a star product on NΘr that
is tangential and differential. We denote it by ?T .

Finally we can consider the star product ?P on NΘr , induced by a map
ψ as in formula (10). ?P is tangential to the orbit, but, in general, not
differential. To sum up we get Table 1.

∗S
Isomorphic to Uh (on the
polynomials), induced by
Sym.

Defined on all G∗, differential,
not tangential.

∗P
Isomorphic to Uh, induced by
a map ψ like (10).

Defined on all G∗, not differen-
tial (only given on polynomi-
als), tangential to the orbits.

∗T
Gluing Kontsevich construc-
tion on the leaves.

Defined on NΘr , differential,
tangential.

Table 1. Star products on NΘr .

The relation among these star products on NΘr and the corresponding
star products induced on the orbit Θr will be studied in [13].

6. Summary.

In this paper we consider different methods of quantization for regular or-
bits of compact semisimple Lie groups. From the algebraic point of view,
one can obtain non isomorphic deformations of the same Poisson structure.
These deformations can be compared with geometric quantization since the
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formulation is in terms of a certain prime ideal in the enveloping algebra.
The comparison with differential deformations becomes more difficult since
the polynomials are “global” objects, very different from the “local” C∞

functions, and in fact we see that the star products obtained are not differ-
ential in general. At the end we define three star products on a regularly
foliated neighborhood of the orbit.
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[13] R. Fioresi and M.A. Lledó, A comparison between star products on regular orbits of
compact Lie groups, preprint, 2001.

[14] C. Fronsdal, Some ideas about quantization, Reports on Math. Phys., 15(1) (1978),
111-145, MR 81a:81014, Zbl 0418.58011.
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