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We consider the Dirichlet problem for the constant mean
curvature surface equation on domains of an infinite strip of
the plane. We give sufficient conditions for the existence of
smooth solutions provided that the boundary satisfies a cer-
tain exterior circle condition. A feature of the work is the use
of pieces of nodoids as barriers to make C0 and C1 a priori
estimates respectively.

1. Introduction.

Let Ω be a smooth domain in R2. We consider the classical Dirichlet problem
of the constant mean curvature equation:

E(u) ≡ div
∇u√

1 + |∇u|2
= −2H on Ω(1)

u = φ along ∂Ω,(2)

where H is a given nonzero number and φ is a smooth function on ∂Ω.
The graph of a solution u ∈ C2(Ω) ∩ C0(Ω) is a surface with constant
mean curvature H spanning the space curve given by the graph of φ. The
orientation of this graph is given by N = (∇u,−1)/

√
1 + |∇u|2, that is, N

points downward. From the physical viewpoint, a soap film in equilibrium
between two regions of different gas pressure — no gravity — is modeled
mathematically by a surface with nonzero constant mean curvature and this
constant H represents the pressure difference across the soap film.

The general result of existence of solutions for (1)-(2) is done by Serrin
in [Se] when Ω is a bounded convex domain:

Serrin’s Theorem. Let H > 0. Let Ω be a bounded smooth domain of R2

such that the curvature κ of ∂Ω with respect to the inner orientation satisfies
κ ≥ 2H. Then given a continuous function φ on ∂Ω, there exists a unique
solution of (1)-(2).

We mention that some results of existence with zero Dirichlet data on the
boundary of a bounded convex domain have been obtained in [Lo1, Lo2,
Lo3, LM, Mo, PP]. In the most part of them, known surfaces of constant
mean curvature, such as spherical caps or cylinders, are used as barriers for
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obtaining the C1 estimates in the Leray-Schauder approach. The reason is
due that these surfaces fit well with the convexity of the domain Ω.

A characteristic feature of the present article is the use of a family of ro-
tationally symmetric surfaces with constant mean curvature, exactly pieces
of nodoids, as barriers to make C0 and C1 estimates respectively. We use
these surfaces in a particular sense introduced by Finn [Fi2] in his studies
of capillary surfaces. See also the subsequent papers [Fi3, Fi4, Fi5].

When Ω is an infinite strip, Finn proved that the solvability of (1) in
Ω implies that the width w of the strip satisfies w ≤ 1/|H|. Finn [Fi1]
conjectured that the half-cylinder of radius 1/(2|H|) is the only graph with
constant mean curvature H in a strip of width 1/|H|. Wang [Wa] and
Collin [Co] independently showed that other different solutions exist, so
Finn’s conjecture is not true.

Recently, the present author has proved that if Ω is an unbounded convex
domain, the necessary and sufficient condition in order to have solutions of
(1) with zero boundary data is that Ω is included in a strip of width 1/|H|
[Lo2]. Finally, we mention that in the minimal case (H = 0), the study of
the Dirichlet problem, as well existence as uniqueness, has been extensively
studied in the literature.

The work is organized as follows. In Section 2 we state our main results.
Section 3 describes a family of nodoids and its main properties that will be
used in our proofs. In the remaining sections we show the theorems stated
in Section 2. Sections 4 and 5 are devoted to show results of existence on
unbounded domains included in strips of the plane, whereas Section 6 proves
an existence theorem for bounded domains.

With respect to the techniques employed, we refer to the books Courant
& Hilbert [CH] and Gilbarg & Trudinger [GT] for general guides of the
quasilinear elliptic equations theory and that we will use as references in
our proofs. In particular, we refer to the Perron’s method, C0 and C1

estimates and the Leray-Shauder theory.

2. Statement of results.

Consider Ω an infinite strip of width w given by

Ω = {(x, y) ∈ R2; 0 < y < w}.

Given a smooth function f : R → R, we associate the function φf defined
on ∂Ω by

φf (x, 0) = φf (x,w) = f(x).

A solution u of (1) with φf as boundary data is a graph on Ω spanning the
curve (with two components)

Γ(f) = {(x, 0, f(x));x ∈ R} ∪ {(x, w, f(x));x ∈ R}.
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Let Ω be a smooth domain in R2. Recall that Ω satisfies a uniform exterior
R-circle condition if at each point p ∈ ∂Ω, there exists a disc D depending
on p and with radius R, such that D ∩ Ω = p [GT]. This is equivalent
that the curvature of ∂Ω at p, measured with the outward orientation, is
smaller than 1/R. From the geometric viewpoint, the uniform exterior R-
circle condition means that a circle CR of radius R can ‘roll’ outside Ω along
∂Ω touching each point of ∂Ω along its displacement.

Let f be a smooth function defined on R. We say that f satisfies a uniform
exterior R-circle condition if the same holds for some one of the two domains
of R2 \ graph (f). By the smoothness of f , this condition means that f is
C2 uniformly bounded by a constant that depends on R.

We now establish two theorems for the solvability of the Dirichlet problem
(1)-(2). With the notations of Proposition 1 in Section 3 below, our first
result concerns to the existence of graphs on infinite strips:

Theorem 1. Let H > 0 and let f : R → R be a smooth function that
satisfies a uniform exterior ρR(H)-circle condition, 0 < R(H) < ∞. Let Ω
be a strip of width w = 2hR(H). Then there exists a solution of (1)-(2) with
φ = φf . Moreover u satisfies

f(x)− 1
2H

≤ u(x, y) ≤ f(x) +
1

2H
(x, y) ∈ Ω.(3)

The second theorem considers the case φ ≡ 0 in the boundary condition.

Theorem 2. Let H > 0 and let Ω be a domain that satisfies a uniform
exterior R(H)-circle condition, 0 < R(H) < ∞. If Ω is included in a strip
of width w < 2hR(H), then (1) has a unique solution with zero boundary
data.

Incidentally, Theorem 2 applies as well unbounded as bounded domains.
In particular, Ω can be a planar domain of finite type, as for example, an
annulus. In order to show the techniques employed, we shall distinguish both
cases. The preceding theorem can be extended to more general situations
in terms of the size of the domain Ω (see Theorem 4 in Section 6).

3. The 1-parameter family of nodoids.

Delaunay surfaces in Euclidean space are the surfaces of revolution that are
obtained by tracing a focus of a conic section which is rolled without slipping
along a line and revolving the resulting curve around that line. When the
conic is a ellipse, the surface is an unduloid and if the conic is a hyperbola,
the surface is a nodoid. Both families of surfaces are the only surfaces of
revolution and with nonzero constant mean curvature in Euclidean space
[De] (cylinders and spheres are critical cases of undulois). In addition,
for each mean curvature, a deformation allows to parametrize by a real
parameter all Delaunay surfaces with the same mean curvature. Exactly,
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if H is a fix number, the deformation starts with the cylinder of radius
1/(2|H|). Next, the surfaces transform into unduloids until that we come
to a stack of tangent spheres of radius 1/|H|. From here, the deformation
gives nodoids bigger and bigger.

Our interest lies in the role that nodoids play. In contrast to undu-
loids, nodoids have self-intersections. The key property that we shall use of
nodoids is the following. Fix H > 0. A nodoid with mean curvature H con-
tains a piece catenoid-shaped with mean curvature vector pointing outward
and that allows to use it as a barrier to compare with surfaces with the same
mean curvature. See Figure 1. In addition, in the uniparametric family of
nodois with mean curvature H, these pieces can be bigger and bigger in a
sense that it will be precised later.

Recall the construction of nodoids and some of their properties that we
will use later. Let γ(u) = (r(u), 0, u), u ∈ I, be a smooth curve defined on
an open interval I of real numbers including zero and r > 0. Applying a
rotational motion with respect to the z-axis on γ, we define the surface of
revolution

X(u, θ) = (r(u) cos θ, r(u) sin θ, u).

Choose the orientation N(u, θ) = (cos θ, sin θ,−r′)/
√

1 + r′2 and assume
that the mean curvature H is constant. Let us remark that 〈N(u, θ),X(u, θ)〉
> 0. The mean curvature is given by the nonlinear second order differential
equation

2H = − 1
r(1 + r′2)1/2

+
r′′

(1 + r′2)3/2
,(4)

where the principal curvatures are each one of the two summands. With the
chosen orientation, the mean curvature H is positive.

Multiplying in (4) by rr′, we derive a first integral of this equation: There
exists a constant c ∈ R such that

Hr2 = − r√
1 + r′2

+ c.(5)

(Useful bibliography on Delaunay surfaces is [Ee] and [Ka, Appendix A].)
Initial conditions on (5) make that the surface constructed by rotating γ is
an unduloid or a nodoid.

We focus in the latter case: There exist h, ρ > 0, where r : [−h, h] →
[−ρ, ρ] is an even function and the initial condition r(0) = t > 0 is the
minimum value of r. Moreover, r(h) = ρ and r′(h) = +∞.

Since r′(0) = 0, Ht2 + t = c. Then Hρ2 = c. From (5),

t =
−1 +

√
1 + 4Hc

2H
.(6)
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ρ =

√
Ht2 + t

H
=

√
c

H
.(7)

When convenient, we indicate the dependence of the parameter t by a sub-
script t and by (H) the dependence of H. Write N the nodoid obtained by
rotating γ and γ defined on the interval [−h, h].

Remark that ρt(H)− t(H) is increasing in t and

ρt(H)− t(H) =
1

2H

(
1− 1

2
√

Hc +
√

1 + 4Hc

)
→ 1

2H
,

as t → ∞. Change coordinates and let us view γ as a graph on the x-axis.
Then the surface is given by

X(x, θ) = (x cos θ, x sin θ, z(x)).

Now the mean curvature H is

Hx2 =
xz′√

1 + z′2
+ c,

and
z(t) = 0, z′(t) = +∞.

Therefore we have

ht(H) = z(ρ)− z(t) =
∫ ρ

t
z′(x)dx

=
∫ ρ

t

c−Hx2√
x2 − (c−Hx2)2

dx =
∫ ρ

t

H(ρ2 − x2)√
x2 −H2(ρ2 − x2)2

dx.

t

g
t

r
t

h
t

N
t

Figure 1. A uniparametric family of nodoids.
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With the preceding notations, we summarize these properties:

Proposition 1. Let H > 0. There exists a uniparametric family of nodoids
{Nt; t > 0} with constant mean curvature H given by the rotation of a curve
γt around the z-axis and with the following properties (see Figure 1):

(a) The curve γt is a graph on the interval (−ht, ht), and symmetric with
respect to the origin.

(b) The curve γt is defined in the interval [−ht, ht] and with horizontal
tangent at ±ht. Thus Nt is included in the slab St : |z| < ht and is
tangent to it.

(c) The mean curvature vector points outside the bounded domain Wt de-
termined by Nt and the slab St.

(d) The circle Ct of Nt with the smallest radius is given by x2 + y2 = t2,
z = 0.

(e) The function ht(H) is strictly increasing on t and

lim
t→0

ht(H) = 0 lim
t→∞

ht(H) =
1

2H
.

(f) The function ρt(H) is strictly increasing on t and

lim
t→0

ρt(H) = 0 lim
t→∞

ρt(H) = ∞ lim
t→∞

ρt(H)− t(H) =
1

2H
.

4. Proof of Theorem 1.

This section is devoted to the existence of (1)-(2), φ = φf , on an infinite
strip. Without loss of generality, let

Ω = {(x, y) ∈ R2; 0 < y < w}.
Firstly, we need a theorem of existence of minimal graphs on a strip. The
following result is a consequence of an existence theorem due to Nitsche [Ni]
and Jenkins and Serrin [JS] for bounded domains with piecewise smooth
convex boundary (see also [ER]).

Proposition 2. Let Ω be a strip and let f be a continuous function on ∂Ω.
Then there exists a solution ϕ of the Dirichlet problem

div
∇u√

1 + |∇u|2
= 0 on Ω

u = f along ∂Ω.

Proof. For each n ∈ Z and n > w, consider the points Pn = (n, 0), Qn =
(n, w), and the intervals In = {n} × (0, w). Construct an exhaustion Ωn ⊂
Ωn+1 of Ω, where Ωn is the rectangular domain bounded by the segments
I−n ∪ In ∪ (P−n, Pn) ∪ (Q−n, Qn). Since the line segments of its boundary
satisfy

length (I−n) + length (In) < length (P−n, Pn) + length (Q−n, Qn),
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the mentioned Nitsche-Jenkins-Serrin’s theorem shows the existence of a
sequence vn (resp. v′n) of solutions of the minimal surface equation on Ωn

assuming the value f along (P−n, Pn)∪(Q−n, Qn) and +∞ (resp. −∞) along
I−n ∪ In. Then vn (resp. v′n) is a decreasing (resp. increasing) sequence. If
C ⊂ Ω is a compact set and C ⊂ Ωm, then for n ≥ m, we have on C the
inequalities:

inf
C

v′m ≤ v′m ≤ v′n ≤ vn ≤ vm ≤ sup
C

vm.

A compactness theorem, together with a diagonal argument shows that vn

converges to a minimal solution ϕ on Ω. By comparing with Scherk’s surface,
we obtain ϕ = f along ∂Ω, as desired. �

Without loss of generality we assume that the domain of R2 \ graph (f)
that satisfies the uniform exterior ρR-circle condition lies above the graph
(f). Let NR be the nodoid of constant mean curvature H given by Propo-
sition 1 for the parameter t = R. This surface is bounded by two parallel,
coaxial circles of radii ρR, at distance w = 2hR apart.

First, assuming existence, we prove inequality (3). Let u be a solution
of (1)-(2) and let M be its graph. Place now NR above Ω and the graph
of f and so that the axis of NR is parallel to the y-axis, and the boundary
curves of NR are in the planes y = 0, y = w respectively. Place NR above
M so that NR ∩M = ∅. Move NR vertically downward until to touch the
first time with M . By the maximum principle and since M is a graph, the
first contact with M can not be at an interior point of M because the mean
curvature vector of NR points down (see Proposition 1 (c)). Therefore no
accident will occur before reaching Γ(f). This implies that the first point of
contact occurs when ∂NR touches Γ(f). See Figure 2.

Now one can move NR in the x-direction, so that ∂NR rolls along Γ(f),
with exactly one point of contact each time, and the axis of NR remains
parallel to the y-axis. Recall that the mean curvature vector of NR points
outside of WR (Proposition 1 (c)). Then the uniform exterior ρR-circle
condition of f and the maximum principle assure that in this displacement,
NR touches M only at boundary point of M and in each one of them. The
same argument holds if we consider NR below M and we ascend until to
contact with M , and rolling next. This concludes the proof of the estimate
(3).

We now begin with the proof of the part of existence in Theorem 1. The
proof is by means of the Perron process ([CH], pp. 306–312). The reader is
referred to [Lo2] for an example in the same context. For this, one needs to
assure that we can solve in the small; i.e., provided that for small enough
discs there exist solutions with arbitrary continuous boundary values.

Let v be a continuous function on Ω and let D denote a closed disc lying
in Ω. Let MD(v) denote the continuous function which coincides with v in
Ω \ D and which is a solution of the Dirichlet problem (1)-(2) in D with
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W

G(f)

Nr

Figure 2. Proof of Theorem 1.

φ = v|∂D. The existence of MD(v) is assured by Serrin’s theorem, since the
radius of D is less than 1/(2H).

The function v is said to be a sub-solution in Ω if

v ≤ MD(v)

for every closed disc D in Ω. Subsolutions have the following two properties:

Proposition 3. With the preceding notations and for every disc D in Ω,
we have:

1. MD is increasing.
2. If v is a subsolution, then MD(v) does.

Proof.
1. This is an immediate consequence of the maximum principle.
2. Let D′ be a disc in Ω. We have to prove that MD(v) ≤ MD′(MD(v))

for each subsolution v. It suffices to show the inequality

MD(v) ≤ MD′(MD(v))(8)

in D′. Since MD is increasing and v is a subsolution, we have v ≤
MD′(v) ≤ MD′(MD(v)). On D′ \ D, v = MD(v) and the inequality
(8) holds in D′ \D. On the other hand, MD(v) ≤ MD′(MD(v)) along
the boundary ∂(D ∩D′), and the maximum principle assures that the
same inequality holds in D′ ∩D, obtaining the desired inequality (8).
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Let ΩR be the region in Ω to which NR projects by vertical projection.
Let p ∈ ∂Ω, that is, p = (x0, ε), where ε = 0 or ε = w. Place NR so that the
one of the two points at lowest height (necessarily boundary points) project
on p. Consider the half part of NR that lies below the horizontal plane
containing its axis. We call N ∗

R this piece of NR. Then N ∗
R is a graph on

ΩR with mean curvature H and with the unit normal vector field pointing
downward. Put N ∗

R so that the point (p, f(x0)) belong to ∂N ∗
R. Denote

by νp the function on ΩR whose graph is N ∗
R and also denote Ωp = ΩR to

indicate the dependence of p. Finally, let ϕ be the minimal solution given
by Proposition 2.

Let Σ be the family of function νp with p ∈ ∂Ω. On the one hand, we
have E(νp) = −2H and f ≤ νp along ∂ΩR ∩ ∂Ω, on the other, E(ϕ) =
0 > −2H = E(νp). By the maximum principle, ϕ ≤ MD(ϕ) for each disc
in Ω and then, ϕ is a subsolution that satisfies ϕ ≤ νp, for each νp ∈ Σ.
Introduce the concept of subfunction relative to f . If v is a subsolution in
Ω and v ≤ f along ∂Ω, then v is said to be a subfunction relative to f . We
are going to prove that between the function νp of Σ and the subsolution ϕ,
there exists a solution of (1). Let Ff be the class of all subfunctions v such
that ϕ ≤ v ≤ νp in Ωp, for each p ∈ ∂Ω.

The functions of Ff are uniformly bounded in every compact set of Ω.
Since ϕ ∈ Ff , we can define for each (x, y) ∈ Ω,

u(x, y) = sup
v∈Ff

v(x, y).

By virtue of Proposition 3, the set Ff is stable by MD, i.e., if v ∈ Ff , then
MD(v) ∈ Ff . Thus

u = sup
v∈Ff

MD(v)(x, y).

Using the compactness principle and the maximum principle, it now follows
exactly as in [CH] that u is a solution of Equation (1).

Finally, a standard barrier argument may now be employed to prove that
u is continuous in Ω and assumes the boundary value φf at each point of
the boundary for which a barrier can be constructed. The fact that u is
continuous in Ω is a consequence of Harnack’s principle (see [Se]). In order
to show that u takes the value φ on ∂Ω we use the functions νp as local
barriers. Indeed, let p ∈ ∂Ω. Then the functions νp and ϕ are a modulus
of continuity in a neighbourhood of p. Since νp(p) = ϕ(p) = f(x), with
p = (x, ε), we obtain u(p) = f(x) and this completes the proof of Theorem 1.

Example 1. We illustrate Theorem 1 with an example. Let H = 1 and
f(x) = sinx. Then f satisfies a uniform exterior 1-circle condition. Here
ρR = 1 and by (6)-(7), R = (

√
5 − 1)/2. Then Theorem 1 assures the
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existence of a graph on a strip of width w = 2hR of constant mean curvature
H = 1 and spanning Γ(f). Here

hR =
∫ 1

R

1− x2√
x2 − (1− x2)2

dx ≈ 0.3196

and the width of the strip is ≈ 0.6392.

Remark 1. Theorem 1 is a generalization of the result derived by Collin in
[Co]. Collin proved the existence of solutions of (1)-(2) in a strip of width
1/|H| for the boundary value φf and f is a convex function. Indeed, if f
is a convex function, f satisfies a uniform exterior ρR-circle condition for
the critical case ρR = +∞. Then h∞ = 1/(2|H|) (Proposition 1 (e)) and
Theorem 1 assures the existence of a strip of width 2h∞ = 1/|H|.

Remark 2. Indeed the arguments described in the proof prove that Theo-
rem 1 holds for strips of width less than 2hR.

5. Proof of Theorem 2 for unbounded domains.

As we announced in Section 2, we make a difference in Theorem 2 between
the unbounded case and the bounded one. This section is devoted to the
first situation. More precisely, the following result holds:

Theorem 3. Let H > 0 and let Ω be an unbounded domain that satisfies a
uniform exterior R(H)-circle condition, 0 < R(H) < ∞. If Ω is included
in a strip of width w < 2hR(H), then (1) has a unique solution with zero
boundary data.

Proof. Consider Ω ⊂ {(x, y) ∈ R2; 0 < y < w}. Solutions of (1) with zero
boundary data are bounded [Me, Lemma 2.4]. Consider NR as in proof
of Theorem 1 and let u be a solution of (1)-(2) for φ ≡ 0. Without loss
of generality, we assume that u ≥ 0. The same argument that is done in
proving the height estimate holds now to find a constant C depending only
on ∂Ω, such that 0 ≤ u < C < hR (notice that the width w of the strip is
strictly less than 2hR).

Let us fix H. Consider the corresponding family of nodoids Nt. Let
r1 < R so that hr1 = C. Place Nr1 so that the axis of Nr1 is the z-axis.
ConsiderN r1 the piece ofNr1 obtained by rotation with respect to the z-axis
the curve γr1 defined in the interval [0, hr1 ] of the z-axis.

We move downN r1 a small vertical displacement such that the new radius
r of the circle intersection with the horizontal plane P : z = 0 satisfies
r1 < r < R (and then C < hr). Denote again by N r this part above the
plane P .

Denote Ωr the annulus in Ω to which N r projects by vertical projections.
The radii of Ωr are r and ρr, r < ρr, where the first circle lies in the plane P
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and the second one at height hr. Denote µ the function on Ωr whose graph
is N r.

Arguing as in the proof of Theorem 1, introduce the class of subfunctions
relative to the zero function. Now, we have the minimal solution ϕ = 0 on
Ω. Consider p ∈ ∂Ω and place N r such that the disk Dr defined by the
circle ∂N r ∩ P of radius r satisfies Dr ⊂ R2 \ Ω and Dr ∩ Ω = p. This is
possible because Ω satisfies a uniform exterior R-circle condition and r < R.
Denote µr = µp and Ωr = Ωp to indicate the dependence on p.

Let Σ be the family of functions µp with p ∈ ∂Ω. Then we have again
that 0 ≤ µp on Ωp ∩Ω. Now the steps to follow are analogous. Let F be the
class of all subfunctions v such that 0 ≤ v ≤ µp in Ωp ∩ Ω for each p ∈ ∂Ω.
Recall M lies above the plane P . This set is not empty since 0 ∈ F and

u(x, y) = sup
v∈F

v(x, y) = sup
v∈F

MD(v)(x, y)

is a solution of (1) in Ω and continuous up to Ω.
We use the functions µp and 0 in a neighbourhood of p for the modulus

of continuity. This occurs as follows: We ascend N r until does not touch
the graph M of u. Then we descend it. The maximum principle assures
the nonexistence of interior contact points between N r and M when N r

arrives to the plane P . See Figure 3. Let us remark that the height of M
is strictly less than C and C < hr, with hr the height of N r and that the
mean curvature vector of N r points down. Finally, we use the fact that
µp(p) = 0 = ϕ(p).

The uniqueness is a result obtained by Miklyukov [Mi], Hwang [Hw]
and Collin and Krust [CK] independently. This concludes the proof of
Theorem 3.

M

W

N
r

Figure 3. Proof of Theorem 3.
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Example 2. Let H = 0.1. Consider the functions f(x) = sin x and g(x) =
0.5+f(x). Let Ω be the domain of the (x, y)-plane bounded by the graphs of
f and g. Then Ω satisfies a uniform exterior 1-circle condition. Now (6)-(7)
imply R = 1 and ρ1 =

√
11. Here

h1 =
∫ √

11

1

0.1(11− x2)√
x2 − 0.01(11− x2)2

dx ≈ 1.3201.

Since Ω is included in a strip of width 2.5 < 2h1, Theorem 3 assures the
existence of a solution of (1)-(2) on Ω with H = 0.1 and φ = 0.

6. An existence theorem for bounded domains.

In this section, we shall prove the existence of graphs with constant mean
curvature on bounded planar domains provided that the height of the cor-
responding graph is small enough so that we can compare with pieces of
nodoids as in Theorems 1 and 3. Since the same argument applies for other
situations, we restate Theorem 2 in a more general version.

Theorem 4. Let H > 0 and let Ω be a bounded region that satisfies a
uniform exterior R-circle condition, 0 < R < ∞. In any of the following
cases, there exists a solution of (1) for zero boundary data:

1. The domain Ω is included in a strip of width 2hR.
2. The length L of ∂Ω satisfies LH < 2π

√
HhR(2−HhR).

3. The area a(Ω) of Ω satisfies

a(Ω) <
2πhR

H(1 + 2HhR)
.

4. The domain Ω is included in a circular disc of radius
√

(2−HhR)hR/H.

Proof. First we claim that any hypothesis in Theorem 4 implies that the
height of a solution u of (1)-(2), φ ≡ 0, is strictly less than hR. Call P the
plane z = 0. Without loss of generality, assume u ≥ 0 on Ω. Denote M the
graph of u. Recall that the orientation of M is that points downward. We
distinguish the four cases stated in Theorem 4.

1. Without loss of generality, assume that the strip S of width 2hR con-
taining Ω is S = {(x, y) ∈ R2; 0 < y < 2hR}. Let (p, u(p)) ∈ M
and consider the nodoids NR placed as in proof of Theorem 1, that is,
the axis of NR is parallel to the y-axis and such that the two coaxial
circles of its boundary project on ∂S. Also, place NR so that one of
the two endpoints of its axis projects on p. Maximum principle as in
Theorem 1 concludes that if NR rests on S along its boundary, the
graph M lies between P and NR. Thus we obtain the desired height
estimate.
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2. We use the same argument as in [LM, Corollary 4] using the Barbosa-
Do Carmo isoperimetric inequality. Then the area A of M satisfies
AH/(2π) < hR and together with the height bound of Theorem 1 in
[LM], we have u < hR.

3. Here we use the following height estimate of a graph given in [Lo3] in
terms of the area of Ω:

h ≤ a(Ω)H
2(π − a(Ω)H2)

.

4. We consider a halfsphere S of radius 1/H in z ≥ 0 whose boundary
lies in P and such that the center of the circle ∂S agrees with the one
of the circular disc that contains Ω. Then, translate S upward so S
is disjoint from M . By the maximum principle, one can translate S
downward until that ∂S arrives at P . This yields the desired height
estimate.

Assuming that the height of prospective solution of the Dirichlet problem
is less than hR, we study the existence of such graphs. The solvability of
the Dirichlet problem can be achieved using the continuity method. Fol-
lowing the usual Leray-Schauder approach (see e.g., [GT, Theorem 13.8]),
the Dirichlet problem is solvable if there is C1(Ω) a priori estimates for
prospective solutions of the Dirichlet problem.

The above reasoning shows the existence of C0 a priori estimates. It
remains to estimate |∇u| on Ω. Standard theory of quasilinear equations
assures that it suffices if we obtain a priori bounds of |∇u| along ∂Ω. This
means that we have to establish estimates of the slope of M along its bound-
ary ∂M = ∂Ω. These estimates will be accomplished with pieces of nodoids
as geometrical barrier surfaces and that essentially were done in the proof
of Theorem 2.

Following the notation used there, let N r be the nodoid of constant mean
curvature H. This surface is a graph on the annulus Ωr. Let Cr = ∂N r ∩P
one of the two components of ∂N r. Given p ∈ ∂Ω, place N r so that Cr∩Ω =
p, which is possible for the uniform exterior R-circle condition. Then we
displace up N r until does not touch M . Descend N r: Because the height
of M is less than hR and hr is the height of N r, the maximum principle
guarantees that the first point of contact between N r and M occurs when
N r arrives at the plane P (see Figure 3). In conclusion, the angle of M with
the plane P at p does not exceed the angle of N r at the same point. This
gives a uniform bound for the gradient of u along ∂Ω in terms of N r and
completes the proof. �

Remark 3. Convex domains satisfy the uniform exterior R-circle condition
for R = +∞. In this case, h∞ = 1/(2H) (Proposition 1 (e)). For this critical
value, the correspondent statements of Theorem 4 have been proved. They
are respectively:
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1. Ω is included in a strip of width 1/H [Lo2].
2. LH <

√
3π [LM].

3. a(Ω)H2 < π/2 [Lo3].
4. Ω included in a circular disc of radius

√
3/(2H) [Lo1].

Remark 4. The proof of Theorem 4 assures the existence of the Dirichlet
problem (1)-(2), φ ≡ 0, provided we have the uniform exterior R-circle
condition and some hypothesis that assures us the uniform bound hR for the
possible solutions. The above cases in Theorem 4 are examples of it.

Acknowledgements. The author would like to thank the referee for many
helpful comments and suggestions.
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