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We investigate the problem of the stability of the number
of conjugate or focal points (counted with multiplicity) along
a semi-Riemannian geodesic γ. For a Riemannian or a non-
spacelike Lorentzian geodesic, such number is equal to the in-
tersection number (Maslov index) of a continuous curve with
a subvariety of codimension one of the Lagrangian Grassman-
nian of a symplectic space. In the general semi-Riemannian
case, under a certain nondegeneracy assumption on the conju-
gate points, this number is equal to an algebraic count of their
multiplicities. In this paper we reprove some results that were
incorrectly stated by Helfer in 1994, where the occurrence of
degeneracies was overlooked; in particular, a counterexample
to one of Helfer’s results, which is essential for the theory, is
given. In the last part of the paper we discuss a general tech-
nique for the construction of examples and counterexamples
in the index theory for semi-Riemannian geodesics, in which
some new phenomena appear.

1. Introduction.

The original motivation for writing this paper was given by the following
problem. Given a sequence γj of geodesics in a semi-Riemannian manifold
(M, g) converging to a geodesic γ∞, what can be said about the convergence
of the conjugate index of γj to that of γ∞? The question arose in the con-
text of Lorentzian geometry, where the problem originated in an attempt to
develop a Morse theory for lightlike geodesics as a limit of the theory for
timelike geodesics (see [11]). Recall that the conjugate index of a geodesic
γ : [a, b] → M is the number of points that are conjugate to γ(a) along γ,
counted with multiplicity. Conjugate points along a geodesic correspond to
the zeroes of (nontrivial) Jacobi fields along γ, which are vector fields in the
kernel of the second variation of the action functional z 7→

∫ b
a g(z′, z′) dt,

called the index form Iγ . The celebrated Morse Index Theorem (see for in-
stance [2, 3, 6, 7, 9, 16, 17] for versions of this theorem in different contexts)
states that the conjugate index of a Riemannian or nonspacelike Lorentzian
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geodesic γ is equal to the index of Iγ , provided that the final point γ(b) is
not considered in the count of conjugate points. It is not too hard to prove
that the convergence of a sequence of geodesics to a geodesic implies the
norm convergence of the correspondent index forms, seen as bilinear forms
on the Hilbert space of H1 variational vector fields. Hence, the problem
of convergence of the conjugate index can be reformulated in terms of con-
vergence of the index on a sequence of self-adjoint operators converging in
the operator norm. It follows from the spectral theorem that the index of
a self-adjoint operator is indeed stable by small perturbations in the norm
topology, provided that the operator be invertible. If (M, g) is Riemannian,
i.e., g is positive definite, then the self-adjoint operator associated to the
index form along the limit geodesic γ∞ is indeed invertible, provided that
the point γ∞(b) is not conjugate to γ∞(a) along γ∞; thus, the Morse index
theorem and the stability of the index of an invertible self-adjoint operator
on a Hilbert space imply that the conjugate index of γj is eventually con-
stant, and equal to the conjugate index of γ∞. The same conclusion holds
for timelike Lorentzian geodesics, provided that the limit be also timelike.
When one considers the case of lightlike geodesics, though, the situation is
complicated by the fact that the index form always has a nontrivial kernel,
even when the final endpoint is nonconjugate to the initial one. Thus, using
functional-analytical arguments one only proves the semi-continuity of the
index for Lorentzian nonspacelike geodesics.

A different technique to study the stability of the index is suggested by
an analogy with the classical Sturm problem in the theory of ordinary differ-
ential equations. The Sturm oscillation theorem ([5, Chapter 8]) gives the
equality between the index of a certain symmetric bilinear form B and the
number of zeroes of a solution of the Sturm equation. Its proof is obtained
by showing that the two quantities involved in the thesis can be obtained as
the winding number of two homotopic closed curves in the real projective
line. As a side effect of this theory, one obtains immediately that, since the
winding number is stable by small C0-perturbations, the index of B is stable
by small perturbations. So, the stability of the index for a Sturm system is
proven by relating the index form B to some homotopical invariants of the
problem. In this paper we exploit this idea to obtain results on the stability
of the conjugate index for semi-Riemannian geodesics. More precisely, we
investigate the notion of Maslov index for a Jacobi type system of ordinary
differential equations, which is obtained as the intersection number between
a curve ` determined by the flow of the system and a subvariety of codimen-
sion one of the Lagrangian Grassmannian of a symplectic space. The zeroes
of the solutions of the Jacobi type system correspond to the intersections
of the curve ` with the subvariety; moreover, the Maslov index of the sys-
tem arising from the Jacobi equation along a Riemannian or a nonspacelike
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Lorentzian geodesic is proven to be equal to the conjugate index of the geo-
desic. In the general semi-Riemannian case, under a suitable nondegeneracy
assumption on the conjugate points, the Maslov index corresponding to a
geodesic is proven to be equal to an algebraic count of the conjugate points,
which we also call the conjugate index of the semi-Riemannian geodesic.

The idea of studying conjugate points in differential equations via inter-
section theory is not new. In [4] and [8] it is developed an approach to
the index problem through topological methods. For instance, in [8], it is
employed a similar technique to prove a generalization of Sturm’s Theorems
in the case of an arbitrary self-adjoint system of even order subject to ar-
bitrary self-adjoint boundary conditions. In [14], the author carries out a
similar analysis for Morse–Sturm–Liouville systems which are obtained from
the Jacobi equation along a semi-Riemannian geodesic. The intersection
theory employed is based on the notion of Maslov index of a curve which
is defined in [14] using homology/cohomology duality on the Lagrangian
Grassmannian. This approach does not seem to deal properly with the lack
of orientability of the Lagrangian Grassmannian (see [10]). Furthermore,
several results of Helfer’s paper are incorrectly stated, due mainly to the
lack of an essential assumption of nondegeneracy for the restrictions of cer-
tain symmetric bilinear forms. More precisely, in [14, Proposition 5.1 (b)]
it is claimed the equality between the Maslov index and the sum of the
signatures of the conjugate points along a semi-Riemannian geodesic; we
give a counterexample to such equality in Subsection 5.4. For these reasons,
we have opted to provide an alternative, self-contained, presentation of the
definition and some basic properties of the Maslov index. It is important to
observe that the kind of degeneracy discussed above, which do not occur in
Riemannian or nonspacelike Lorentzian geodesics, is responsible for many of
the new phenomena which arise in the general semi-Riemannian case, like
for instance, the possibility of accumulation of the conjugate points along
a geodesic. Curiously enough, also in the book by O’Neill [15, Exercise 8,
page 299], the nondegeneracy assumption is missing, and the author claims
incorrectly that the set of focal points along a geodesic is discrete.

The paper is organized as follows. In Section 2 we introduce the basic
notation and we discuss some preliminary facts. Section 3 is devoted to the
intersection theory used for the definition and the properties of the Maslov
index. We remark that the geometry of the Lagrangian Grassmannian has
already been studied by several authors (see for instance [1, 13, 18]). The
techniques of computation of the Maslov index in terms of change of signa-
tures of symmetric bilinear forms presented in Section 3 are very practical
for our purposes of relating the Maslov index and the conjugate index of a
geodesic (see Theorem 4.3 and the following corollary).



378 F. MERCURI, P. PICCIONE, AND D.V. TAUSK

In Section 4 we apply the results of the previous sections to the problem
of the stability of the conjugate and focal indexes in semi-Riemannian ge-
ometry. A special attention is given to the case of the approximation of a
lightlike geodesic by timelike geodesics in a Lorentzian manifold. If γ∞ is
a lightlike geodesic in a Lorentzian manifold whose endpoints are not con-
jugate and γj is a sequence of timelike geodesics converging to γ∞, then
the conjugate index of γj is eventually constant and equal to the conjugate
index of γ∞. We also study the problem of stability in the case of geodesics
γj starting orthogonally to submanifolds Pj , assuming a suitable notion of
convergence for the initial data. It is a curious fact that, even in the Rie-
mannian case, stability does not hold under the most general natural notion
of convergence of the initial data (see Example 4.9).

In Section 5, we study the problem of determining which curves of La-
grangians are associated to solutions of Jacobi systems. We give some neces-
sary and sufficient conditions for this occurrence, and we use these conditions
to find an example in which the equality between the Maslov index and the
conjugate index of a Lorentzian spacelike geodesic γ fails, due to the degen-
eracy of the metric on the space J[t] consisting of the evaluations at t of the
Jacobi fields along γ that vanish at the initial instant.

2. Preliminaries.

Given vector spaces V , W , we denote by Lin(V,W ) the space of linear
maps from V to W ; all vector spaces will be assumed to be real and finite-
dimensional. We also denote by Bil(V,W ) the space of bilinear forms B :
V × W → R; when V = W we write simply Lin(V ) and Bil(V ). We will
always implicitly identify a bilinear map B : V ×W → R with the linear map
from V to the dual space W ∗ given by v 7→ B(v, ·). The space of symmetric
bilinear forms B : V × V → R will be denoted by Bilsym(V ); observe that
B ∈ Bil(V ) ∼= Lin(V, V ∗) is symmetric if and only if the transpose linear
map B∗ : V ∗∗ ∼= V → V ∗ is equal to B. If S is a subspace of V then we
denote by So ⊂ V ∗ the annihilator of S in V . Whenever B ∈ Bilsym(V )
is fixed by the context, we denote by S⊥ = B−1(So) ⊂ V the orthogonal
complement of S with respect to B. The index of a symmetric bilinear
form B ∈ Bilsym(V ), denoted by n−(B), is defined as the maximum of the
dimensions of the subspaces of V on which B is negative definite; the coindex
of B, denoted by n+(B), is defined by n+(B) = n−(−B) and the signature
of B is defined by sgn(B) = n+(B)− n−(B). The kernel of B, denoted by
Ker(B), is the set V ⊥ of vectors v ∈ V such that B(v, w) = 0 for all w ∈ V ;
when Ker(B) = {0} we say that B is nondegenerate.

2.1. The geometrical problem. Let (M, g) be a semi-Riemannian man-
ifold, i.e., M is a finite dimensional real differentiable manifold and g is a
smooth nondegenerate metric tensor onM. We set n = dim(M). A nonzero
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vector v ∈ TM is called spacelike, timelike or lightlike according to g(v, v)
being positive, negative or null. The semi-Riemannian manifold (M, g) is
said to be Lorentzian if the index of g at every point of M is equal to 1. Let
∇ denote the Levi-Civita connection of g and letR denote the curvature ten-
sor of ∇ chosen with sign convention R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].
If V : [a, b] → TM is a vector field along a given curve γ : [a, b] → M, we
will write V ′ for the covariant derivative of V along γ. Let P be a smooth
submanifold of M, p ∈ P and n ∈ TpP⊥; by ⊥ we mean the orthogonal com-
plement with respect to g. The second fundamental form of P at p in the
normal direction n is the symmetric bilinear form Sn ∈ Bilsym(TpP) given by
Sn(v1, v2) = g(∇v1V2, n), where V2 is any extension of v2 to a vector field on
P. If P is nondegenerate at p, i.e., if the restriction of g to TpP is nondegen-
erate, then there exists a unique linear endomorphism An of TpP such that
Sn(v1, v2) = g

(
An(v1), v2

)
for all v1, v2 ∈ TpP. Let γ : [a, b] →M be a geo-

desic orthogonal to P at the initial point, i.e., γ(a) ∈ P and γ′(a) ∈ Tγ(a)P⊥.
We say that γ is spacelike, timelike or lightlike according to γ′(t) being space-
like, timelike or lightlike for all t. Let’s assume that P is nondegenerate at
γ(a); we will say that the family of objects (M, g, γ,P) is an admissible
quadruple for the geometrical problem.

A Jacobi field along γ is a smooth vector field J along γ that satisfies
the Jacobi equation:

J ′′(t) = R
(
γ′(t),J (t)

)
γ′(t).(2.1)

We say that J is a P-Jacobi field if, in addition, J (a) satisfies:

J (a) ∈ Tγ(a)P and J ′(a) + Aγ′(a)

(
J (a)

)
∈ Tγ′(a)P⊥.(2.2)

If P is a single point of M, then (2.2) reduces to J (a) = 0. Geometrically,
Equation (2.1) means that J is the variational vector field corresponding to
a variation of γ by geodesics; condition (2.2) says that these geodesics are
orthogonal to P at their initial points. We set:

J =
{
J : J is a P-Jacobi field along γ

}
, J[t] =

{
J (t) : J ∈ J

}
.

Observe that J is an n-dimensional subspace of the space of all vector fields
along γ because the pairs

(
J (a),J ′(a)

)
∈ Tγ(a)M⊕Tγ(a)M satisfying (2.2)

form an n-dimensional subspace. A point γ(t), t ∈ ]a, b] is said to be P-focal
along γ if there exists a nonzero J ∈ J with J (t) = 0; the multiplicity
of γ(t), denoted by mul(t), is defined to be the dimension of the space of
those J ∈ J with J (t) = 0. If γ(t) is not P-focal we set mul(t) = 0. Since
dim(J) = dim(Tγ(t)M) = n, then:

mul(t) = codim
(
J[t]

)
= dim

(
J[t]⊥

)
.(2.3)

When P reduces to a point then the P-focal points are also called conjugate
points.
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Definition 2.1. The signature of a P-focal point γ(t), denoted by sgn(t),
is defined to be the signature of the restriction of the metric g to the space
J[t]⊥; if γ(t) is not a P-focal point, we set sgn(t) = 0. A P-focal point
γ(t) is called nondegenerate if the restriction of g to J[t] (or, equivalently,
the restriction of g to J[t]⊥) is nondegenerate. The focal index of the geo-
desic γ relative to P is defined by ifoc(γ,P) =

∑
t∈]a,b] sgn(t), provided that

the number of P-focal points along γ is finite (see Proposition 2.2 and Re-
mark 2.3). When the submanifold P reduces to a point, the focal index is
also called the conjugate index.

If g is Riemannian or if g is Lorentzian and γ is nonspacelike then g is
positive definite on J[t]⊥ for all t ∈ ]a, b], so that all P-focal points are
nondegenerate and, by (2.3), the signature of a P-focal point is equal to its
multiplicity.

2.2. The differential problem. We consider the following setup. Let g be
a nondegenerate symmetric bilinear form in Rn and let R : [a, b] → Lin(Rn)
be a continuous curve of linear endomorphisms of Rn such that R(t) is g-
symmetric for all t, i.e., g

(
R(t)·, ·

)
is a symmetric bilinear form on Rn. Let

P ⊂ Rn be a subspace on which g is nondegenerate and let S ∈ Bilsym(P )
be a symmetric bilinear form on P . We will say that (g,R, P, S) is an
admissible quadruple for the differential problem in Rn. We consider the
linear differential equation in Rn:

J ′′(t) = R(t)J(t), t ∈ [a, b];(2.4)

we will consider solutions J of (2.4) that satisfy in addition the following
initial conditions:

J(a) ∈ P, g
(
J ′(a)

)
|P + S

(
J(a)

)
= 0 ∈ P ∗,(2.5)

where as usual we identify bilinear forms with linear maps taking values in
the dual space. A solution J of (2.4) satisfying the initial conditions (2.5)
will be called a (P, S)-solution. Note that, if P = {0} (and thus S = 0), a
(P, S)-solution is simply a solution of (2.4) vanishing at t = a. Let J denote
the space of all (P, S)-solutions:

J =
{
J : J satisfies (2.4) and (2.5)

}
;(2.6)

for t ∈ [a, b], we set J[t] =
{
J(t) : J ∈ J

}
. Observe that dim(J) = n because

the pairs
(
J(a), J ′(a)

)
∈ Rn ⊕ Rn satisfying (2.5) form an n-dimensional

subspace. We say that an instant t ∈ ]a, b] is (P, S)-focal if there exists a
nonzero J ∈ J with J(t) = 0; the dimension of the space of those J ∈ J
with J(t) = 0 is called the multiplicity of t and is denoted by mul(t). We
have mul(t) = codim

(
J[t]

)
= dim

(
J[t]⊥

)
, where ⊥ denotes the orthogonal

complement with respect to g. If P = {0} then the (P, S)-focal instants
are also called conjugate instants. The signature of a (P, S)-focal instant
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t ∈ ]a, b], denoted by sgn(t), is defined to be the signature of the restriction
of g to the space J[t]⊥; the (P, S)-focal instant t is called nondegenerate if
the restriction of g to J[t] is nondegenerate. If the number of (P, S)-focal
instants is finite we also define the focal index of the quadruple (g,R, P, S)
by ifoc(g,R, P, S) =

∑
t∈]a,b] sgn(t). If P = {0} then the focal index is also

called the conjugate index.
Let (M, g, γ,P) be an admissible quadruple for the geometrical problem

and denote by n the dimension of M. Consider a parallel referential along γ;
such referential induces an isomorphism φt : Tγ(t)M→ Rn for all t ∈ [a, b].
Let g be the nondegenerate symmetric bilinear form on Rn which equals the
push-forward of gγ(t) by φt; observe that, since g is parallel, g is independent
of t. For each t ∈ [a, b], let R(t) denote the g-symmetric linear endomorphism
of Rn such that φ−1

t ◦R(t)◦φt equals the linear endomorphismR
(
γ′(t), ·

)
γ′(t)

of Tγ(t)M. Set P = φa(Tγ(a)P) and let S : P × P → R be the push-forward
of the second fundamental form Sγ′(a) : Tγ(a)P × Tγ(a)P → R by φa. Then
(g,R, P, S) is an admissible quadruple for the differential problem in Rn; we
say that (g,R, P, S) is obtained from (M, g, γ,P) by a parallel trivialization
of the tangent bundle along γ. Obviously, the P-focal points along γ corre-
spond to the (P, S)-focal instants of (g,R, P, S); moreover, the multiplicity,
signature and degeneracy of a P-focal point along γ are equal respectively to
the multiplicity, signature and degeneracy of the corresponding (P, S)-focal
instant. In particular, the quadruples (M, g, γ,P) and (g,R, P, S) have the
same focal indexes.

2.3. On the discreteness of the set of focal instants. We now give
some sufficient conditions for the number of focal points along a semi-
Riemannian geodesic to be finite. We state our main results in terms of
differential problems. Let (g,R, P, S) be an admissible quadruple for the
differential problem. A simple computation using the g-symmetry of R
shows that:

g
(
J ′1(t), J2(t)

)
− g

(
J1(t), J ′2(t)

)
≡ constant,(2.7)

for all solutions J1, J2 of (2.4). The initial conditions (2.5) imply that the
left-hand side of (2.7) vanish at t = a; hence:

g
(
J ′1(t), J2(t)

)
= g

(
J1(t), J ′2(t)

)
, t ∈ [a, b],(2.8)

for all J1, J2 ∈ J. Observe that (2.8) and a dimension counting argument
show that:

J[t]⊥ =
{
J ′(t) : J ∈ J, J(t) = 0

}
, t ∈ [a, b].(2.9)

Proposition 2.2. If (g,R, P, S) is an admissible quadruple for the differen-
tial problem then the nondegenerate (P, S)-focal instants are isolated. More-
over, there are no (P, S)-focal instants near t = a.
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Proof. Let t0 ∈ ]a, b] be a nondegenerate (P, S)-focal instant or let t0 = a.
Since J[a] = P is nondegenerate for g, we have that, in any case, J[t0] is
nondegenerate for g. Denote by et : J → Rn the evaluation map et(J) =
J(t). Choose a basis (Ji)n

i=1 for J such that (Ji)k
i=1 is a basis for the kernel

of et0 ; then
(
Ji(t0)

)n

i=k+1
is a basis for J[t0]. Observe that an instant t ∈

]a, b] is (P, S)-focal if and only if et is not invertible, i.e., if and only if the
determinant det

(
Ji(t)

)n

i=1
is zero. Since a solution J of (2.4) is uniquely

determined by the values of J(t0) and J ′(t0), equality (2.9) implies that the
map J 7→ J ′(t0) takes the kernel of et0 isomorphically onto J[t0]⊥. Thus(
J ′i(t0)

)k

i=1
is a basis for J[t0]⊥. For i = 1, . . . , k, define J̃i : [a, b] → Rn by

setting J̃i(t) = 1
t−t0

Ji(t) if t 6= t0 and J̃i(t0) = J ′i(t0); since Ji is of class C2

and Ji(t0) = 0, it follows that J̃i is of class C1. For i = k + 1, . . . , n we set
J̃i = Ji and then

(
J̃i(t0)

)n

i=1
is a basis for Rn, because the nondegeneracy

of g on J[t0] implies Rn = J[t0] ⊕ J[t0]⊥. It follows that det
(
Ji(t)

)n

i=1
=

(t− t0)k det
(
J̃i(t)

)n

i=1
is nonzero for t 6= t0 near t0. �

Remark 2.3. It is clear from the proof of Proposition 2.2 that the number
of focal instants of a quadruple (g,R, P, S) with R real-analytic (or, similarly,
the number of focal points corresponding to a quadruple (M, g, γ,P) with
(M, g) real-analytic) is finite.

3. The Lagrangian Grassmannian and the Maslov index.

Let (V, ω) be a symplectic space, i.e., V is a finite-dimensional real vector
space and ω is a symplectic form on V , i.e., a skew-symmetric nondegenerate
symmetric bilinear form on V . A linear map T : V → V ′ between symplectic
spaces (V, ω), (V ′, ω′) is called a symplectomorphism if T is an isomorphism
and ω is the pull-back of ω′ by T . The set of all symplectomorphisms of (V, ω)
is a closed Lie subgroup of the general linear group of V and we will denote
it by Sp(V, ω). The Lie algebra of Sp(V, ω), denoted by sp(V, ω), consists
of all linear endomorphisms X : V → V such that ω(X·, ·) is a symmetric
bilinear form on V . A symplectic space is necessarily even dimensional; we
set dim(V ) = 2n. By a symplectic basis for V we mean a basis (bi)2n

i=1 of V
with ω(bi, bn+i) = −ω(bn+i, bi) = 1, i = 1, . . . , n and ω(bi, bj) = 0 otherwise.
Every symplectic space admits a symplectic basis; in other words, every 2n-
dimensional symplectic space is symplectomorphic to the space Rn ⊕ Rn∗

endowed with its canonical symplectic form:

ω
(
(v1, α1), (v2, α2)

)
= α2(v1)− α1(v2), v1, v2 ∈ Rn, α1, α2 ∈ Rn∗.(3.1)

The symplectic group of Rn ⊕ Rn∗ endowed with the symplectic form (3.1)
will be denoted by Sp(2n, R); its Lie algebra will be denoted by sp(2n, R). If
(bi)2n

i=1 is a symplectic basis for V and if a linear endomorphism J : V → V
is defined by J(bi) = bn+i, J(bn+i) = −bi, i = 1, . . . , n then J is a complex
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structure for V and the bilinear form ω(·, J ·) is a positive definite inner prod-
uct for V ; we say that J is compatible with ω. Observe that J is a symplec-
tomorphism of V . If we identify the complex vector space (V, J) with Cn by
means of the complex basis (bi)n

i=1 then the symplectic form ω corresponds to
minus the imaginary part of the canonical Hermitian product of Cn. We will
call the latter the canonical symplectic form of the space Cn. Observe that
the unitary group is contained in the symplectic group. A subspace S ⊂ V
is called isotropic if ω vanishes on S; an n-dimensional isotropic subspace
of V is called a Lagrangian subspace. We are interested in studying the La-
grangian Grassmannian of (V, ω), i.e., the set Λ = Λ(V, ω) of all Lagrangian
subspaces of V . Obviously, symplectomorphisms map Lagrangian subspaces
to Lagrangian subspaces, and therefore we get an action of Sp(V, ω) on Λ;
for every T ∈ Sp(V, ω) we will still denote by T the corresponding map
T : Λ → Λ. If Cn is endowed with its canonical symplectic form then a sub-
space L ⊂ Cn is Lagrangian if and only if it is a real form (i.e., Cn = L⊕ iL)
on which the canonical Hermitian product is real. It follows that the unitary
group U(n) acts transitively in the Lagrangian Grassmannian of Cn. The
isotropy subgroup of the Lagrangian subspace Rn ⊂ Cn is the orthogonal
group O(n) ⊂ U(n); in particular, the Lagrangian Grassmannian of Cn (and
thus of any other 2n-dimensional symplectic space) is diffeomorphic to the
homogeneous space U(n)/O(n). Hence Λ has the structure of a compact,
connected, real-analytic 1

2n(n+1)-dimensional manifold (it is indeed an em-
bedded submanifold of the Grassmannian of all n-dimensional subspaces of
V ).

If J : V → V is a complex structure compatible with ω and L ⊂ V is
a Lagrangian subspace then J(L) is also Lagrangian and V = L ⊕ J(L).
A pair of Lagrangians (L0, L1) with V = L0 ⊕ L1 is called a Lagrangian
decomposition for V . If (L0, L1) is a Lagrangian decomposition for V then
the symplectic form ω induces a natural isomorphism between L1 and the
dual space of L0. Namely, we define ρL0,L1 : L1 → L∗0 by ρL0,L1(v) =
ω(v, ·)|L0 , for all v ∈ L1. The anti-symmetry of ω implies that ρL0,L1 =
−ρ∗L1,L0

.

Remark 3.1. Observe that if (bi)n
i=1 is an arbitrary basis for L0 and

(bi)2n
i=n+1 is the basis of L1 which is mapped by ρL0,L1 to the dual basis

of (bi)n
i=1 then (bi)2n

i=1 is a symplectic basis of V . From this observation it
follows that if (L0, L1) and (L′0, L

′
1) are Lagrangian decompositions then ev-

ery isomorphism from L0 to L′0 extends (uniquely) to a symplectomorphism
of V that carries L1 to L′1.
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Given a Lagrangian subspace L0 ⊂ V , we consider the following subsets
of Λ:

Λk(L0) =
{
L ∈ Λ : dim(L ∩ L0) = k

}
, k = 0, 1, . . . , n;

Λ≥k(L0) =
n⋃

j=k

Λj(L0), Λ≤k(L0) =
k⋃

j=0

Λj(L0).

For T ∈ Sp(V, ω), we have that T (L0) is in Λ≤k(L0) if and only if the linear
map L0 3 v 7→ T (v) + L0 ∈ V/L0 has rank greater than or equal to n − k;
since this last condition is open, the set Λ≤k(L0) (and in particular the set
Λ0(L0)) is open in Λ. Obviously the set Λ≥k(L0) is closed in Λ and therefore
Λk(L0) = Λ≥k(L0)∩Λ≤k(L0) is locally closed, i.e., it is an open subset of its
closure. This observation is used below to show that Λk(L0) is an embedded
submanifold of Λ. We first need the following:

Lemma 3.2. Given Lagrangian subspaces L0, L1, L
′
0, L

′
1 ⊂ V with dim(L0∩

L1) = dim(L′0∩L′1), there exists T ∈ Sp(V, ω) with T (L0) = L′0 and T (L1) =
L′1.

Proof. By Remark 3.1 we may assume that L0 = L′0 and that L0 ∩ L1 =
L′0 ∩ L1 = S. If S⊥ denotes the ω-orthogonal complement of the isotropic
space S then S⊥/S has a natural symplectic structure induced by ω and
(L0/S, L1/S), (L0/S, L′1/S) are both Lagrangian decompositions of S⊥/S.
Again by Remark 3.1 we can find a symplectomorphism T of S⊥/S which is
the identity on L0/S and such that T (L1/S) = L′1/S. Using a complemen-
tary Lagrangian to L0 in V it is easy to construct a symplectomorphism T
of V that is the identity on L0 and that induces T on the quotient S⊥/S.
Obviously T (L1) = L′1. �

Corollary 3.3. The set Λk(L0) is a locally closed orbit in Λ of the Lie group
Sp(V, ω, L0) of symplectomorphisms of V that preserve L0. In particular,
Λk(L0) is an embedded submanifold of Λ.

Proof. Lemma 3.2 implies that Λk(L0) is an orbit of Sp(V, ω, L0) and a
locally closed orbit of a Lie group is an embedded submanifold (see [19,
Theorem 2.9.7]). �

Let us now describe an explicit differentiable atlas for Λ. Let (L0, L1)
be a Lagrangian decomposition for V ; we define a map φL0,L1 : Λ0(L1) −→
Bilsym(L0) by setting φL0,L1(L)(v, w) = ω(Zv,w), for all L ∈ Λ0(L1) and all
v, w ∈ L0, where Z : L0 → L1 is the unique linear map whose graph in V =
L0⊕L1 equals L. By identifying Bilsym(L0) with a subspace of Lin(L0, L

∗
0),

we have φL0,L1(L) = ρL0,L1 ◦ Z. The map φL0,L1 is a diffeomorphism onto
Bilsym(L0), i.e., a chart on the manifold Λ. If (L0, L1) and (L0, L

′
1) are

Lagrangian decompositions for V then an explicit computation of the tran-
sition map from φL0,L1 to φL0,L′1

shows that dφL0,L1(L0) = dφL0,L′1
(L0), i.e.,
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the differential dφL0,L1(L0) : TL0Λ → Bilsym(L0) does not depend on the
choice of L1. We shall henceforth identify the tangent space TLΛ with the
space Bilsym(L) by means of the isomorphism obtained by the differential of
a chart of the form φL,L1 . If ` : I → Λ is a curve of class C1 defined in an
interval I then the derivative `′(t0) ∈ Bilsym

(
`(t0)

)
, t0 ∈ I, can be computed

as follows; choose v, w ∈ `(t0) and a map v : (t0 − ε, t0 + ε) → V of class
C1 with v(t0) = v and v(t) ∈ `(t) for all t. Then `′(t0)(v, w) = ω

(
v′(t0), w

)
.

Using this formula one can easily prove the following:

Lemma 3.4. Given a Lagrangian L0 ∈ Λ, denote by βL0 : Sp(V, ω) → Λ
the evaluation map βL0(T ) = T (L0), T ∈ Sp(V, ω); its differential is given
by:

dβL0(T ) · (XT ) = ω(X·, ·)|T (L0) ∈ Bilsym

(
T (L0)

)
,(3.2)

for all X ∈ sp(V, ω). If T ∈ Sp(V, ω) is a symplectomorphism then the
differential of the induced diffeomorphism T : Λ → Λ is given by:

dT (L) ·B = B(T−1·, T−1·)|T (L) ∈ Bilsym

(
T (L)

)
,

for all L ∈ Λ, B ∈ Bilsym(L). Given a Lagrangian decomposition (L0, L1)
then the differential of the chart φL0,L1 at a point L ∈ Λ0(L1) is given by:

dφL0,L1(L) ·B = B(η·, η·)|L0 ∈ Bilsym(L0), B ∈ Bilsym(L),(3.3)

where the isomorphism η : L0 → L is the restriction to L0 of the projection
onto L relative to the decomposition V = L⊕ L1. �

Using Formula (3.2) it is easy to compute the tangent space of the mani-
fold Λk(L0) at a point L ∈ Λk(L0). Namely, if sp(V, ω, L0) denotes the Lie
algebra of Sp(V, ω, L0) then Corollary 3.3 implies that the tangent space
TLΛk(L0) is equal to the image of sp(V, ω, L0) by dβL(Id); keeping in mind
that sp(V, ω, L0) consists of those linear endomorphisms X : V → V such
that ω(X·, ·) is a symmetric bilinear form on V vanishing on L0, we obtain
from (3.2) that TLΛk(L0) equals the space of bilinear forms B ∈ Bilsym(L)
that vanish on L ∩ L0. Thus, the restriction map B 7→ B|L∩L0 induces
an isomorphism between the quotient TLΛ/TLΛk(L0) and Bilsym(L ∩ L0);
in particular, Λk(L0) has codimension 1

2k(k + 1) in Λ and Λ1(L0) is a hy-
persurface on Λ. Such hypersurface has a canonical transverse orientation
which is defined by declaring a vector B ∈ TLΛ, B 6∈ TLΛ1(L0), positively
oriented if the nonzero symmetric bilinear form B|L∩L0 on the line L ∩ L0

is positive definite.

Remark 3.5. If
{
Lj : j = 1, 2, . . .

}
is a countable subset of Λ then we can

find a Lagrangian L ∈ Λ with L ∩ Lj = {0} for all j. Namely, we have
shown above that Λk(Lj) is a submanifold of Λ of positive codimension for
k = 1, . . . , n; hence, the union

⋃+∞
j=1

⋃n
k=1 Λk(Lj) has null measure in Λ.
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Let L ∈ Λ in the domain of φL0,L1 be fixed and set β = φL0,L1(L) ∈
Bilsym(L0). Then:

L0 ∩ L = Ker(β);(3.4)

then L ∈ Λk(L0) iff the kernel of β has dimension equal to k and in particular
L ∈ Λ≥1(L0) iff β is degenerate. Assume now that ` : I ⊂ R → Λ is a curve
of class C1 in Λ with image in the domain of φL0,L1 ; set β = φL0,L1 ◦ `.
Using Formula (3.3) and keeping in mind that the isomorphism η in (3.3) is
the identity on L0 ∩ L we conclude that:

`′(t0)|`(t0)∩L0
= β′(t0)|Ker(β(t0)),(3.5)

for all t0 ∈ I. We are now going to define the Maslov index of a curve of
Lagrangians. We start by recalling from [1] that the fundamental group of
the Lagrangian Grassmannian is infinite cyclic. More explicitly, we have
Λ ∼= U(n)/O(n); the square of the determinant map induces a fibration
det2 : U(n)/O(n) → S1. The long exact homotopy sequence of such fibra-
tion shows that the map det2 induces an isomorphism between fundamental
groups; then, by Hurewicz theorem, π1(Λ) ∼= H1(Λ) ∼= Z. Let L0 ∈ Λ be
fixed. The open set Λ0(L0) ⊂ Λ is contractible (because it is diffeomorphic
to a vector space) and therefore the inclusion of (Λ, ∅) in

(
Λ,Λ0(L0)

)
induces

an isomorphism in singular homology. So we have an isomorphism:

µL0 : H1

(
Λ,Λ0(L0)

) ∼=−−→ Z.(3.6)

The Maslov index (relative to L0) of a continuous curve ` : [a, b] → Λ with
endpoints in Λ0(L0) is defined as the integer number corresponding to the
homology class determined by ` in H1

(
Λ,Λ0(L0)

)
via the isomorphism (3.6).

We denote the Maslov index of ` by µL0(`). Obviously the Maslov index
is additive by concatenation and invariant by homotopies of curves with
endpoints in Λ0(L0). Actually, in order to complete the definition of Maslov
index we have to choose a sign for the isomorphism (3.6) (Lemma 3.8 below).

Lemma 3.6. Let (L0, L1) be a Lagrangian decomposition for V and let
`1, `2 : [a, b] → Λ be continuous curves with endpoints in Λ0(L0) and image
contained in the domain of the chart φL0,L1; set βi = φL0,L1 ◦ `i : [a, b] →
Bilsym(L0), i = 1, 2. If n+

(
β1(a)

)
= n+

(
β2(a)

)
and n+

(
β1(b)

)
= n+

(
β2(b)

)
then the curves `1 and `2 are homologous in H1

(
Λ,Λ0(L0)

)
.

Proof. Since the set of nondegenerate symmetric bilinear forms on L0 with
a fixed coindex is connected, we can find a homotopy from β1 to β2 through
curves in Bilsym(L0) whose endpoints are nondegenerate symmetric bilinear
forms. Such homotopy lifts via φL0,L1 to a homotopy from `1 to `2 through
curves with endpoints in Λ0(L0) (recall (3.4)). �

Lemma 3.7. Let β : [t0, t1[ → Bilsym(Rn) be a C1 curve such that the
restriction of β′(t0) to the kernel of β(t0) is nondegenerate. Then, for ε > 0
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sufficiently small, the bilinear form β(t0+ε) is nondegenerate and its coindex
is given by:

n+

(
β(t0 + ε)

)
= n+(β(t0)

)
+ n+

(
β′(t0)|Ker(β(t0))

)
.

Thus, if β is of class C1 in a neighborhood of t0 then β(t) is nondegenerate
for t 6= t0 sufficiently near t0 and:

n+

(
β(t0 + ε)

)
− n+

(
β(t0 − ε)

)
= sgn

(
β′(t0)|Ker(β(t0))

)
,

for ε > 0 sufficiently small.

Proof. See [12, Proposition 2.5]. �

The lemma below gives a canonical sign for the isomorphism (3.6).

Lemma 3.8. Let ` : [a, b] → Λ be a curve of class C1 such that:
(a) `(t) ∈ Λ≥1(L0) at a unique instant t = t0 ∈ ]a, b[;
(b) `(t0) ∈ Λ1(L0);
(c) `′(t0) is positively oriented in T`(t0)Λ/T`(t0)Λ1(L0).

Then ` defines a generator of H1

(
Λ,Λ0(L0)

)
. Moreover, any two curves of

class C1 in Λ satisfying conditions (a), (b), (c) are homologous in H1

(
Λ,

Λ0(L0)
)
.

Proof. Recalling that det2 : Λ ∼= U(n)/O(n) → S1 induces an isomorphism
between fundamental groups it is easy to exhibit a generator of the funda-
mental group of Λ (and hence of H1

(
Λ,Λ0(L0)

)
) that satisfies (a), (b) and

(c). We now have to show that if `1, `2 : [t0 − ε, t0 + ε] → Λ are curves of
class C1 in Λ satisfying (a), (b) and (c) then `1 and `2 are homologous in
H1

(
Λ,Λ0(L0)

)
. The action of Sp(V, ω, L0) preserves the transverse orienta-

tion of Λ1(L0) in Λ and it induces the identity1 on H1

(
Λ,Λ0(L0)

)
. Since

Sp(V, ω, L0) acts transitively on Λ1(L0) (Corollary 3.3), we may assume that
`1(t0) = `2(t0) = L. The conclusion follows from Lemmas 3.6, 3.7 and For-
mulas (3.4) and (3.5), using a local chart φL0,L1 around L (the existence of
such chart follows from Remark 3.5). �

From now on, we fix the sign of the isomorphism (3.6) by choosing any
C1 curve in Λ satisfying (a), (b) and (c) as a generator of H1

(
Λ,Λ0(L0)

)
.

Proposition 3.9. Let ` : [a, b] → Λ be a continuous curve with endpoints
outside Λ≥1(L0). If there exists a Lagrangian subspace L1 complementary to
L0 and such that the image of ` is entirely contained in the domain Λ0(L1)

1Since Sp(V, ω) is connected, for T ∈ Sp(V, ω), the diffeomorphism T : Λ→ Λ is homo-
topic to the identity of Λ and therefore induces the identity of H1(Λ). It follows from func-
toriality of homology that every T ∈ Sp(V, ω, L0) induces the identity on H1

`
Λ, Λ0(L0)

´
.



388 F. MERCURI, P. PICCIONE, AND D.V. TAUSK

of the chart φL0,L1 then, setting β = φL0,L1 ◦ `, the Maslov index of ` with
respect to L0 is given by:

µL0(`) = n+

(
β(b)

)
− n+

(
β(a)

)
.(3.7)

Proof. By Lemma 3.6 it suffices to find for every i, j = 0, . . . , n a continuous
curve β̃ : [0, 1] → Bilsym(L0) such that the Maslov index of ˜̀ = φ−1

L0,L1
◦ β̃

with respect to L0 is equal to j − i and such that β̃(0), β̃(1) are both
nondegenerate and have coindexes respectively equal to i and j. It is easy
to provide examples of such a curve β̃ by considering, for instance, diagonal
matrices. �

Corollary 3.10. Let ` : [a, b] → Λ be a curve of class C1 having endpoints
outside Λ≥1(L0). If for all t ∈ ]a, b[ such that `(t) ∈ Λ≥1(L0) we have that
`′(t) is nondegenerate on `(t)∩L0, then the number of intersections of ` with
Λ≥1(L0) is finite, and:

µL0(`) =
∑

t∈]a,b[

sgn
(
`′(t)

∣∣
`(t)∩L0

)
.(3.8)

Proof. If `(t) ∈ Λ≥1(L0) then, by Remark 3.5, we can find a Lagrangian L1 ∈
Λ with L1∩L0 = L1∩`(t) = {0}; thus we can consider the local chart φL0,L1

around `(t). Keeping in mind Formulas (3.4) and (3.5), it follows directly
from Proposition 3.9 and Lemma 3.7 that µL0

(
`|[t−ε,t+ε]

)
= sgn

(
`′(t)|`(t)∩L0

)
for ε > 0 small enough. The conclusion now follows from the additivity of
the Maslov index by concatenation of curves. �

4. Applications of the Maslov index: Stability of the focal index.

4.1. The Maslov index of a differential problem. Let (g,R, P, S) be
an admissible quadruple for the differential problem. By setting α(t) =
gJ ′(t) ∈ Rn∗, the second order differential equation (2.4) can be rewritten
as:

d
dt

(
J(t)
α(t)

)
= X(t)

(
J(t)
α(t)

)
,(4.1)

where X(t) is the linear endomorphism of Rn ⊕ Rn∗ given by:

X(t) =
(

0 g−1

gR(t) 0

)
, t ∈ [a, b].(4.2)

Let Φ denote the fundamental matrix of the system (4.1), i.e., for each
t ∈ [a, b], Φ(t) is the isomorphism of Rn ⊕ Rn∗ such that:

Φ(t)
(
J(a), gJ ′(a)

)
=

(
J(t), gJ ′(t)

)
,(4.3)
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for all solutions J of (2.4). Then Φ satisfies the following matrix differential
equation:

Φ′(t) = X(t)Φ(t), t ∈ [a, b],(4.4)

with initial condition Φ(a) = Id. The conservation law (2.7) implies that
Φ(t) is indeed a symplectomorphism of the symplectic space Rn ⊕ Rn∗ en-
dowed with its canonical symplectic form (3.1); alternatively, the fact that
Φ(t) belongs to Sp(2n, R) follows from (4.4) by observing that X(t) belongs
to the Lie algebra sp(2n, R).

Consider the following two Lagrangian subspaces of Rn ⊕ Rn∗:

`0 =
{
(v, α) ∈ Rn ⊕ Rn∗ : v ∈ P, α|P + S(v) = 0 ∈ P ∗},(4.5)

L0 = {0} ⊕ Rn∗;(4.6)

observe that the initial condition (2.5) is equivalent to
(
J(a), gJ ′(a)

)
∈ `0.

Since Φ(t) is a symplectomorphism, the space `(t) = Φ(t)(`0) is Lagrangian;
more explicitly, `(t) is given by:

`(t) =
{(

J(t), gJ ′(t)
)

: J ∈ J
}
,(4.7)

for all t ∈ [a, b]. From (2.9) it follows that:

`(t) ∩ L0 = {0} ⊕ J[t]o ⊂ {0} ⊕ Rn∗.(4.8)

In particular, an instant t ∈ ]a, b] is (P, S)-focal if and only if `(t)∩L0 6= {0};
moreover, t has multiplicity k if and only if `(t) ∈ Λk(L0). In the notation
of Lemma 3.4, we have:

` = β`0 ◦ Φ,(4.9)

and in particular ` is a curve of class C1 on the Lagrangian Grassmannian
Λ of Rn ⊕ Rn∗. Recalling Proposition 2.2, we give the following:

Definition 4.1. Let (g,R, P, S) be an admissible quadruple for the differ-
ential problem and assume that t = b is not a (P, S)-focal instant. The
Maslov index of (g,R, P, S) is defined by iMaslov(g,R, P, S) = µL0(`|[a+ε,b]),
where ε > 0 is chosen in such a way that there are no (P, S)-focal instants
in ]a, a + ε].

Obviously the Maslov index of (g,R, P, S) does not depend on the choice
of ε.

We now want to compute the Maslov index of a quadruple (g,R, P, S)
using Corollary 3.10. We start by computing the derivative `′(t) in the
lemma below.

Lemma 4.2. For every t ∈ [a, b] the isomorphism J[t]⊥ 3 v 7→
(
0, g(v)

)
∈

`(t) ∩ L0 carries the restriction of g to the restriction of `′(t).
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Proof. From (3.2), (4.4) and (4.9) it follows that:

`′(t) = ω
(
X(t)·, ·

)
|`(t).(4.10)

The conclusion then follows from (4.2) and (4.8). �

Theorem 4.3. Let (g,R, P, S) be an admissible quadruple for the differen-
tial problem in Rn. If all the (P, S)-focal instants are nondegenerate and
if t = b is not (P, S)-focal then the focal index of (g,R, P, S) is (well-
defined and) equal to the Maslov index of (g,R, P, S), i.e., ifoc(g,R, P, S) =
iMaslov(g,R, P, S).

Proof. Follows directly from Corollary 3.10 and Lemma 4.2. �

Corollary 4.4. Let (M, g,P, γ) be an admissible quadruple for the geo-
metric problem such that γ(b) is not a P-focal point. Assume that (M, g) is
Riemannian or Lorentzian, and in the latter case, that γ is nonspacelike. If
(g,R, P, S) corresponds to (M, g,P, γ) by a parallel trivialization of the tan-
gent bundle then the Maslov index of (g,R, P, S) is equal to the sum of the
multiplicities of the P-focal points, i.e., iMaslov(g,R, P, S) =

∑
t∈]a,b] mul(t).

Remark 4.5. It is easy to see that every Lagrangian subspace `0 ⊂ Rn ⊕
Rn∗ is of the form (4.5) for a unique pair (P, S), with P ⊂ Rn a subspace
and S : P ×P → R a symmetric bilinear form. This means that (2.5) is the
most general form of initial conditions that yield a Lagrangian subspace.

4.2. Stability of the indexes. Let Gr(n) ∼= O(n)
/(

O(r)×O(n−r)
)

denote
the Grassmannian of all r-dimensional subspaces of Rn. Let Er,n denote the
tautological vector bundle over Gr(n), i.e., the set of pairs (P, v) ∈ Gr(n)×Rn

with v ∈ P . We denote by
∨

2 E∗
r,n the second symmetric power of the dual

bundle of Er,n, i.e.,
∨

2 E∗
r,n is a vector bundle over the Grassmannian Gr(n)

whose fiber over P ∈ Gr(n) is the space Bilsym(P ) of symmetric bilinear
forms on P . The elements of

∨
2 E∗

r,n are thus pairs (P, S) with P ⊂ Rn an
r-dimensional subspace and S : P × P → R a symmetric bilinear form. We
have a bijective map (see Remark 4.5):∨

2 E∗
r,n 3 (P, S) 7−→ `0 ∈ Λn−r(L0),(4.11)

where `0 is defined as in (4.5). The map (4.11) is in fact a smooth dif-
feomorphism. This can be proven, for instance, by observing that the Lie
group Sp(2n, R, L0) of symplectomorphisms of Rn ⊕ Rn∗ that preserve L0

acts smoothly and transitively in both
∨

2 E∗
r,n and Λn−r(L0); moreover, the

map (4.11) intertwines such actions.
We can now prove the following result about the stability of the Maslov

and the focal indexes for quadruples (g,R, P, S).

Theorem 4.6. For each j ∈ N ∪ {∞}, let (gj , Rj , Pj , Sj) be an admissible
quadruple for the differential problem in Rn.
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Assume that (gj , Rj , Pj , Sj) converges to (g∞, R∞, P∞, S∞) in the follow-
ing sense:

(1) dim(Pj) = r for all j ∈ N ∪ {∞} and some r = 0, . . . , n;

(2) (Pj , Sj) → (P∞, S∞) in
∨

2 E∗
r,n as j →∞;

(3) gj → g∞ in Bilsym(Rn) as j →∞;

(4) Rj → R∞ uniformly on [a, b] as j →∞.

If t0 = b is not (P∞, S∞)-focal for (g∞, R∞, P∞, S∞) then, for j ∈ N suffi-
ciently large, t0 = b is not (Pj , Sj)-focal for (gj , Rj , Pj , Sj), and:

iMaslov(gj , Rj , Pj , Sj) = iMaslov(g∞, R∞, P∞, S∞).(4.12)

In particular, if all the (Pj , Sj)-focal instants of (gj , Rj , Pj , Sj) are nonde-
generate for all j ∈ N ∪ {∞} then, for j sufficiently large:

ifoc(gj , Rj , Pj , Sj) = ifoc(g∞, R∞, P∞, S∞).(4.13)

Proof. We define objects (`0)j , Φj and `j corresponding to the quadruple
(gj , Rj , Pj , Sj) in analogy respectively with (4.5), (4.3) and (4.7). Since
(Pj , Sj) → (P, S), the fact that (4.11) is a diffeomorphism implies that
(`0)j → `0 in Λ. Standard results on the continuous dependence of solu-
tions of a differential equation with respect to the data show that Φj → Φ
uniformly on [a, b] (and even in the C1-topology). The smoothness of the
action of Sp(2n, R) on Λ and (4.9) imply then that `j → ` on the compact-
open topology; in particular, `j(b) → `(b) in Λ. The fact that t0 = b is
not (P∞, S∞)-focal for (g∞, R∞, P∞, S∞) means that `(b) belongs to the
open set Λ0(L0); thus `j(b) ∈ Λ0(L0) for large j and therefore t0 = b is not
(Pj , Sj)-focal for (gj , Rj , Pj , Sj) as well. We will see in Lemma 4.10 below
that there exists ε > 0 such that none of the quadruples (gj , Rj , Pj , Sj) has
focal instants in ]a, a + ε]; thus:

iMaslov(gj , Rj , Pj , Sj) = µL0

(
`j |[a+ε,b]

)
, iMaslov(g,R, P, S) = µL0

(
`|[a+ε,b]

)
.

Since Λ is semi-locally simply-connected and Λ0(L0) is locally arc-connected,
the fact that `j → ` in the compact-open topology implies that `j |[a+ε,b]

is homologous to `|[a+ε,b] in H1

(
Λ,Λ0(L0)

)
for j sufficiently large; thus

µL0

(
`j |[a+ε,b]

)
= µL0

(
`|[a+ε,b]

)
for such j. This proves equality (4.12); equal-

ity (4.13) now follows from Theorem 4.3. �

If (M, g) is an n-dimensional semi-Riemannian manifold and P ⊂M is a
smooth submanifold then the normal bundle TP⊥ =

⋃
p∈P TpP⊥ is a smooth

n-dimensional submanifold of the tangent bundle TM. Thus, for every
n ∈ TpP⊥, p ∈ P, the tangent space Tn

(
TP⊥

)
is an n-dimensional subspace

of the 2n-dimensional space TnTM. Moreover, if P is nondegenerate at
p and if one identifies TnTM with the direct sum TpM⊕ TpM using the
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horizontal space determined by the Levi-Civita connection then Tn

(
TP⊥

)
is given by (compare with (2.2)):

Tn

(
TP⊥

)
=

{
(v, w) ∈ TpM⊕ TpM : v ∈ TpP, w + An(v) ∈ TpP⊥

}
.

(4.14)

In the corollary below we denote by Gn(TM) the fiber bundle over TM
whose fiber at v ∈ TM is the Grassmannian of all n-dimensional subspaces
of the tangent space TvTM. Observe that Tn

(
TP⊥

)
is then a point in

Gn(TM).

Corollary 4.7. Let (M, g) be an n-dimensional semi-Riemannian mani-
fold. Assume that we are given a family of pairs (Pj , γj), j ∈ N ∪ {∞},
where each Pj is a submanifold of M and each γj : [a, b] →M is a geodesic
starting orthogonally at Pj. Assume that:

(1) Pj is nondegenerate at γj(a) for all j ∈ N ∪ {∞};
(2) dim(Pj) = dim(P∞) for all j ∈ N;
(3) all Pj-focal points along γj are nondegenerate, for all j ∈ N ∪ {∞};
(4) γ∞(b) is not P∞-focal along γ∞;
(5) γ′j(a) → γ′∞(a) in TM as j →∞;
(6) Tγ′j(a)

(
TP⊥j

)
→ Tγ′∞(a)

(
TP⊥∞

)
in Gn(TM) as j →∞.

Then, for j large enough, γj(b) is not Pj-focal along γj and ifoc(γj ,Pj) =
ifoc(γ∞,P∞).

Proof. Choose a smooth referential around γ∞(a) and parallel transport
such referential along each γj . The conclusion follows by applying Theo-
rem 4.6 to the quadruples (gj , Rj , Pj , Sj) obtained from (M, g,Pj , γj). �

Corollary 4.8. Under the hypothesis of Corollary 4.7, if (M, g) is Rie-
mannian or if (M, g) is Lorentzian and γj is nonspacelike for all j ∈
N∪{∞}, then for j sufficiently large, the sum of the multiplicities of the Pj-
focal points along γj is equal to the sum of the multiplicities of the P∞-focal
points along γ∞.

Hypothesis (2) is essential for Corollary 4.7 as the following example
shows.

Example 4.9. Consider the plane M = R2 endowed with the standard
Euclidean metric g. For j ∈ N, let Pj ⊂ R2 be the circle centered at (0, 1

j )
and passing through the origin; then the segment [0, 1] 3 t 7→ γ(t) = (0, t)
is a geodesic starting orthogonally to Pj and containing a unique Pj-focal

point at
(
0, 1

j

)
whose multiplicity (and signature) is equal to 1. Hence

ifoc(γ,Pj) = 1. We have Tγ′(0)

(
TP⊥j

)
= span

{(
1
j , 0,−1, 0

)
, (0, 0, 0, 1)

}
;

thus Tγ′(0)

(
TP⊥j

)
→ {0} × R2 = Tγ′(0)

(
TP⊥∞

)
, where P∞ = {0}. But γ has

no P∞-focal (i.e., conjugate) points and thus ifoc(γ,P∞) = 0.
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Lemma 4.10. Let X be a topological space. For each λ ∈ X , let (gλ, Rλ,
Pλ, Sλ) be an admissible quadruple for the differential problem in Rn. As-
sume that dim(Pλ) = r for all λ ∈ X and assume that the maps:

X 3 λ 7−→ gλ ∈ Bilsym(Rn), X × [a, b] 3 (λ, t) 7−→ Rλ(t) ∈ Lin(Rn),

X 3 λ 7−→ (Pλ, Sλ) ∈
∨

2 E∗
r,n,

are continuous. Then, given λ0 ∈ X , there exists ε > 0 and a neighborhood
V of λ0 in X such that (gλ, Rλ, Pλ, Sλ) has no (Pλ, Sλ)-focal instants in
]a, a + ε] for all λ ∈ V.

Proof. Arguing as in the proof of Proposition 2.2, we can find continu-
ous maps (t, λ) 7→ J̃i(t, λ), i = 1, . . . , n, such that

(
J̃i(a, λ0)

)n

i=1
is a ba-

sis of Rn and such that t ∈ ]a, b] is (Pλ, Sλ)-focal for (gλ, Rλ, Pλ, Sλ) iff
det

(
J̃i(t, λ)

)n

i=1
= 0. The conclusion follows. �

5. Curves of Lagrangians originating from differential problems.

Given an admissible quadruple for the differentiable problem (g,R, P, S), one
can construct objects Φ, `0 and ` as in Subsection 4.1. In Subsections 5.1, 5.2
and 5.3 we investigate the inverse problem: When does a curve ` : [a, b] → Λ
arises from a quadruple (g,R, P, S)? In Subsection 5.4 we use the theory
developed in the earlier subsections to provide a counterexample to the
equality between the Maslov and the focal index of a quadruple (g,R, P, S)
having degenerate focal instants. More specifically, we give an example of
an admissible quadruple (g,R, P, S) in R2, with R real-analytic, n+(g) = 1,
P = {0}, having a unique (P, S)-focal instant, and whose Maslov index is
equal to −1, while the focal index is equal to zero.

It is proven in [14, Section 3] that every admissible quadruple for the
differential problem in Rn with P = {0} and R smooth can be obtained
from an admissible quadruple for the geometric problem (M, g, γ,P), with
P = {γ(a)}, dim(M) = n+1, by a parallel trivialization of the normal bundle
along γ. Moreover, (M, g) can be chosen to be conformally flat and γ can be
chosen to be either timelike or spacelike. In particular, the counterexample
given in Subsection 5.4 actually admits a geometric realization in terms of
a spacelike geodesic γ on a real-analytic conformally flat three-dimensional
Lorentzian manifold (M, g).

5.1. Differential problems generate curves of Lagrangians tangent
to affine distributions. Let g ∈ Bilsym(Rn) be a fixed nondegenerate sym-
metric bilinear form in Rn. Let D̂ denote the right-invariant distribution
of affine spaces in the Lie group Sp(2n, R) whose value at the identity is
the affine subspace of the Lie algebra sp(2n, R) consisting of those linear
endomorphisms of Rn ⊕ Rn∗ that can be written in block-matrix form as
X =

(
0 g−1

C 0

)
, with C ∈ Bilsym(Rn) symmetric. From (4.2) and (4.4)
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it follows directly that a C1 curve Φ : [a, b] → Sp(2n, R) with Φ(a) = Id
arises from an admissible quadruple for the differential problem (g,R, P, S)
if and only if Φ is tangent to the distribution D̂, i.e., if Φ′(t) ∈ D̂Φ(t) for all
t ∈ [a, b].

Now let `0 ∈ Λ be fixed and consider the fibration β`0 : Sp(2n, R) →
Λ given by evaluation at `0. The curve of Lagrangians ` arising from
(g,R, P, S) is simply the projection on Λ of the curve Φ (recall (4.9)). Since
the Lie group Sp(2n, R) acts on Λ on the left, the right-invariant distribution
D̂ on Sp(2n, R) is projectable on Λ and such projection does not depend on
the choice of `0. More explicitly, we define a distribution of affine spaces D
on Λ by setting DL = dβL(Id)

(
D̂Id

)
⊂ TLΛ, for all L ∈ Λ. It is easy to see

that if Φ : [a, b] → Sp(2n, R) is tangent to D̂ and if ` = β`0 ◦ Φ for some `0

then ` is tangent to D. Hence, tangency to D is a necessary condition for a
C1 curve ` on Λ to arise from some quadruple (g,R, P, S). We remark that
the distribution D on Λ does not have constant rank. Using Formula (3.2)
for dβL one computes easily:

DL =
{(

0⊕ g−1
)
|L + B : B ∈ Bilsym(L), L0 ∩ L ⊂ Ker(B)

}
,

where L0 = {0}⊕Rn∗ and 0⊕g−1 ∈ Bilsym

(
Rn⊕Rn∗) denotes the symmetric

bilinear form
(
0 ⊕ g−1

)(
(v1, α1), (v2, α2)

)
= g−1(α1, α2). Thus, for L ∈

Λk(L0), we have dim(DL) = 1
2(n−k)(n−k+1). In particular D has constant

rank on each manifold Λk(L0); in the open dense set Λ0(L0), the distribution
D is equal to the entire tangent bundle of Λ. Hence, the condition `′ ∈ D is
vacuous outside the variety Λ≥1(L0), but it gives some information on how
` should intersect Λ≥1(L0).

5.2. A study of curves of Lagrangians in local coordinates. Let L1 ⊂
Rn⊕Rn∗ be a Lagrangian complementary to L0 = {0}⊕Rn∗. We study the
curve ` : [a, b] → Λ arising from a quadruple (g,R, P, S) in the chart φL0,L1 .
The Lagrangian L1 can be written in the form:

L1 =
{
(v, Zv) : v ∈ Rn

}
,(5.1)

where Z : Rn → Rn∗ is symmetric. We set β(t) = φL0,L1

(
`(t)

)
∈ Bilsym(L0),

for t in some subinterval of [a, b]. We identify β(t) with a symmetric bilinear
form on Rn∗ and with a linear map β(t) : Rn∗ → Rn. Then `(t) is the graph
of L0 3 (0, α) 7−→

(
β(t)α, Zβ(t)α

)
∈ L1. Obviously β′(t) = dφL0,L1

(
`(t)

)
·

`′(t); from (4.10) and (3.3) we get:

β′(t) = ω
(
X(t)η(t)·, η(t) ·

)
,(5.2)

where η(t) : L0 → `(t) is the isomorphism given by the restriction to L0

of the projection onto `(t) corresponding to the decomposition Rn ⊕ Rn∗ =
`(t)⊕ L1. One computes:

η(t) : L0 3 (0, α) 7−→
(
β(t)α, α + Zβ(t)α

)
∈ `(t).(5.3)
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From (4.2), (5.2) and (5.3) we get:

β′(t) = g−1 + β(t)Zg−1 + g−1Zβ(t) + β(t)
(
Zg−1Z − gR(t)

)
β(t).(5.4)

We call (5.4) the generalized Riccati equation.
Our goal is, given a fixed nondegenerate symmetric bilinear form g ∈

Bilsym(Rn), to determine conditions for a curve β on Bilsym

(
Rn∗) to be

the solution of (5.4) for some curve R : [a, b] → Lin(Rn) of g-symmetric
endomorphisms of Rn. Observe that if β(t) is invertible for some t then
R(t) must be given by:

R(t) = g−1
[
β(t)−1

(
g−1 + β(t)Zg−1 + g−1Zβ(t)− β′(t)

)
β(t)−1 + Zg−1Z

]
;

(5.5)

obviously the right-hand side of (5.5) is g-symmetric, so that we indeed
get a curve R of g-symmetric endomorphisms of Rn in every interval on
which β is invertible. Observe that this is consistent with the results of
Subsection 5.1. We now study the derivatives of β at those instants t where
β(t) is degenerate. First, observe that (5.4) implies that:

(5.6) β′(t)(α1, α2) =
(
g−1 + β(t)Zg−1 + g−1Zβ(t)

)
(α1, α2),

if α1 ∈ Ker
(
β(t)

)
or if α2 ∈ Ker

(
β(t)

)
.

It is easy to see that (5.6) is just the coordinate version of the condition
that ` be tangent to D. By taking another derivative of (5.4), we obtain:

β′′(t)(α1, α2) =
(
β′(t)Zg−1 + g−1Zβ′(t)

)
(α1, α2), α1, α2 ∈ Ker

(
β(t)

)
;

(5.7)

finally, from (5.6) and (5.7) we obtain the following second order condition
for β:

(5.8) β′′(t)(α1, α2) = 2
(
g−1Zg−1 + g−1Zβ(t)Zg−1

)
(α1, α2),

α1, α2 ∈ Ker
(
β(t)

)
.

In Subsection 5.3 below we will show that conditions (5.6) and (5.8) are
sufficient for β to arise from some R in a nondegenerate case.

5.3. The case where β′(t) is nondegenerate on Ker
(
β(t)

)
. Consider

a smooth curve β : [a, b] → Bilsym

(
Rn∗). Assume that, for every t ∈ [a, b] for

which β(t) is degenerate, the derivative β′(t) is nondegenerate on Ker
(
β(t)

)
and conditions (5.6) and (5.8) hold. We will prove that there exists a unique
smooth curve R : [a, b] → Lin(Rn) of g-symmetric endomorphisms of Rn

such that (5.4) holds. Then, if P ⊂ Rn is a nondegenerate subspace for g,
S ∈ Bilsym(P ) is a symmetric bilinear form, `0 is defined as in (4.5) and
β(a) = φL0,L1

(
`(a)

)
, it follows that the curve of Lagrangians ` = φ−1

L0,L1
◦ β

arises from (g,R, P, S), where L1 is defined in (5.1).
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In order to achieve our goal, we start by observing that Lemma 3.7 implies
that there are only a finite number of instants t ∈ [a, b] with β(t) degenerate.
Formula (5.5) can be used to define R at those t where β(t) is invertible.
We now fix t0 ∈ [a, b] with β(t0) degenerate and we show that R admits a
smooth extension to t0.

Let (bi)n
i=1 be a basis of Rn∗ such that (bi)k

i=1 is a basis of Ker
(
β(t0)

)
; the

restriction of β(t0) to the span of (bi)n
i=k+1 is clearly nondegenerate. We will

think of the bilinear forms on Rn∗ as matrices relative to the basis (bi)n
i=1.

Observe that β(t0) has zeroes outside the lower-right (n−k)× (n−k) block.
For t 6= t0, let β̃(t) be the matrix obtained by dividing the first k columns

of β(t) by t − t0; we define β̃(t0) by replacing the first k columns of β(t0)
with the first k columns of β′(t0). It is easy to see that t 7→ β̃(t) is smooth
around t0. For a ∈ R, we set Dk(a) =

(
aIk 0
0 In−k

)
, where Ij denotes the j× j

identity matrix. Then β(t) = β̃(t)Dk(t− t0) = Dk(t− t0)β̃(t)∗, for all t 6= t0.
Hence:

β(t)−1 = Dk

(
1

t−t0

)
β̃(t)−1 =

(
β̃(t)−1

)∗
Dk

(
1

t−t0

)
,(5.9)

for all t 6= t0. Since β′(t0) is nondegenerate on Ker
(
β(t0)

)
, the matrix β̃(t0)

is invertible and so t 7→ β̃(t)−1 is smooth around t0. From (5.5), in order to
prove that R has a smooth extension to t0, it suffices to show that the map
t 7→ β(t)−1Q(t)β(t)−1 has a smooth extension to t0, where Q is defined by:

Q(t) = g−1 + β(t)Zg−1 + g−1Zβ(t)− β′(t).(5.10)

We claim that Q(t0) is zero outside the lower-right (n− k)× (n− k)-block
and that Q′(t0) is zero on the upper-left k × k-block. Namely, it is easy
to check that (5.6) and (5.8) imply (5.7). Then (5.7) and (5.10) imply that
Q(t0)(α1, α2) = 0 if either α1 or α2 is in Ker

(
β(t0)

)
and that Q′(t0)(α1, α2) =

0 if both α1 and α2 are in Ker
(
β(t0)

)
. This proves the claim. We can now

write:

Q(t) = Dk(t− t0)Q̃(t)Dk(t− t0),(5.11)

with t 7→ Q̃(t) smooth around t0. From (5.9), (5.11) and the fact that
t 7→ β̃(t)−1 is smooth around t0, it follows that t 7→ β(t)−1Q(t)β(t)−1 (and
thus t 7→ R(t)) is smooth around t0.

5.4. A counterexample to the equality iMaslov(g, R, P, S) = ifoc(g, R,
P, S). In Subsection 5.3 we have shown that, if β′(t) is nondegenerate on
Ker

(
β(t)

)
, then conditions (5.6) and (5.8) are sufficient for the existence of

a smooth map R for which β is a solution of (5.4). It will become clear be-
low that the hypothesis that β′(t) be nondegenerate on Ker

(
β(t)

)
is indeed

essential here; namely, if β′(t0) is degenerate on Ker
(
β(t0)

)
for some t0 then

one has to impose conditions on the higher order derivatives of β at t0 in
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order to guarantee that the map t 7→ R(t) defined by (5.5) has a smooth
extension to t0.

We consider the following setup. Set n = 2 and define the objects g,
Z and P by g =

(
0 1
1 0

)
, Z =

(
0 0
0 1

)
, P = {0}. We will describe a curve

β : [a, b] → Bilsym

(
R2∗),

β(t) =
(

x(t) z(t)
z(t) y(t)

)
,(5.12)

where x, y and z are real-analytic scalar functions on [a, b], a < 0 < b, such
that the following properties are satisfied:

(1) x(a) = y(a) = z(a) = 0;
(2) x′(a) = y′(a) = 0, z′(a) = 1, x′′(a) = 2 and y′′(a) = z′′(a) = 0;
(3) x(t)y(t)− z(t)2 vanishes precisely for t = a and for t = 0;
(4) x(0) = z(0) = 0 and y(0) = −1;
(5) x′(0) = x′′(0) = 0 and z′(0) = 0;
(6) x′′′(0) < 0;
(7) the map t 7→ R(t) defined by (5.5) has an extension to t = 0 which is

real-analytic around t = 0.

Once a curve β satisfying properties (1)-(7) above is determined, the
desired counterexample can be easily constructed. Namely, define R by
(5.5). From condition (3), R is real-analytic on [a, b] \ {a, 0}; condition (7)
says that R has a real-analytic extension to 0. A simple computation shows
that, under condition (1), condition (2) is equivalent to (5.6) and (5.8) at
t = a. Thus, the result proved in Subsection 5.3 guarantees that R has a
real-analytic extension to t = a. Now define L1 by (5.1), L0 by (4.6) and
set ` = φ−1

L0,L1
◦ β. Condition (1) implies that `(a) = L0 and therefore ` is

the curve of Lagrangians corresponding to the quadruple (g,R, P, S). By
condition (3), t = 0 is the unique (P, S)-focal instant; condition (4) implies
that the kernel of β(0) is spanned by the first vector of the canonical basis
of R2∗ and thus the signature of the (P, S)-focal instant t = 0 is zero (recall
(3.4) and (4.8)). Hence ifoc(g,R, P, S) = 0. On the other hand:

iMaslov(g,R, P, S) = −1;(5.13)

namely, recall from Proposition 3.9 that iMaslov(g,R, P, S) = µL0

(
`|[a+ε,b]

)
equals the variation of the coindex of β(t) near t = 0. Conditions (4), (5)
and (6) imply n+

(
β(t)

)
= 1 for t < 0 near zero and n+

(
β(t)

)
= 0 for t > 0

near zero; this yields (5.13).

We will now show that it is possible to determine polynomial functions x,
y and z satisfying conditions (1)-(7). We start by analyzing condition (7).
As in Subsection 5.3, t 7→ R(t) has a real-analytic extension to t = 0 if and
only if t 7→ β(t)−1Q(t)β−1Q(t) does, where Q is given by (5.10). Consider
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the matrix β̂(t) =
(

y(t) −z(t)
−z(t) x(t)

)
, so that

β(t)−1Q(t)β(t)−1 =
1

det
(
β(t)

)2 β̂(t)Q(t)β̂(t),

when β(t) is invertible. We have:

β̂(t)Q(t)β̂(t) =
(

p1(t) p2(t)
p2(t) p3(t)

)
,

where p1 = −x′y2− 2yz + 2yzz′− y′z2, p2 = x′yz− yz2 + xy− xyz′ + xy2 +
z2−z2z′+xy′z and p3 = −x′z2+2z3−2xz+2xzz′−2xyz−x2y′. Conditions
(4), (5) and (6) imply that t 7→ det

(
β(t)

)
has a zero of order 3 at t = 0;

thus condition (7) is equivalent to the maps pi(t), i = 1, 2, 3, having zeroes
of order at least 6 at t = 0. This can be achieved, for instance, by setting:

x(t) = −2t3 − 54
5

t5, y(t) = −1− 6t + 18t2 − 54t3, z(t) = −3t2,(5.14)

for t near zero. Observe that the polynomials above also satisfy conditions
(4)-(6). For t near a, we take x, y, z to be arbitrary smooth maps satisfying
(1) and (2). It is easy to see that n+

(
β(t)

)
= 1 for t > a near a and for

t < 0 near zero. Since the set of invertible symmetric matrices of coindex 1
is connected and open in Bilsym

(
R2∗), we may then extend x, y, z smoothly

to [a, 0] in such a way that β(t) is invertible for all t ∈ ]a, 0[; we then extend
x, y, z smoothly to a slightly larger interval [a, b], b > 0, so that condition
(3) is satisfied.

The construction above yields the desired counterexample in the smooth
case. We now use a density argument to show the existence of a real-analytic
counterexample.

Let x, y and z be given smooth functions such that conditions (1)-(7) are
satisfied; we start by observing that if x̃, ỹ and z̃ are smooth functions having
the first six derivatives at t = 0 and the first two derivatives at t = a equal
to the corresponding derivatives of x, y and z, then, by replacing x, y and z
with x̃, ỹ and z̃, only condition (3) may fail to hold. If such a replacement
is made in such a way that x̃, ỹ and z̃ are sufficiently close to x, y and z in
the C4-topology, then also condition (3) will remain true. To prove this, we
apply the following elementary lemma to the function f(t) = x(t)y(t)−z(t)2

on the interval [a, 0] with k = 3:

Lemma 5.1. Let k ∈ N and let f : [c, d] → R be a function of class Ck+1.
Assume that f has zeroes precisely at the endpoints c, d and that these zeroes
are of order at the most k. Then, there exists a neighborhood U of f in the
Ck+1-topology such that, every g ∈ U having the same order of zeroes as f
at c and d has no zeroes in ]c, d[.
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The proof of the existence of polynomial functions x, y, z : [a, b] → R
satisfying conditions (1)-(7) now follows by applying the elementary density
lemma below in the interval [a, 0], with k = 6.

Lemma 5.2. Let k ∈ N and pi, qi ∈ R, i = 0, . . . , k, be fixed. Let A denote
the affine subspace of Ck

(
[a, b], R

)
consisting of maps f with f (i)(c) = pi,

f (i)(d) = qi, i = 0, . . . , k. Then the subset of A consisting of polynomials
maps is dense in A with respect to the Ck-topology.
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