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We study sphere theorems for compact, geodesically
complete 2-dimensional CAT(1)-spaces. As one of the main
results, for compact, geodesically complete, 2-dimensional
CAT(1)-spaces, we obtain the optimal volume condition to
ensure being homeomorphic to the 2-sphere.

1. Introduction.

The problems of sphere theorems in Riemannian geometry have yielded the
beautiful results and the fruitful techniques for the study of global geometry
(cf. [22]). The main purpose of this paper is to study sphere theorems for
CAT(1)-spaces: When are CAT(1)-spaces homeomorphic to the sphere?

The notion of CAT(κ)-spaces is introduced by Gromov ([11]) based on
Alexandrov’s original notion, i.e., spaces with curvature bounded above by
κ ∈ R. The research for CAT(1)-spaces is important since the space of
directions at a given point in a CAT(κ)-space, which has the most local
geometric information, is a CAT(1)-space. Furthermore, the ideal boundary
of a given CAT(0)-space (the so-called, Hadamard space), which has the
most global one, is a CAT(1)-space. In addition, all spherical buildings are
CAT(1)-spaces (cf. [13], [23]).

Throughout this paper, we always assume that CAT(κ)-spaces have the
local compactness and the geodesical completeness. Nevertheless, the lo-
cal metric structure may be complicated. For example, it is known by
Kleiner that a CAT(κ)-space X may admit no triangulation even if X is
2-dimensional (cf. [12], [14]). We require the careful treatment of the local
structure.

If X is a compact, geodesically complete CAT(1)-space, then the diameter
of X is not smaller than π. There exist many examples of compact, geodesi-
cally complete CAT(1)-spaces possessing the minimal diameter π which are
not homeomorphic to each other: Ballmann and Brin [5] have classified
the isometry classes of the 2-dimensional spherical polyhedra in some sense
which are such CAT(1)-spaces of the minimal diameter π.

In this paper, we shall study volume sphere theorems for compact, geodesi-
cally complete CAT(1)-spaces.
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1.1. CAT(κ)-spaces. We first state the precise definition of CAT(κ)-spaces
in this paper. We refer to [1], [2], [3], and [7] for the fundamental properties
of CAT(κ)-spaces, more generally, of spaces with curvature bounded above.

For κ ∈ R, we set Dκ := diamMn
κ , i.e., the diameter of the n-dimensional,

complete, simply connected model space Mn
κ with constant sectional curva-

ture κ.
Let (X, dX) be a complete metric space. We say that X is a CAT(κ)-space

if X satisfies the following:

(i) (Dκ-geodesic) Every two points x, y ∈ X with dX(x, y) < Dκ are joined
by a minimizing geodesic xy.

(ii) (CAT(κ)-property) For an arbitrary geodesic triangle 4 ⊂ X with
perimeter < 2Dκ, we have the comparison triangle 4̃ ⊂ M2

κ (with the
same side lengths as 4) such that dX(x, y) ≤ dM2

κ
(x̃, ỹ) for every pair

x, y ∈ 4 and the corresponding points x̃, ỹ ∈ 4̃.

We now note the following important properties of CAT(κ)-spaces:

(i) The convexity radii of all points are not smaller than Dκ/2.
(ii) The injectivity radii of all points are not smaller than Dκ. In particu-

lar, the Dκ-neighborhood of a given point is contractible.

The first one is also related to the property that dX is (semi) convex.

1.2. Simple examples of CAT(1)-spaces. Next, we provide simple ex-
amples of CAT(1)-spaces. We remark that, if X is a CAT(κ)-space for some
κ > 0, then

√
κX := (X,

√
κdX) is a CAT(1)-space.

We here recall Reshetnyak’s gluing lemma ([19], cf. [7]): The space con-
structed by gluing CAT(κ)-spaces isometrically along proper convex subsets
is again a CAT(κ)-space.

Example 1.1. Here, all X in (i)–(v) are compact, geodesically complete
CAT(1)-spaces:

(i) Let X be the n-dimensional sphere Sn(r) with radius r > 0. Then, for
any r ≥ 1, the space X = Sn(r) is a CAT(1)-space.

(ii) We take mutually antipodal points p, p̂ ∈ Sn(1) and the closed interval
[0, π]. Let X be the quotient space obtained by gluing Sn(1) and [0, π]
along p = {0} and p̂ = {π}. Then, X is a CAT(1)-space. (cf. Figure 1.)

(iii) We prepare Sn(1) and the (distinct) closed unit n-hemisphere HSn(1).
Let X be the quotient space obtained by gluing Sn(1) and HSn(1) along
their equators. Then, X := Sn(1)tHSn(1)

/
equator

is a CAT(1)-space.
(cf. Figure 2.)

(iv) Let X be the n-dimensional real projective space RPn(r) as the quo-
tient for Sn(r) by the standard Z2-action. Then, for any r ≥ 2, the
space X = RPn(r) is a CAT(1)-space.
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(v) Let X = T2(2π×2π) = S1(1)×S1(1) be the flat torus whose universal
covering space has the fundamental domain of the flat (2π×2π)-square.
Then, X is a CAT(1)-space.

More generally, complete, smooth Riemannian manifolds with sectional
curvature uniformly bounded above by 1 and of injectivity radii bounded
below by D1 are CAT(1)-spaces.

1.3. Main theorems. Let X be a locally compact, geodesically complete
CAT(κ)-space. For n ∈ N, we denote by X

n ⊂ X the set of all points whose
open t-balls have the Hausdorff dimension n for any sufficiently small t > 0.

Throughout this paper, dim denotes the Hausdorff dimension, and Hn(·)
the n-dimensional Hausdorff measure. In addition, the symbol ϑα,β,...(ε) de-
notes the positive function depending only on α, β, . . . with limε→0 ϑα,β,...(ε)
= 0.

In [15], from the CAT(1)-property, the author shows the following: For
given n ∈ N, let X be a compact, geodesically complete CAT(1)-space sat-
isfying X = X

n. Then, Hn(X) ≥ Hn
(
Sn(1)

)
. Moreover, the equality holds

if and only if X is isometric to Sn(1).
Furthermore, the author proves the following sphere theorem ([15]): For

given n ∈ N, we have a positive number εn > 0 satisfying the following: We
assume that X is a compact, geodesically complete CAT(1)-space such that:

(i) X = X
n.

(ii) The following holds for ε ∈ (0, εn):

Hn(X) < Hn
(
Sn(1)

)
+ ε.(1.1)

Then, there exists a bi-Lipschitz homeomorphism between X and Sn(1) such
that the Lipschitz constants are contained in

(
1− ϑn(ε), 1 + ϑn(ε)

)
.

We remark that the above Assumption (i) is essential because of Exam-
ple 1.1.(ii).

We now concentrate on the case n = 2. We consider how much the above
volume condition (1.1) can be relaxed.

As one of the main results, we prove the following sphere theorem for
2-dimensional CAT(1)-spaces:

Theorem A. Let X be a compact, geodesically complete CAT(1)-space
satisfying X = X

2 and

H2(X) < (3/2)H2
(
S2(1)

)
.(1.2)

Then, X is homeomorphic to a 2-dimensional sphere S2.

Remark 1.2. The condition (1.2) is optimal for Theorem A because, for
X = S2(1) t HS2(1)

/
equator

as in Example 1.1.(iii), we see that X = X
2,

H2(X) = (3/2)H2
(
S2(1)

)
, and that X is not homeomorphic to S2.
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Remark 1.3. Without the assumption X = X
2, we can observe an embed-

ding of S2 into a CAT(1)-space of the Hausdorff dimension ≤ 2. In Section 5,
we shall prove the following: Let X be a locally compact, geodesically com-
plete CAT(1)-space of the Hausdorff dimension ≤ 2 with X

2 6= ∅ such that
H2(X) < (3/2)H2

(
S2(1)

)
. Then, there exists a locally convex subset Y ⊂ X

such that Y is a 2-dimensional Lipschitz manifold homeomorphic to S2. Ac-
tually, Y = X

2, and Y is a compact, geodesically complete CAT(1)-space
with respect to the interior distance in Y .

Remark 1.4. At the same time proving Theorem A, we observe the fol-
lowing for smooth Riemannian manifolds: Let M be a compact, smooth
Riemannian manifold of dimension n which is also a CAT(1)-space. As-
sume that Hn(M) < (3/2)Hn

(
Sn(1)

)
. Then, M is homeomorphic to an

n-dimensional sphere Sn.
In smooth Riemannian case, Coghlan and Itokawa [9] have obtained the

result related to Theorem A as follows: Let M be a compact, simply con-
nected Riemannian manifold of even dimension m. Assume that M has
positive sectional curvature with uniformly bounded above by κ, and that
its volume vol(M) satisfies vol(M) ≤ (3/2)vol

(
Sm(1)

) /
κm/2. Then, M is

homeomorphic to Sm(1).

In our general case, we furthermore obtain the following:

Theorem B. Let X be a compact, geodesically complete CAT(1)-space
satisfying X = X

2 and H2(X) = (3/2)H2
(
S2(1)

)
. Then, X is either home-

omorphic to S2 or isometric to S2(1) tHS2(1)
/

equator
.

In Section 5, we also investigate the number of the homotopy types of
CAT(1)-spaces: For n ∈ N and V > 0, let us denote by C(n, V ) the isometry
classes of all compact, geodesically complete CAT(1)-spaces such that X =
X

n and Hn(X) ≤ V . Then, the number of the homotopy types of C(n, V )
is bounded above by a constant depending only on n and V .

1.4. The outline of our proofs of main theorems. First, we simply
review the convergence theorem, which is studied in [15], for compact,
geodesically complete CAT(κ)-spaces: For a given CAT(κ)-space with weak
singularities in some sense, let us consider the other CAT(κ)-space suffi-
ciently close to it with respect to the Gromov-Hausdorff distance. Then, we
have an almost isometry, and hence a bi-Lipschitz homeomorphism between
them. (See Section 2.)

We also have volume comparison for CAT(κ)-spaces (cf. [15]), i.e., the op-
posite inequalities to the well-known of Bishop type and of Bishop-Gromov
type for smooth Riemannian manifolds with curvature bounded below.

Let X be the 2-dimensional one as in Theorem A. Then, using the vol-
ume comparison, (1.2), and the convergence theorem ([15]), we can prove
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the following: Every point in X as in Theorem A has a neighborhood home-
omorphic to a 2-dimensional open disk, in particular, X is a 2-dimensional
topological manifold. More generally, for a given point, we also obtain the
optimal local volume growth condition to possess a neighborhood homeo-
morphic to a 2-disk in Section 3. Namely, we obtain the following:

Proposition C. For κ ∈ R, let us denote by X a locally compact, geodesi-
cally complete CAT(κ)-space. Assume that a point x ∈ X

2 satisfies the
following: H2

(
Bx(T ;X)

) /
ω2

κ(T ) < 3/2 for some T ∈ (0, Dκ]. Then, there
exists a positive number t = tx > 0 such that Bx(t;X) is homeomorphic to
a 2-dimensional, Euclidean open disk B2 ⊂ R2.

Here, we denote by Bx(t;X) the open t-ball centered at x ∈ X, and by
ω2

κ(T ) the 2-dimensional Hausdorff measure of a T -ball in M2
κ .

Remark 1.5. The local structure of locally compact, geodesically com-
plete CAT(κ)-spaces, especially of dimension 2, has been already studied
by Kleiner, Burago and Buyalo [8]. Proposition C can be also proved by
using their studies mentioned in Section 3 in [8].

Furthermore, (1.2) implies that X as in Theorem A can be covered by
two contractible open balls. Then, the Jordan curve theorem concludes that
X is homeomorphic to a 2-sphere. Thereby, we prove Theorem A.

We next consider X as in Theorem B. We denote by {zi} ⊂ X a maximal
π-discrete set, i.e., dX(zi, zj) ≥ π for i 6= j. Then, the volume comparison
and the assumption H2(X) = (3/2)H2

(
S2(1)

)
in Theorem B imply that

]{zi} = 2 or 3 for any maximal π-discrete set {zi} ⊂ X. If ]{zi} = 2 for
any such {zi} ⊂ X, then X is homeomorphic to a 2-sphere from the similar
idea to that in the proof of Theorem A. Assume that ]{zi} = 3 for some
maximal π-discrete set {zi} ⊂ X. Then, from a volume rigidity, X is the
union of the closed convex subsets isometric to the unit hemisphere with
pole zi, i = 1, 2, 3. Considering how the boundaries of the unit hemispheres
meet each other, we can show that X is either homeomorphic to a 2-sphere
or isometric to S2(1) tHS2(1)

/
equator

. In this way, we prove Theorem B.

1.5. The organization of this paper. The organization of this paper is
as follows:
Section 2: We discuss the fundamental properties and the known facts for
CAT(κ)-spaces.
Section 3: We observe the existence of 2-disk neighborhoods in CAT(κ)-
spaces, and show Proposition C.
Section 4: We prove Theorems A and B.
Section 5: We research some topological embeddings into CAT(κ)-spaces of
the Hausdorff dimension ≤ 2.
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Section 6: We provide some prospects for the study of CAT(κ)-spaces from
a topological viewpoint.

S
n(1) [0, π]

gluing

X

Figure 1. Example 1.1.(ii).

Sn(1) HS
n(1)

gluing

X

Figure 2. Example 1.1.(iii).

2. Preliminaries.

In this section, we list the basic properties and the known facts of CAT(κ)-
spaces, spaces with curvature bounded above, which will be needed in the
subsequent sections.

Let (X, dX) be a complete metric space. We denote by Bx(t;X) (resp. Bx(t;X))
the open (resp. closed) metric ball with radius t > 0 centered at x ∈ X.

2.1. Spaces with curvature bounded above and various radii. For
κ ∈ R, we say that X is an Alexandrov space with curvature bounded above
by κ if X is locally CAT(κ), i.e., if for every x ∈ X there exists a positive
number R = Rx ∈ (0, Dκ/2] such that Bx(R;X) is a CAT(κ)-space. Then,
we remark that, Bx(R;X) is a convex subset in X for R ∈ (0, Dκ/2].

Let x ∈ X be a point in an Alexandrov spaces with curvature ≤ κ. We
then define various radii at x as follows:
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• The injectivity radius at x, InjRad(x), is defined as the supremum of
R > 0 satisfying the following: For every y ∈ Bx(R;X), x and y are
joined by the unique minimizing geodesic xy.

• The CAT(κ)-radius at x, CATκRad(x), the supremum of R ∈ (0, Dκ/2]
satisfying: Bx(R;X) is a CAT(κ)-space.

• The comparable radius at x, CompκRad(x), the supremum of R ∈
(0, Dκ] satisfying: For every two points y, z ∈ Bx(R;X) which satisfy
dX(x, y) + dX(y, z) + dX(z, x) < 2Dκ, there exists a geodesic triangle
4(x, y, z) ⊂ X with the vertices x, y, z such that 4(x, y, z) has the
CAT(κ)-property.

Then, by definition, we have

0 < CATκRad(x) ≤ CompκRad(x) ≤ InjRad(x).

Moreover, if X itself is a CAT(κ)-space, then for any x ∈ X we have

2CATκRad(x) = CompκRad(x) = Dκ.

2.2. Spaces of directions and the tangent cones. For complete metric
space X, we say that X is geodesically complete if every (nontrivial) geodesic
is contained in a geodesic whose domain of the parameterization is a whole
real line.

For a while, let X denote a locally compact, geodesically complete Alexan-
drov space with curvature ≤ κ.

For x ∈ X, we write ΣxX :=
{
xy|y ∈ X \ {x}

} /
∠x=0

, called the space
of directions at x, where ∠x is the angle at x. The direction vxy ∈ ΣxX
often denotes [xy] ∈ ΣxX. We write CxX, called the tangent cone at x,
as the Euclidean cone ΣxX × [0,∞)/ΣxX×{0}. Note that ΣxX is a com-
pact, geodesically complete CAT(1)-space, and that CxX is a locally com-
pact, geodesically complete CAT(0)-space ([1], [2]). We also remark that
(CxX, F) is isometric to the (pointed) Gromov-Hausdorff limit of

(
1
t X, x

)
as t ↘ 0, where F ∈ CxX is the vertex of the cone.

2.3. Branch points and their measure. We here introduce the notion
of branch points by Otsu and Tanoue ([17]) for representing singularities in
spaces with curvature bounded above.

For δ > 0 and x ∈ X, a point z ∈ X is a δ-branch point of x if the following
holds: diam

{
v ∈ ΣzX|∠z(vzx, v) = π

}
≥ δ. We denote by Sx,δ the set of

all δ-branch points of x. Furthermore, we define Sδ(X) := ∪{Sx,δ|x ∈ X},
called δ-branch points in X. Note that both Sx,δ and Sδ(X) are closed in X
for any x ∈ X and δ > 0 ([17], [15]).

For given positive integer n ∈ N, we write

Xn := {x ∈ X|dim ΣxX = n− 1},

X
n :=

{
x ∈ X|dim Bx(t;X) = n for any sufficiently small t > 0

}
,
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X̂n :=
{
x ∈ X|dim Bx(t;X) ≤ n for some t > 0

}
,

where X
n is the same one as that defined in Section 1. Furthermore, as

some singular sets, we write Sn
X :=

{
x ∈ X̂n|ΣxX 6= Sn−1(1)

}
.

Otsu and Tanoue ([16], [17]) study the Hausdorff measures of singular
points as follows:

Theorem 2.1 ([16], [17]). For a given positive integer n ∈ N, we assume
that Bx(T ;X) ⊂ X̂n for some T ∈

(
0,CATκRad(x)

)
. Then, we obtain the

following:
(i) Hn

(
Sx,δ ∩Bx(T ;X)

)
= 0 for any δ > 0.

(ii) Hn
(
Sn

X ∩Bx(T ;X)
)

= 0.
In particular, if Hn

(
Bx(t;X)

)
> 0 also holds for t ∈ (0, T ), then there exists

a point y ∈ Bx(t;X) in an Hn-full measure subset in Bx(t;X) such that
ΣyX = Sn−1(1).

Here, we remark the following ([15]): X
n ⊂ Xn holds for given n ∈ N.

Moreover, if X = X̂n also holds, then X
n = Xn.

Furthermore, the author ([15]) verifies the following:

Lemma 2.2 ([15]). For given n ∈ N, assume that Bx(T ;X) ⊂ X
n for some

x ∈ X and T > 0. Then, we obtain ΣxX = (ΣxX)
n−1

and CxX = (CxX)
n
.

2.4. Convention. For metric spaces Y and Z, a map f1 : Y → Z is called
an expanding map if dZ

(
f1(y1), f1(y2)

)
≥ dY (y1, y2) holds for every y1, y2 ∈

Y .
For ϑ > 0, a surjective map f2 : Y → Z is said to be a ϑ-almost isometry

if
∣∣∣dZ

(
f2(y1), f2(y2)

)
− dY (y1, y2)

∣∣∣ < ϑdY (y1, y2) for every y1, y2 ∈ Y . We
note that: If ϑ < 1, then the map f2 is a bi-Lipschitz homeomorphism.
Furthermore, if f2 is a ϑ-almost isometry for any ϑ > 0, then f2 is an
isometry.

2.5. Convergence theorems. We now denote by dGH the Gromov-Haus-
dorff distance (cf. [10]).

The following is the convergence theorem which is mentioned in Section
1 for spaces with only weak singularities:

Theorem 2.3 ([15]). For given constants κ ∈ R, n ∈ N, and R0 > 0, we
find a positive constant δ = δn > 0 with the following properties: Let X
denote a compact, geodesically complete Alexandrov space with curvature
≤ κ satisfying X = X

n and Sδ(X) = ∅ for δ ∈ (0, δ). We then find an
ε = εκ,n,R0,δ,X > 0 satisfying the following: If Y is a compact, geodesically
complete Alexandrov space with curvature ≤ κ such that CATκRad(y) ≥ R0

for any y ∈ Y , and that dGH(X, Y ) < ε for ε ∈ (0, ε), then there exists a(
ϑn(δ) + ϑκ,n,R0,X(ε)

)
-almost isometry Ψ : Y → X.
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Remark 2.4. The construction of the almost isometry discussed in [15]
guarantees that there also exists an almost isometry between some dGH -
close local parts with only weak singularities.

In [15], using Theorem 2.3, the author studies volume convergence theo-
rems for Alexandrov spaces with curvature bounded above. As one of them,
we obtain the following local volume regularity:

Theorem 2.5 ([15]). Let X be a locally compact, geodesically complete
Alexandrov space with curvature ≤ κ. If x ∈ X

n holds for given n ∈ N,
then we have

lim
t→0

Hn
(
Bx(t;X)

)
tn

= Hn
(
BF(1;CxX)

)
∈ (0,∞).

Here, F ∈ CxX is the vertex of the Euclidean cone.

2.6. Volume comparison for spaces with curvature bounded above.
For κ ∈ R and n ∈ N, we denote by ωn

κ(t) the n-dimensional Hausdorff
measure of a t-ball in Mn

κ . Let X be a locally compact, geodesically complete
Alexandrov space with curvature ≤ κ.

The following absolute volume comparison can be obtained by the CAT(κ)-
property ([15]):

Proposition 2.6 ([15]). For given n ∈ N, we have

Hn
(
Bx(t;X)

)
≥ ωn

κ(t)(2.1)

for any x ∈ X
n and t ∈

[
0,CompκRad(x)

]
.

Furthermore, assume that Bx(t;X) ⊂ X
n for t ∈

[
0,CATκRad(x)

]
.

Then, the equality in (2.1) holds if and only if the convex set Bx(t;X) is
isometric to Bx(t;Mn

κ ) for a given point x ∈ Mn
κ .

In fact, the inequality (2.1) is obtained by the following:

Lemma 2.7 ([15]). For given n ∈ N, we take a point x ∈ X
n. Then, there

exists an expanding map gx : Sn−1(1) → ΣxX.

We now define ∂Bx(t;X) :=
{
y ∈ X|dX(x, y) = t

}
. We then provide the

coarea formula for the distance functions (cf. [15]):

Lemma 2.8. For given n ∈ N, assume that Hn
(
Bx(T ;X)

)
< ∞ for x ∈ X

and T ∈
(
0,CompκRad(x)

)
. Then, we have

Hn
(
Bx(T ;X)

)
=
∫ T

0
Hn−1

(
∂Bx(t;X)

)
dt.

The following relative volume comparison can be also obtained by Lemma
2.8 and the CAT(κ)-property ([15]):
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Proposition 2.9 ([15]). For given n ∈ N and x ∈ X
n, let us define the

function F :
(
0,CompκRad(x)

]
→ [1,+∞] as

F (t) := Hn
(
Bx(t;X)

)
/ωn

κ(t).

Then, F is monotone non-decreasing as t ↗.

Remark 2.10. In general, F (t) as in Proposition 2.9 does not necessarily
converge to 1 as t ↘ 0. More precisely, by Lemma 2.8 and Theorem 2.5, we
obtain the following (cf. [15]):

F (t) =
Hn
(
Bx(t;X)

)
tn

tn

ωn
κ(t)

→
Hn
(
BF(1;CxX)

)
ωn

0 (1)
=

Hn−1(ΣxX)
Hn−1

(
Sn−1(1)

)(2.2)

as t ↘ 0, where F is the vertex of CxX.

3. Two dimensional disk neighborhoods in spaces
with curvature bounded above.

In this section, we observe some topological properties of spaces with cur-
vature bounded above. We also prove Proposition C.

For κ ∈ R, let X denote a locally compact, geodesically complete Alexan-
drov space with curvature ≤ κ, and let x ∈ X satisfy x ∈ X

2. We now con-
sider its space of directions ΣxX. Then, dim ΣxX = 1, and hence ΣxX has
a structure of finite graph equipped with the vertex set containing Sπ(ΣxX)
(cf. Lemma 2.9 in [14]). If ΣxX is homeomorphic to S1 and its length is
sufficiently close to 2π, then we see that x ∈ X has a 2-dimensional disk
neighborhood. This follows from Theorem 3.1 in [8], which is obtained by
Kleiner, stated by Burago and Buyalo.

More generally, we obtain the following:

Proposition 3.1. Let x ∈ X be a point in a locally compact, geodesi-
cally complete Alexandrov space X with curvature ≤ κ such that ΣxX is
homeomorphic to S1. Then, we have a positive number t = tx > 0 such
that Bx(t;X) is bi-Lipschitz homeomorphic to BF(t;CxX); in particular,
Bx(t;X) is homeomorphic to a 2-dimensional open disk B2 ⊂ R2.

Remark 3.2. Let x ∈ X be as in Proposition 3.1. Then, as a consequence,
we see that x ∈ X

2.

Remark 3.3. Proposition 3.1 can be proved by using Theorem 3.1 in [8]
since CxX is the Euclidean cone over a circle. The details are omitted.

Remark 3.4. Now, let us consider an Alexandrov space X with curvature
≤ κ so that X is a 2-dimensional topological manifold without boundary.
Then, it is known by Alexandrov that X is locally geodesically complete. In
particular, ΣxX is also compact and geodesically complete for every x ∈ X.
In this case, Proposition 3.1 in [8] shows that ΣxX is homeomorphic to
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S1. Therefore, we see that X is locally bi-Lipschitz homeomorphic to R2.
Namely, X is a 2-dimensional Lipschitz manifold.

For 0 < t < T , we denote by Ax(T, t;X) := Bx(T ;X) \ Bx(t;X) the
metric annulus around x.

In this paper, we show Proposition 3.1 by applying Theorem 2.3 ade-
quately since CxX is of 2-dimension:

Proof of Proposition 3.1. Now, we note that every point in CxX \ {F}
has the space of directions isometric to S1(1) since ΣxX is a circle, Also,
BF(1;CxX) is an open 2-disk. We consider the (topological) annulus
AF(1, 1/2;CxX).

Since Bx(1;λX) converges to BF(1;CxX) as λ ↗ ∞, we obtain the fol-
lowing: For any ε > 0, we have a sufficiently large number J � 1 such that,
for each j ∈ N ∪ {0}, dGH

(
Bx(1; 2J+jX), BF(1;CxX)

)
< ε. Considering

AF(1, 1/2;CxX), we obtain the following from the arguments discussed in
[15] (cf. Theorem 2.3, Remark 2.4):

Claim 3.5. For each j, we have a ϑ(ε)-almost isometry

ĥj : 2J+jX ⊃ Ûj → AF(1, 1/2;CxX)

for some open set Ûj satisfying:

(3.1) Ax

(
1− ϑ(ε), (1/2) + ϑ(ε); 2J+jX

)
⊂ Ûj

⊂ Ax

(
1 + ϑ(ε), (1/2)− ϑ(ε); 2J+jX

)
.

Hence, by Claim 3.5, we obtain a homeomorphism

hj : X ⊃ Uj := (1/2J+j)Ûj → Ao(1/2J+j , 1/2J+j+2; R2),

where o ∈ R2 is the origin.
Next, assume that we have a homeomorphism

Hj :
j⋃

k=0

Uk → Ao(1/2J , 1/2J+j+2; R2).

Then, using hj+1, we can construct a homeomorphism

Hj+1 :
j+1⋃
k=0

Uk → Ao(1/2J , 1/2J+j+3; R2)

such that Hj+1|∪j
k=0Uk

= Hj , which is guaranteed by (3.1). Hence, we can
define the map

H∞ : Bx(1/2J ;X) =
∞⋃

k=0

Uk → Bo(1/2J ; R2)
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with H∞(x) := o such that H∞|∪j
k=0Uk

= Hj , j = 0, . . . ,∞. Then, H∞ is a
homeomorphism, which completes the Proof of Proposition 3.1. �

Now, for a given point, we provide the following local volume growth con-
dition to ensure a 2-disk neighborhood, which is a generalization of Propo-
sition C:

Proposition 3.6. For κ ∈ R, let us denote by X a locally compact, geodesi-
cally complete Alexandrov space with curvature ≤ κ. Assume that a point
x ∈ X

2 satisfies the following:

H2
(
Bx(T ;X)

) /
ω2

κ(T ) < 3/2(3.2)

for some T ∈
(
0,CompκRad(x)

]
. Then, we have a positive number t =

tx > 0 such that Bx(t;X) is homeomorphic to a 2-dimensional open disk
B2 ⊂ R2.

Remark 3.7. The above local volume growth condition (3.2) is optimal
for Proposition 3.6: Actually, consider X = S2(1) t HS2(1)/equator, as in
Example 1.1, which is a CAT(1)-space. Then, every point x ∈ X

2 in the
attached equator satisfies H2

(
Bx(T ;X)

) /
ω2

1(T ) = 3/2 for any T ∈ (0, π],
and x never possess a neighborhood homeomorphic to a 2-disk.

Proof of Proposition 3.6. By Proposition 2.9 and the assumption (3.2), we
have

Hn
(
Bx(t;X)

)
ωn

1 (t)
≤
Hn
(
Bx(T ;X)

)
ωn

1 (T )
<

3
2

for any t ∈ (0, T ], n = 2. It then follows from Lemma 2.7 and (2.10) that

3
2

>
Hn
(
Bx(t;X)

)
ωn

1 (t)
→ Hn−1(ΣxX)
Hn−1

(
Sn−1(1)

) ≥ 1

as t ↘ 0. Now, note that ΣxX = (ΣxX)
1

by Lemma 2.2.
Next, we investigate the following 1-dimensional case:

Proposition 3.8. Let X be a compact, geodesically complete CAT(1)-space
satisfying X = X

1 and

H1(X) < (3/2)H1
(
S1(1)

)
.

Then, X is homeomorphic to S1.

Proof. Since X = X
1, we see that X has a structure of finite graph equipped

with the vertex set containing Sπ(X) (cf. Lemma 2.9 in [14]).
Suppose that Sπ(X) 6= ∅. Taking x ∈ Sπ(X), we have (at least three)

minimizing geodesics γx,i : [0, π] → X, i = 1, 2, 3, with γx,i(0) = x such that
γx,i

(
(0, π)

)
∩ γx,j

(
(0, π)

)
= ∅ for i 6= j since InjRad(x) ≥ π. This implies
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thatH1(X) ≥ (3/2)H1
(
S1(1)

)
, which contradicts to the present assumption.

Hence, Sπ(X) = ∅, and hence X is homeomorphic to S1. �

Recall that the point x ∈ X
2 in Proposition 3.6 has the space of directions

ΣxX which is a CAT(1)-space as researched in Proposition 3.8. Therefore,
Propositions 3.1 and 3.8 conclude Proposition 3.6. �

Thus, we have shown Proposition C. �

4. A sphere theorem for 2-dimensional CAT(1)-spaces.

In this section, we prove Theorems A and B.

4.1. Proof of Theorem A. First, we observe the following metric proper-
ties:

Lemma 4.1. For given n ∈ N, let X be a compact, geodesically complete
CAT(1)-space with X = X

n such that Hn(X) < (3/2)Hn
(
Sn(1)

)
. Then, the

following hold:
(i) For any x ∈ X, we have Hn−1(ΣxX) < (3/2)Hn−1

(
Sn−1(1)

)
.

(ii) For z1, z2 ∈ X with dX(z1, z2) = diamX, we obtain

X = Bz1(π;X) ∪Bz2(π;X).

Proof. (i): Now, (i) follows from the similar argument as that discussed in
the Proof of Proposition 3.6.

(ii): Suppose that, X 6= Bz1(π;X) ∪ Bz2(π;X), i.e., we have a point
z3 ∈ X satisfying dX(zi, z3) ≥ π, i = 1, 2. Then, since X is geodesically
complete, we have dX(z1, z2) = diamX ≥ π. Hence, we obtain Bzi(π/2;X)∩
Bzj (π/2;X) = ∅ for i 6= j, i, j = 1, 2, 3. Then, by Proposition 2.6, we have

Hn(X) ≥ Hn

(
3⊔

i=1

Bzi(π/2;X)

)
=

3∑
i=1

Hn
(
Bzi(π/2;X)

)
≥ 3ωn

1 (π/2) = (3/2)Hn
(
Sn(1)

)
.

This contradicts to the present assumptionHn(X) < (3/2)Hn
(
Sn(1)

)
, which

proves (ii). �

Here, we prove Theorem A:

Proof of Theorem A. Let X denote a compact, geodesically complete CAT(1)-
space satisfying X = X

2 and H2(X) < (3/2)H2
(
S2(1)

)
. Then, by Proposi-

tion 3.6 and Lemma 4.1.(i), X is a 2-dimensional topological manifold.
Now, we note that X can be covered by two contractible open sets by

Lemma 4.1.(ii). Hence, since X is 2-dimensional, we obtain

X = B2
1 ∪B2

2
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for some open 2-disks B2
1 , B2

2 . Then, the Jordan curve theorem concludes
that X is homeomorphic to S2.

In this way, we have completed the Proof of Theorem A. �

4.2. Proof of Theorem B. First, we study the 1-dimensional case:

Proposition 4.2. Let X be a compact, geodesically complete CAT(1)-space
with X = X

1 such that H1(X) = (3/2)H1
(
S1(1)

)
. Then, X is either a circle

or isometric to S1(1) tHS1(1)/equator.

Then, we again recall that X has a structure of finite graph equipped
with the vertex set containing Sπ(X) since X = X

1.
Here, let S1(1) t [0, π]/p={0},p̂={π} denote the CAT(1)-space as in Exam-

ple 1.1.(ii). Then, note that S1(1) t HS1(1)/equator is isometric to S1(1) t
[0, π]/p={0},p̂={π}.

Proof of Proposition 4.2. Let us denote by {zi} a maximal π-discrete set in
X, i.e., dX(zi, zj) ≥ π for i 6= j.

First, note that ]{zi} ≥ 2 for any maximal π-discrete set {zi} ⊂ X since
X is geodesically complete. On the other hand, from Proposition 2.6 and
the present assumption H1(X) = (3/2)H1

(
S1(1)

)
, we can conclude that

]{zi} ≤ 3 for any such {zi} ⊂ X.

Claim 4.3. Let X be as in Proposition 4.2. If ]{zi} = 2 for any maximal
π-discrete set {zi} ⊂ X, then X is a circle.

Proof. Take a maximal π-discrete set {z1, z2} ⊂ X. It then follows from the
maximality of {z1, z2} ⊂ X that X = Bz1(π;X) ∪Bz2(π;X).

Suppose that some point x ∈ X is contained in Sπ(X), i.e., x is the
vertex of X. Then, since InjRad(x) ≥ π, we have at least three minimiz-
ing geodesics γx,k : [0, π] → X, k = 1, 2, 3, with γx,k(0) = x such that
γx,k

(
(0, π)

)
∩ γx,l

(
(0, π)

)
= ∅ for k 6= l. Hence, we obtain a π-discrete

set
{
γx,k(π/2)

}
k=1,2,3

⊂ X. This is a contradiction to the assumption in
Claim 4.3. Hence, X is a circle. �

Claim 4.4. Let X be as in Proposition 4.2. If ]{zi} = 3 for some maximal
π-discrete set {zi} ⊂ X, then X is isometric to the CAT(1)-space S1(1) t
HS1(1)/equator.

Proof. In this case, by Proposition 2.6 and the present volume assumption
H1(X) = (3/2)H1

(
S1(1)

)
, we see that Bzi(π/2;X) is isometric to [0, π] for

each i = 1, 2, 3. Considering how Bzi(π/2;X), i = 1, 2, 3, meet each other,
we can show that X = S1(1) tHS1(1)/equator. �

Therefore, Claims 4.3 and 4.4 conclude Proposition 4.2. �
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Here, let us begin proving Theorem B:

Proof of Theorem B. For a while, we denote by X, as in Theorem B,
a compact, geodesically complete CAT(1)-space with X = X

2 such that
H2(X) = (3/2)H2

(
S2(1)

)
. Then, similarly to the Proof of Proposition 4.2,

we see that ]{zi} = 2 or 3 for any maximal π-discrete set {zi} ⊂ X from
Proposition 2.6 and the present assumption H2(X) = (3/2)H2

(
S2(1)

)
. We

now note that, for any x ∈ X, the space of directions ΣxX is either a circle
or isometric to S1(1)tHS1(1)/equator by Lemma 2.2, (2.2), Propositions 3.8
and 4.2.

Lemma 4.5. Let X be as in Theorem B. If ]{zi} = 2 for any maximal
π-discrete set {zi} ⊂ X, then X is homeomorphic to S2.

Proof. For a maximal π-discrete set {z1, z2} ⊂ X, we have

X = Bz1(π;X) ∪Bz2(π;X)

from the maximality of {z1, z2} ⊂ X.
We next show that ΣxX is a circle for every x ∈ X. Suppose that

ΣxX is isometric to S1(1) tHS1(1)/equator, and hence, isometric to S1(1) t
[0, π]/p={0},p̂={π}. Then, consider the three minimizing geodesics γk : [0, π]
→ ΣxX, k = 1, 2, 3, such that γk(0) = p, γk(π) = p̂, and that γk

(
(0, π)

)
∩

γl

(
(0, π)

)
= ∅ for k 6= l. We now take the direction vk := γk(π/2) ∈ ΣxX,

and a point yk ∈ X satisfying vxyk
= vk ∈ ΣxX and dX(x, yk) = π/2. Since

∠x(yk, yl) = π for k 6= l in this case, {yk}k=1,2,3 ⊂ X forms a π-discrete set
in X. This is a contradiction to the assumption in Lemma 4.5. Hence, ΣxX
is a circle for every x ∈ X.

Therefore, by Proposition 3.1, the space X is a 2-dimensional topological
manifold. Similarly to the Proof of Theorem A, we can show that X is
homeomorphic to S2. �

Lemma 4.6. Let X be as in Theorem B. If ]{zi} = 3 for some maximal
π-discrete set {zi} ⊂ X, then X is either homeomorphic to S2 or isometric
to S2(1) tHS2(1)/equator.

Proof of Lemma 4.6. In this case, by Proposition 2.6 and the assump-
tion H2(X) = (3/2)H2

(
S2(1)

)
, we also see that Bzi(π/2;X) is isometric to

HS2(1) for each i = 1, 2, 3, and that X = ∪
{
Bzi(π/2;X)|i = 1, 2, 3

}
.

Next, we observe how Bzi(π/2;X), i = 1, 2, 3, meet each other along their
boundaries S1

i (1) := ∂Bzi(π/2;X).

Claim 4.7. Bzi(π/2;X)∩Bzj (π/2;X) = S1
i (1)∩S1

j (1) is a nonempty subset
of X for each i 6= j.

Proof. We here only verify that Bzi(π/2;X) ∩ Bzj (π/2;X) 6= ∅ for each
i 6= j.
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Suppose that Bzi(π/2;X) ∩ Bzj (π/2;X) = ∅ for some i 6= j. Then, for
such i, we have Bzi(π/2;X) ∩ Bzk

(π/2;X) 6= ∅, in particular, we see that
Bzi(π/2;X)∩Bzk

(π/2;X) is a closed, convex subset isometric to S1(1) since
X is geodesically complete.

On the other hand, for such j, the set Bzj (π/2;X) ∩Bzk
(π/2;X) is also

a closed, convex subset isometric to S1(1), which yields a contradiction. �

Now, the connected finite graph ∪S1
i (1) = ∪

{
S1

i (1)|i = 1, 2, 3
}

equips the
interior distance dX because S1

i (1) is isometrically embedded in X. Hence,
the injectivity radius of ∪S1

i (1) is not smaller than π.
Furthermore, the diameter of ∪S1

i (1) is equal to π: Actually, we only verify
the following essential case: Some points xi ∈ S1

i (1) and xj ∈ S1
j (1) satisfy

xi 6∈ S1
j (1) and xj 6∈ S1

i (1). Then, by Claim 4.7, we have xi, xj ∈ S1
k(1), and

hence dX(xi, xj) ≤ π.
It is seen by Lemma 6.1 in [4] (cf. [6]) that such a graph ∪S1

i (1) is isometric
to either S1(1) or S1(1) tHS1(1)/equator.

If ∪S1
i (1) = S1(1), then X is isometric to S2(1) t HS2(1)/equator. If

∪S1
i (1) = S1(1) tHS1(1)/equator, then X is homeomorphic to S2. This com-

pletes the Proof of Lemma 4.6. �

Thereby, we have proved Theorem B. �

5. Topological embeddings of CAT(κ)-spaces
of dimension not greater than 2.

5.1. On the local structure of 2-dimensional spaces with curvature
bounded above. The local structure of spaces with curvature bounded
above has been studied by Burago and Buyalo [8], Kleiner [12], and others.
We here observe the local structure of spaces of the Hausdorff dimension
not greater than 2.

Let us denote by X a locally compact, geodesically complete Alexandrov
space with curvature ≤ κ satisfying X = X̂2. Then, we obtain the following:

Proposition 5.1. X = X
2 ∪ X

1 ∪ X
0. In particular, X

2
, X

0 are closed,
and X

1 is open in X.

A direction v ∈ ΣxX is said to be isolated if ∠x(u, v) = π for any u ∈ ΣxX.
In this case, the subset {v} itself is a connected component of ΣxX.

To show Proposition 5.1, we first study isolated directions:

Lemma 5.2. Let x ∈ X be a point possessing an isolated direction v ∈
ΣxX. Then, we have a positive number t = tx,v > 0 satisfying the following:
If γ1 and γ2 are minimizing geodesics emanating from x directed by v, then
γ1(t) = γ2(t) holds for any t ∈ (0, t).
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Proof. Suppose that this claim is not true. We may now assume the follow-
ing: There exist yi, zi, wi ∈ X \ {x} with yi, zi, wi → x such that:

(i) ti := dX(x, yi) = dX(x, zi),
(ii) yi ∈ xwi, yi 6= zi,
(iii) v = vxyi = vxzi = vxwi ∈ ΣxX.

Let pi ∈ X be a point with zi ∈ yipi so that dX(yi, pi) is uniformly
constant. Then, we may assume that there is p0 6= x satisfying pi → p0,
xpi → xp0, and vxpi → vxp0 ∈ ΣxX. Since ∠x(yi, zi) = 0, the inequality
∠yi(wi, pi

)
≥ π/2 − ϑ(ti) follows from comparison geometry. Because v ∈

ΣxX is isolated, we have ∠x(yi, p0) = π from the upper semi-continuity of
angles. The choice of pi, p0 implies that vxpi , vxp0 are uniformly contained in
the same connected component of ΣxX, which also implies ∠x(yi, pi) = π.
Since x 6∈ yipi, we obtain a contradiction. �

Remark 5.3. Lemma 5.2 also holds independently of the assumption X =
X̂2.

Proof of Proposition 5.1. Let us consider the essential case X
0 = ∅. Assume

that we have a point x ∈ X with x 6∈ X
2. Then, since X = X̂2, there exists

t > 0 such that H2
(
Bx(t;X)

)
= 0. Because of the existence of the Lipschitz

onto map

logx : Bx(t;X) 3 y 7→
(
vxy, dX(x, y)

)
∈ BF(t;CxX)

(logx(x) := F), we have H1(ΣxX) = 0. This implies that ΣxX is composed
of at most finitely many isolated points. Hence, by Lemma 5.2, we have
x ∈ X

1.
Furthermore, it is known by [15] that X

2 is closed. Therefore, we obtain
Proposition 5.1. �

Next, we investigate the 2-dimensional part. Let us define

R2
x(t) :=

{
y ∈ X|y ∈ X

2
, dX(x, y) < t

}
,

R
2
x(t) :=

{
y ∈ X \ {x}|vxy ∈ (ΣxX)

1
, dX(x, y) < t

}
∪ {x}.

Lemma 5.4. For any x ∈ X
2, there exists a positive number tx > 0 such

that R2
x(t) = R

2
x(t) for any t ∈ (0, tx).

Proof. To show R2
x(t) ⊂ R

2
x(t), suppose that we have some points yi, i =

1, 2, . . . , converging to x with yi ∈ X
2 such that vxyi ∈ ΣxX are isolated.

Since ΣxX is compact, we may assume vxyi = v for some isolated direction
v. Then, Lemma 5.2 yields that yi ∈ X

1 for any sufficiently large i, which
is a contradiction.

On the other hand, suppose that we have a point y ∈ R
2
x(t) such that

y 6∈ X
2. Now, y ∈ X

1 follows from Proposition 5.1. Then, the existence of
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logx implies that vxy is isolated, which is a contradiction. Hence, we obtain
R

2
x(t) ⊂ R2

x(t). �

We here claim the local convexity of the 2-dimensional part.

Proposition 5.5. For any x ∈ X
2, there exists tx > 0 such that R2

x(t) is
convex in X for any t ∈ (0, tx). In other words, X

2 is locally convex in X.

Proof. Suppose this claim is not true, i.e., suppose that there exist points
yi, zi ∈ X

2 with yi, zi → x such that we have a point wi ∈ yizi ∩X
1.

If x 6∈ yizi for infinitely many i, then vxwi are isolated by Lemma 5.4.
This implies that ∠x(yi, wi) = π, which yields a contradiction.

If x ∈ yizi for infinitely many i, then without loss of generality we may
assume that wi 6= x is contained in xyi. Then, by Lemma 5.4, vxyi =
vxwi ∈ (ΣxX)

1
, and hence wi ∈ X

2. This is a contradiction. We thus prove
Proposition 5.5. �

Remark 5.6. Let x ∈ X
2 be a point such that the space of directions ΣxX

is composed of a circle and finitely many points. Then, by Propositions 3.1
and 5.5, we completely understand the local topological structure around x.
Namely, R2

x(t) is homeomorphic to B2, and Bx(t;X) is composed of R2
x(t)

and the finitely many minimizing geodesics emanating from x directed by
the isolated directions for sufficiently small t > 0. This proposition can be
also proved by the results of Kleiner, Burago and Buyalo [8].

5.2. A topological embedding into CAT(1)-spaces of dimension
≤ 2. Next, we prove the following which is a generalization of Theorem A:

Theorem 5.7. Let X be a compact, geodesically complete CAT(1)-space
with X = X̂2, X

2 6= ∅ satisfying H2(X) < (3/2)H2
(
S2(1)

)
. Then, the com-

pact, locally convex subset Y := X
2 ⊂ X is a Lipschitz manifold homeomor-

phic to S2. Moreover, Y is a compact, geodesically complete CAT(1)-space
with respect to the interior distance in Y .

Proof. Now, we define Y := X
2. Then, ΣxX is composed of a circle and at

most finitely many points for every x ∈ Y from the assumption H2(X) <
(3/2)H2

(
S2(1)

)
and the same argument as that discussed in Propositions 3.6

and 3.8. Hence, by Remark 5.6, R2
x(t) is homeomorphic to B2, and Bx(t;X)

is the union of R2
x(t) and the finitely many minimizing geodesics emanating

from x for sufficiently small t > 0. Therefore, we see that Y is a compact,
2-dimensional Lipschitz manifold without boundary.

Let us consider the interior distance dY in Y induced from dX . Then, by
Proposition 5.5, dY locally coincides with dX . Hence, Y is an Alexandrov
space with curvature ≤ 1. Furthermore, for any y1, y2 ∈ Y with dX(y1, y2) <
π, we have dY (y1, y2) = dX(y1, y2) from the CAT(1)-property of X. Since
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InjRad(Y ) ≥ π, we can show that Y is a compact, geodesically complete
CAT(1)-space with Y = Y

2 such that H2(Y ) < (3/2)H2
(
S2(1)

)
. Therefore,

Theorem A implies Theorem 5.7. �

Remark 5.8. The set Y as that stated in Theorem 5.7 is not necessarily
globally convex in X since a minimizing geodesic in X joining y1, y2 ∈ Y
possibly passes through some 1-dimensional part.
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6. Addendum from a topological view point

From the preceding observation, it is perspective to be shown that:

Conjecture 6.1. For given positive integer n ≥ 3, let X be a compact,
geodesically complete CAT(1)-space satisfying X = X

n and the following:
Hn(X) < (3/2)Hn

(
Sn(1)

)
. Then, X is homeomorphic to Sn.

The author does not know an example of X as in the assumption in 6.1,
which is not homeomorphic to Sn.

Actually, by the arguments discussed above and the generalized Schoen-
flies theorem (cf. [21]), we can show the following which has been essentially
proved by Coghlan and Itokawa [9]:

Theorem 6.2. Let M be a compact, smooth Riemannian manifold of di-
mension n which is also a CAT(1)-space. Assume that the following holds:
Hn(M) < (3/2)Hn

(
Sn(1)

)
. Then, M is homeomorphic to Sn.

Also, in the previous section, Proposition 3.1 plays an important role to
study spaces with curvature bounded above from a topological view point.
As a natural question, we provide:

Conjecture 6.3. Let x ∈ X be a point in a locally compact, geodesically
complete Alexandrov space with curvature ≤ κ such that ΣxX is homeomor-
phic to Sn−1 for given n ≥ 3. Then, x has a neighborhood homeomorphic to
some n-dimensional open disk.

The essential part of the problem in 6.3 is to observe singular points with
serious singularities because of Theorem 3.1 in [8].

For finite dimensional Alexandrov spaces with curvature bounded below,
it is known that the proposition as in 6.3 is affirmative from Perelman’s
stability theorem ([18]): For a given space, if the other space of the same
dimension is sufficiently close to it with respect to dGH , then they are home-
omorphic.

Our problem in 6.3 is different from that of the stability theorem. Kleiner
([12]) points out that, in general, the stability theorem does not hold for
locally compact, geodesically complete spaces with curvature bounded above
(cf. Example 2.7 in [14]).

In fact, for an arbitrary ε > 0, we can construct an example of com-
pact, geodesically complete CAT(1)-space Xε with Xε = X

2
ε satisfying the

following:

(i) H2(Xε) ∈
(
2H2

(
S2(1)

)
, 2H2

(
S2(1)

)
+ ε
)
.

(ii) Xε admits no triangulation.
(iii) Xε converges to S2(1) t S2(1)/equator with respect to dGH as ε → 0.

Here, S2(1) t S2(1)/equator denotes the quotient space obtained by gluing
S2(1) and S2(1) along their equators. This example Xε can be constructed
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by the similar way to that stated in Example 2.7 in [14]. Roughly speaking,
the construction of Xε is as follows:

First, we construct a region Cε ⊂ R2 as in Figure 3, composed of a
sequence of quadrangles whose size tend to 0, surrounded by two piecewise
broken curves cε and cε joining pε and the limit point p̂ε, such that the lengths
of cε and cε is not greater than π, and that the area of Cε is bounded above
by ϑ(ε).

Cǫ

ϑ(ǫ)
cǫ

cǫ

pǫ p̂ǫ

Figure 3. A region Cε ⊂ R2.

Next, we prepare a region W 1
ε ⊂ S2(1) = HS2(1) t HS2(1)/equator as in

Figure 4 with its boundary ∂W 1
ε such that:

(i) HS2(1) is a proper subset of W 1
ε .

(ii) The area of W 1
ε \HS2(1) is bounded above by ϑ(ε).

(iii) Let us also prepare another three regions W i
ε , i = 2, 3, 4, isometric

to W 1
ε . If we choose an appreciate subarc τ i

ε (i = 1, 2, 3, 4) of ∂W i
ε ,

then the quotient space Xε := Cε t (t4
i=1W

i
ε )/∼ made by the relations

τ1
ε = cε = τ2

ε and τ3
ε = cε = τ4

ε is a compact, geodesically complete
CAT(1)-space.

To realize this, we must be careful of the “geodesic curvature” (in a gener-
alized sense) of cε, cε, τ

i
ε , and ∂W i

ε .

W
i

ǫ ⊂ S
2(1)

∂W
i

ǫ

HS
2(1)

Figure 4. A region W i
ε ⊂ S2(1).

In this way, we can obtain such a wild example Xε which admits no
triangulation around p̂ε ∈ Cε ⊂ Xε. Furthermore, its construction implies
that Xε converges to S2(1)tS2(1)/equator with respect to dGH as ε → 0, and
then, H2(Xε) → H2

(
S2(1) t S2(1)/equator

)
.

We hence mention that the following problem is still open:
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Problem 6.4. Describe the homeomorphism type of a given, compact, geo-
desically complete CAT(1)-space X satisfying X = X

2 and

H2(X) ∈
(
(3/2)H2

(
S2(1)

)
, 2H2

(
S2(1)

)]
.

On the other hand, we can observe the number of the homotopy types of
such CAT(1)-spaces. We now discuss it more generally as follows:

For given constants κ ∈ R, n ∈ N, V > 0, and R > 0, let us denote
by A(κ, n, V, R) the isometry classes of all compact, geodesically complete
Alexandrov spaces with curvature ≤ κ such that X = X

n, Hn(X) ≤ V , and
that CATκRad(x) ≥ R for every x ∈ X.

For X ∈ A(κ, n, V, R), the compactness of X and the condition that
CATκRad(x) ≥ R for every x ∈ X guarantee the following ([20], cf. Lemma
I.7A.15 in [7]): X is homotopy equivalent to a finite Euclidean simplicial
complex K which is the nerve obtained by a finite covering

U =
{
Bxi(R/10;X)|i ∈ IX

}
of X such that {xi}i∈IX

is a maximal (R/20)-discrete set in X.
Now, by Proposition 2.6, the number of its covering IX is bounded above

by a constant depending only on κ, n, V , and R. Therefore, we have the
following:

Proposition 6.5. For given constants κ ∈ R, n ∈ N, V > 0, and R > 0,
the number of the homotopy types of A(κ, n, V, R) is bounded above by a
constant depending only on κ, n, V , and R.

In particular, the number of those of the isometry classes C(n, V ) of
CAT(1)-spaces defined in Section 1 is bounded above by a constant depending
only on n and V .
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