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We study bounded univalent functions f(z) that map the
unit disk into itself such that f(0) = 0 and the angular limits
f(ζk) with the angular derivatives f ′(ζk) exist at fixed points
ζk of the unit circle, k = 1, . . . , n. We use a general inequal-
ity of Schiffer-Tammi type obtained earlier by the authors and
discuss the cases of the equality sign. Sharp estimates of func-
tionals are obtained in classes of such functions. An explicit
form of extremal functions is deduced. Since one of the meth-
ods of solution is based on the extremal partition of the unit
disk, we are also concerned with some geometric problems. In
particular, we study the problem of the maximum of the sum
of the reduced moduli of digons and circular domains. As a
corollary we derive sharp estimates of functionals dependent
on (|f ′(0)|, |f ′(ζ1)f ′(ζ2)|).

1. Introduction and preliminaries.

We denote by D the unit disk {z : |z| < 1} and set T := ∂ D. An important
notion in the problems of the boundary behavior of conformal maps (see
[10]) is the Stolz angle at a point ζ ∈ T that is of the form

∆ζ = {z ∈ D : | arg (1− ζz)| < θ, |z − ζ| < η},

with θ ∈
(
0,
π

2

)
, η ∈ (0, 2 cos θ).

We say that f has the angular limit a ∈ C at ζ ∈ T if f(ζ) → a as z ∈ ∆ζ ,
z → ζ for any Stolz angle ∆ζ at ζ. We denote this angular limit by f(ζ). If
the limit f(z) → a exists for all z ∈ D, z → ζ, then f becomes continuous
at ζ as a function in D ∪ {ζ}. As one can see in [10] univalent functions
in D have the angular limits at almost all points in T but are continuous
there only in some restricted cases. Let us consider functions f that map the
disk D into itself. Then the angular limit f(ζ) exists for almost all ζ ∈ T.
Moreover, the exceptional set in T has zero capacity.
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We say that f has the angular derivative f ′(ζ) at ζ ∈ T if the finite
angular limit f(ζ) exists and if

lim
z→ζ, z∈∆ζ

f(z)− f(ζ)
z − ζ

= f ′(ζ).

The angular derivative f ′(ζ) exists if and only if the analytic function f ′(z)
has the angular limit f ′(ζ) (see [10, Proposition 4.7]). Generally very little
can be said about the existence of the angular derivative. However, for self-
maps of D the Julia-Wolff lemma (see [10, Proposition 4.13]) implies that
the angular derivative f ′(ζ) exists for all points ζ where the angular limit
f(ζ) exists and |f(ζ)| = 1 even without assumption of univalence. Further-
more, for the case of univalent functions the McMillan Twist Theorem [8]
says that the angular derivative is finite at almost all such points. Thus, the
points ζ such that |f(ζ)| = 1 are of particular interest.

In [11] we studied some extremal problems for univalent functions f :
D → D such that f(0) = 0 and the angular limits (whose absolute value is
equal to 1) exist as well as the finite angular derivatives at certain points
of T. Several inequalities have been derived to obtain sharp estimates of
functionals dependent on the angular derivatives. We have proved that the
functions are bilipschitz in the set of T where the angular limits exist as
well as the finite angular derivatives. In particular, we have considered the
noncompact class of functions f(z) : D → D such that f(0) = 0, f(1) = 1
with the angular derivative f ′(1) fixed. We have found the sharp lower
estimate |f ′(1)| ≥ 1/

√
|f ′(0)|, the lower estimates of |f(z)| dependent on

the value of |f ′(0)| fixed. In [17] A. Vasil’ev has used the extremal partition
of D by digons to deduce the sharp lower boundary curve for the range of
the system of functionals (|f(r)|, |f ′(r)|), 0 < r < 1.

In [11, Theorem 2.1] we have derived two positive semi-definite quadratic
forms from the Schiffer-Tammi analog [12] for the Grunsky inequality (com-
pare [9, Corollary 4.3]). §2 is devoted to the explicit form of the extremal
functions for these forms to vanish. As a corollary we obtain the sharp es-
timate of a functional dependent on |f ′(ζ1)| and |f ′(ζ2)|. Namely, we will
derive the inequality∣∣∣∣f(ζ1)− f(ζ2)

ζ1 − ζ2

∣∣∣∣2t1t2 ≥ 1√
|f ′(0)||f ′(ζ1)|t

2
1 |f ′(ζ2)|t

2
2

,(1.1)

which is sharp for all ζ1, ζ2 ∈ T and t1, t2 ≥ 0, t1 + t2 = 1. In particular,
for t1 = t2 = 1/2 we have the inequality [11, Corollary 3.3]. The extremal
functions will map D onto D with one or two analytic slits.

An important part of the theory of conformal maps is conformal invariants
and various notions connected with them. One of the topical conformal
invariants is the modulus of a doubly connected hyperbolic domain in the
Riemann sphere C or a Riemann surface. This modulus remains the same



ANGULAR DERIVATIVES ... 427

under a conformal map. Another quantity which is very much used in the
theory of distortion is the reduced modulus m(D, a) of a simply connected
hyperbolic domain D with respect to a fixed point a ∈ D which we call a
circular domain. Let the symbol R(D, a) stand for the conformal (interior)
radius of a domain D ⊂ C with respect to a point a with a 6= ∞, or
R(D,∞) = eγ where γ is the Robin constant otherwise. Then m(D, a) =
1
2π log R(D, a) or m(D,∞) = − 1

2π log cap (∂ D) (see e.g., [3, 5, 6]). If f
is a conformal map from D into C, f(a) 6= ∞, then the reduced modulus
changes according to the rule m(D, a) + 1

2π log |f ′(a)| = m(f(D), f(a)).
Or, if D is a simply connected hyperbolic domain, a ∈ D, |a| < ∞ and
f(z) = a−1/(z − a) + a0 + a1(z − a) + . . . is a conformal map from D, then
m(f(D),∞) = m(D, a)− 1

2π log |a−1|.
We are concerned also with another quantity that has appeared rather

recently in [2, 7, 14] and now is used actively for extremal problems for
conformal maps (see [2, 7, 16, 17]) which is called the reduced modulus of
digon. Let us mention here that a discussion about the term digon-bigon-
biangle that has appeared in [11, p. 89] does not belong to the authors and
has been added to the final version of the paper by the editor of the journal.
Now we define the reduced moduli of digons. For details we refer to the
papers by E.G. Emel’yanov [2], G.V. Kuz’mina [7], some recent results can
be read in [14].

Let D be a hyperbolic simply connected domain in C with two finite fixed
boundary points a, b (maybe with the same support) on its piecewise smooth
boundary. It is called a digon. We set the region S(a, ε) that is a connected
component of D ∩ {|z − a| < ε} with the point a on its border. Denote by
Dε the domain D \ {S(a, ε1) ∪ S(b, ε2)} for sufficiently small ε1,2. Denote
by M(Dε) the modulus of the family of arcs in Dε joining the boundary
arcs of S(a, ε1) and S(b, ε2) that lie in the circumferences |z − a| = ε1 and
|z − b| = ε2 (we choose a single arc in each circle so that both arcs can be
connected in Dε). If the limit

m(D, a, b) = lim
ε1,2→0

(
1

M(Dε)
+

1
ϕa

log ε1 +
1
ϕb

log ε2

)
,(1.2)

exists, where ϕa = sup ∆a and ϕb = sup∆b are the inner angles and ∆a,b

is the Stolz angle inscribed in D at a or b respectively, then it is called the
reduced modulus of the digon D. Various conditions guarantee the existence
of this modulus, however, even in the case of piecewise analytic boundary
there are examples [14] which show that it is not always the case. The
existence of the limit (1.2) is a local characteristic of the domain D (see
[14, Theorem 1.2]). If the domain D is conformal (see the definition in
[10, p. 80]) at the points a and b, then [14, Theorem 1.3] this condition is
sufficient for the limit (1.2) to exist.
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More generally, suppose that there exists a conformal map f(z) of the
domain S(a, ε1) ⊂ D onto a circular sector so that there exists the angular
limit f(a) which is the vertex of this sector and with the angle ϕa. If the
function f has the angular finite nonzero derivative f ′(a) we say that the
domain D is also conformal at the point a (compare [10, p. 80]). If the digon
D is conformal at the points a, b, then the limit (1.2) exists [14].

Suppose that there exists a conformal map f(z) of the digon D (which
is conformal at a, b) onto a digon D′ so that there exist the angular limits
f(a), f(b) with the inner angles ψa and ψb at the vertices f(a) and f(b)
which we also understand as the supremum over all Stolz angles inscribed
in D′ with the vertices at f(a) or f(b) respectively. If the function f has the
angular finite nonzero derivatives f ′(a) and f ′(b) then ϕa = ψa, ϕb = ψb,
and the reduced modulus (1.2) exists and changes according to the rule

m(f(D), f(a), f(b)) = m(D, a, b) +
1
ψa

log |f ′(a)|+ 1
ψb

log |f ′(b)|.(1.3)

If we suppose, moreover, that f has the expansion

f(z) = w1 + (z − a)ψa/ϕa(c1 + c2(z − a) + . . . )

in a neighborhood of the point a, and the expansion

f(z) = w2 + (z − b)ψb/ϕb(d1 + d2(z − a) + . . . )

in a neighborhood of the point b, then the reduced modulus of D changes
according to the rule

m(f(D), f(a), f(b)) = m(D, a, b) +
1
ψa

log |c1|+
1
ψb

log |d1|.(1.4)

Obviously, one can extend this definition to the case of vertices with the
infinite support.

We also consider a quantity which is called the reduced modulus of a
triangle. It closely connected with the reduced modulus of a digon. For
details we refer to the paper by A.Yu. Solynin [14].

LetD be a hyperbolic simply connected domain in C with three finite fixed
boundary points z1, z2, and a on its piecewise smooth boundary. Denote by
Dε the domain D \ S(a, ε1) for a sufficiently small ε. Denote by M(Dε) the
modulus of the family of arcs in Dε joining the boundary arc of S(a, ε) that
lies in the circumference |z − a| = ε with the leg of the triangle D which is
opposite to a. If the limit

m∆(D, a) = lim
ε→0

(
1

M(Dε)
+

1
ϕa

log ε
)

exists, where ϕa is the inner angle defined as before, then it is called the
reduced modulus of the triangle D. The conditions for the reduced modulus
to exist are similar to those for the reduced modulus of digons. It turns
out that the reduced modulus exists if D is conformal at a. If there exists
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a conformal map f(z) from the triangle D onto a triangle D′ so that there
exists the angular limit f(a) with the inner angle ψa at the vertex f(a), if
the function f has the angular finite nonzero derivative f ′(a), then ϕa = ψa
and the reduced modulus of D exists and changes [14] according to the rule

m∆(f(D), f(a)) = m∆(D, a) +
1
ψa

log |f ′(a)|.

If we suppose, moreover, that f has the expansion

f(z) = w1 + (z − a)ψa/ϕa(c1 + c2(z − a) + . . . )

in a neighborhood of the point a, then the reduced modulus of D changes
according to the rule

m∆(f(D), f(a)) = m∆(D, a) +
1
ψa

log |c1|.

In §3 we consider two cases of extremal partitions of D by digons and
circular domains, and calculate the extremal value of the weighted sum of
their reduced moduli.

In §4 we apply the results of §3 to derive some sharp estimates for function-
als in the class of bounded univalent functions with the angular derivatives
fixed. Also we give there another proof of (1.1) to examplify the method.

In many cases, the extremal function is the classical conformal Pick map

pα(z) =
4αz(

1− z +
√

(1− z)2 + 4αz
)2 = αz + . . .

of D onto D \ [−1, −α/(1 +
√

1− α)2]. It satisfies the identities

pα(z)
(1− pα(z))2

=
αz

(1− z)2
,

pα(z)
(1 + pα(z))2

=
αz

(1− z)2 + 4αz
.

We denote rotations of the Pick function by gκ
α (z) ≡ eiκpα(e−iκz) specifying

every time the angle κ.

2. The equality in the Schiffer-Tammi inequality.

Let the function f(z) = αz + . . . (0 < α ≤ 1) be univalent in D and let
f(D) ⊂ D. We define ajk = akj (j, k = 0, 1, . . . ) and a∗jk = a∗kj (j, k =
1, 2, . . . ) by

log
f(z)− f(ζ)

z − ζ
=

∞∑
j=0

∞∑
k=0

ajkz
jζk, (z, ζ ∈ D),(2.1)

− log [1− f(z)f(ζ)] =
∞∑
j=1

∞∑
k=1

a∗jkz
jζ
k
, (z, ζ ∈ D).(2.2)
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We mention that here and further on the removable singularity has been
removed. M. Schiffer and O. Tammi [12] have shown that

Re

 ∞∑
j=0

∞∑
k=0

ajkλjλk

+
∞∑
j=1

∞∑
k=1

a∗jkλjλk ≤
∞∑
k=1

|λk|2

k
(2.3)

for λ0 ∈ R, λk ∈ C (k = 1, 2, . . . ); the case λ0 = 0 is due to Z. Nehari (see
also [9, Theorem 4.2]).

In [11] we have derived two positive semi-definite quadratic forms from
the Schiffer-Tammi inequality (2.3); compare [9, Corollary 4.3]. For the
completeness we also give here the proof.

Theorem 2.1 ([11, Theorem 2.1]). Let f(z) = αz + . . . be univalent in D
and f(D) ⊂ D. If zν ∈ D and wν = f(zν) for ν = 1, . . . , n and if xν ∈ R,
(ν = 0, . . . , n), then

(2.4) x2
0 log

1
α

+ 2
n∑
ν=1

x0xν arg
wν
zν

+
n∑
µ=1

n∑
ν=1

xµxν log
∣∣∣∣αzµzνwµwν

· wµ − wν
zµ − zν

· 1− wµwν
1− zµzν

∣∣∣∣ ≥ 0,

and

(2.5) x2
0 log

1
α

+ 2
n∑
ν=1

x0xν log
∣∣∣∣wνzν

∣∣∣∣
+

n∑
µ=1

n∑
ν=1

xµxν log
∣∣∣∣ zµ − zν
wµ − wν

· 1− wµwν
1− zµzν

∣∣∣∣ ≥ 0,

where by (wµ−wν)/(zµ−zν) we understand the derivative f ′(zµ) in the case
µ = ν.

Proof. (a) First we set

λ0 = −x0, λk = i
n∑
ν=1

xνz
k
ν , (k = 1, 2, . . . )

and obtain from the definitions (2.1) and (2.2) that

a00 = log α,
∞∑
k=1

ak0λk = i

n∑
ν=1

xν log
wν
αzν

,
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∞∑
j=1

∞∑
k=1

ajkλjλk = −
n∑
µ=1

n∑
ν=1

xµxν log
(
αzµzν
wµwν

· wµ − wν
zµ − zν

)
,

∞∑
j=1

∞∑
k=1

a∗jkλjλk = −
n∑
µ=1

n∑
ν=1

xµxν log (1− wµwν),(2.6)

∞∑
k=1

1
k
|λk|2 = −

n∑
µ=1

n∑
ν=1

xµxν log (1− zµzν).(2.7)

Hence (2.4) follows from the Schiffer-Tammi inequality (2.3).
(b) Now we set

λ0 = −x0 +
n∑
ν=1

xν , λk =
n∑
ν=1

xνz
k
ν , (k = 1, 2, . . . ).

We obtain from (2.1) and (2.3) that

∞∑
j=1

∞∑
k=1

ajkλjλk = x2
0 log α− 2x0

n∑
ν=1

xν log
wν
zν

+
n∑
µ=1

n∑
ν=1

xµxν log
wµ − wν
zµ − zν

while (2.6) and (2.7) continue to hold without change. Hence (2.5) follows
from the Schiffer-Tammi inequality (2.3) �

Now we discuss the equality sign in (2.4) and (2.5).

Proposition 2.2. Let f(z) = αz + . . . be univalent in D and f(D) ⊂ D,
α > 0. Assume zν ∈ D, wν = f(zν), and xν ∈ R, x1 + · · · + xn = 1 for
(ν = 1, . . . , n). Suppose that

n∑
µ=1

n∑
ν=1

xµxν log
∣∣∣∣αzµzνwµwν

· wµ − wν
zµ − zν

· 1− wµwν
1− zµzν

∣∣∣∣ = 0.(2.8)

Then

αz

f(z)

n∏
ν=1

(
1− f(z)/wν

1− z/zν

1− wνf(z)
1− zνz

)xν

≡ 1,(2.9)

provided

n∑
ν=1

xν arg
wν
zν

= 0.(2.10)
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Proof. We use an elementary result. If
n∑
µ=0

n∑
ν=0

bµνxµxν ≥ 0 for x0, . . . , xn ∈ R,(2.11)

n∑
µ=1

n∑
ν=1

bµνxµxν = 0,(2.12)

then
n∑
ν=1

b0νxν = 0.(2.13)

The inequality (2.4) of Theorem 2.1 satisfies (2.11) with

b00 = log
1
α
, b0ν = arg

wν
zν
, (ν = 1, . . . , n),

bµν = log
∣∣∣∣αzµzνwµwν

· wµ − wν
zµ − zν

· 1− wµwν
1− zµzν

∣∣∣∣ , (µ, ν = 1, . . . , n).

Moreover, our assumption (2.8) satisfies (2.12). Thus, our assertion (2.10)
follows from (2.13).

The same Theorem 2.1 satisfies (2.11) now with z ∈ D,

b00 = log
∣∣∣∣ αz2

f2(z)
f ′(z)

1− |f(z)|2

1− |z|2

∣∣∣∣ ,
b0ν = log

∣∣∣∣ αzνzwνf(z)
· f(z)− wν

z − zν
· 1− f(z)wν

1− zzν

∣∣∣∣ , (ν = 1, . . . , n),

and bµν for (µ, ν = 1, . . . , n) is defined as before. Now, the assumption (2.8)
and the equality (2.13) imply that

n∑
ν=1

xν log
∣∣∣∣ αzνzwνf(z)

· f(z)− wν
z − zν

· 1− f(z)wν
1− zzν

∣∣∣∣ ≡ 0

for z ∈ D. Finally, the equalities x1 + · · ·+ xn = 1 and f ′(0) = α yield the
assertion (2.9). �

Remarks.
1. The method of contour integration used by M. Schiffer and O. Tammi

gives no information about the equality sign problem.
2. If there exists a univalent function f(z) = αz+ . . . univalent in D and

f(D) ⊂ D, α > 0 which satisfies (2.9), then
n∏
ν=1

∣∣∣∣αzµzνwµwν
· wµ − wν
zµ − zν

· 1− wµwν
1− zµzν

∣∣∣∣xν

= 1, (µ = 1, . . . , n),

and this implies (2.8).



ANGULAR DERIVATIVES ... 433

Now we deduce the precise form of the extremal function.

Theorem 2.3. Assume xν > 0, (ν = 1, . . . , n), x1 + · · ·+xn = 1, the points
zν ∈ T are fixed and zν 6= zµ for µ 6= ν. Let points wν ∈ T preserve the same
cyclic order in T as the points zν and wν 6= wµ for µ 6= ν. Suppose that

n∑
ν=1

xν arg zν =
n∑
ν=1

xν arg wν (mod 2π).(2.14)

Then there exists α0 = α0(w1, . . . , wn) so that 0 < α0 ≤ 1 and α0 = 1 if
and only if wν = zν , (ν = 1, . . . , n). The function α0(w1, . . . , wn) depends
continuously on wν and the functional equation

f(z)
n∏
ν=1

(1− wνf(z))2xν

=
αz

n∏
ν=1

(1− zνz)2xν

, z ∈ D(2.15)

has a unique solution f(z) = αz+ . . . which is univalent in D and f(D) ⊂ D
if and only if 0 < α ≤ α0(w1, . . . , wn).

Proof. Set the complex vectors Z = (z1, . . . , zn), W = (w1, . . . , wn). We
define the function

g(z,Z) =
z

n∏
ν=1

(1− zνz)2xν

, z ∈ D.(2.16)

This function is univalent in D and g(D,Z) is a starlike domain. Rewriting
this formula for z = eiθ we obtain

g(eiθ,Z) =

(
n∏
ν=1

zν
xν

)
n∏
ν=1

(zνe−iθ − 2 + zνe
iθ)−xν .

Putting zν = eiθν we deduce

g(eiθ,Z) =

(
n∏
ν=1

(
−zν

4

)xν
)

n∏
ν=1

(
sin

θ − θν
2

)−2xν

.(2.17)

We set Θn =
n∑
ν=1

xν arg (−zν) and obtain from (2.17) that

C \ g(D,Z) =
n⋃
ν=1

{r exp(i(Θn + 2π(x1 + · · ·+ xν))) : rν(Z) ≤ r <∞},

(2.18)

where rν = rν(Z) > 0. We deduce from (2.14) that

C \ g(D,W) =
n⋃
ν=1

{r exp(i(Θn + 2π(x1 + · · ·+ xν))) : rν(W) ≤ r <∞},

(2.19)
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with the same value of Θn. Now define

α0(W) = min
ν

rν(W)
rν(Z)

,(2.20)

with Z fixed. Equation (2.15) can be written as

g(f(z),W) = αg(z,Z), z ∈ D.(2.21)

First we assume that Equation (2.15) or (2.21) have a unique solution
f : D → D. Therefore,

αg(D,Z) ⊂ g(D,W).(2.22)

We deduce by (2.18) and (2.19) that

αrν(Z) ≤ rν(W), for ν = 1, . . . , n(2.23)

and by (2.20) that α ≤ α0.
Vice versa, if α ≤ α0, then (2.23) holds which implies (2.22). This yields

that Equation (2.21) has a unique univalent solution.
Finally, if α0 ≥ 1, then rν(W) ≥ rν(Z) for ν = 1, . . . , n. So, g(z,Z) =

g(z,W) = z + . . . implies that rν(W) = rν(Z) and W = Z. �

Corollary 2.4. Let f : D → D and f(z) = αz + . . . . We have equality in
the inequality

n∑
µ=1

n∑
ν=1

xµxν log

∣∣∣∣∣ αzµzν
f(zµ)f(zν)

· f(zµ)− f(zν)
zµ − zν

· 1− f(zµ)f(zν)
1− zµzν

∣∣∣∣∣ ≥ 0,(2.24)

if and only if the extremal function f is the unique solution of (2.15) and
0 < α ≤ α0(W).

The inequality 0 < α < 1 yields that the space of the extremal functions
for (2.24) depends on n − 1 real parameters, because, the function α0(W)
is continuous and α0(Z) = 1 by (2.20).

Corollary 2.5. Let w = f(z) be a conformal map of the unit disk into itself,
f(0) = 0, such that for two points z1, z2 ∈ T the angular limits w1 = f(z1)
and w2 = f(z2) are also lie in T. Suppose also that the angular derivatives
f ′(z1), f ′(z2) are finite. If f ′(0) = α, then the inequality∣∣∣∣f(z1)− f(z2)

z1 − z2

∣∣∣∣2t1t2 ≥ 1
√
α|f ′(z1)|t12 |f ′(z2)|t22(2.25)

holds and is sharp for all t1, t2 ∈ (0,∞). If t1 + t2 = 1, then for all α ∈
(0, α0(w1, w2)] the extremal map w = f∗(z) is the unique solution of the
equation

w wt11 w
t2
2

(w − w1)2t1(w − w2)2t2
=

α z zt11 z
t2
2

(z − z1)2t1(z − z2)2t2
.(2.26)
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Remark. In terms of quadratic differentials the extremal function maps
the unit disk D onto itself minus one or two slits along the trajectories of
the differential

ψ(w)dw2 =
1

4π2

(w − eiη)2(w − eiξ)2

w2(w − w1)2(w − w2)2
dw2,

where ξ, η are calculated by the equations ξ + η = π + arg w1 + arg w2 and

t2 − t1 =
eiξ + eiη

w1 − w2
.

The latter assertion about the differential we will establish in §4.

3. Moduli and extremal partitions.

We consider in this section a general problem about the extremal partition of
the unit disk and deduce the properties of the weighted sum of the reduced
moduli of digons and circular domains.

Let D be the unit disk and D′ = D \ {0}. On the boundary T of D we fix
two points ζ1 = eiθ1 , ζ2 = eiθ2 , 0 ≤ θ1 < θ2 < 2π.

1. The first problem about the extremal partition we formulate as follows.
Set a nonzero weight vector (t1, t2) with nonnegative coordinates. We con-
struct two intervals γ1 = (0, eiθ1) and γ2 = (0, eiθ2) in D′. These curve
system {γ1, γ2} we call admissible in analogy with the terminology of [15].
Now we consider the pairs of non-overlapping digons (D1, D2) on D′ asso-
ciated with the curve system {γ1, γ2}, i.e., the digon Dj has its vertices at
0, eiθj , j = 1, 2. We require the digons D1 and D2 to be conformal at the
vertices and to satisfy the condition of compatibility of angles and weights,
i.e., ϕ(j)

0 = 2πtj
t1+t2

is the inner angle of the digon Dj at the origin and ϕ(j)
ζj

= π

is the inner angle of the digon Dj at the boundary point ζj , j = 1, 2. The
reduced moduli m(Dj , 0, ζj) exist. We call the system of defined digons the
admissible system of digons.

The results obtained in [2, 4, 6, 7] (see also [14]) imply that any collec-
tion of non-overlapping admissible digons associated with the curve system
(γ1, γ2) and the condition of compatibility of angles and weights satisfies the
following inequality

t21m(D1, 0, eiθ1) + t22m(D2, 0, eiθ2) ≥ t21m(D∗1, 0, e
iθ1) + t22m(D∗2, 0, e

iθ2)
(3.1)

for a fixed weight vector (t1, t2) with the equality sign only for Dj = D∗j .
We denote this minimum by M1(t1, t2, 0, eiθ1 , eiθ2) showing its dependence
on parameters.
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EachD∗j is a strip domain in the trajectory structure of a unique quadratic
differential

ϕ(z)dz2 = A
(z − eiγ)2(z − eiβ)2

z2(z − eiθ1)2(z − eiθ2)2
dz2, A > 0,(3.2)

associated with the problem of the extremal partition (see [2, 6, 7, 14] for
the details). The factor A is positive because of strip domains and the local
trajectory structure close to the origin (ϕ(z) = A

z2
(1+ . . . )). Here A, γ, and

β are functions of t1, t2. For D∗j there is a conformal map gj(z), z ∈ D∗j
satisfying the differential equation

t2j

(
g′j(z)
gj(z)

)2

= π2ϕ(z),(3.3)

that maps D∗j onto the digon H+ = {z : Im z > 0} with the vertices at 0
and ∞.

The critical trajectories of ϕ(z)dz2 split D′ into at most two strip domains
{D∗j} associated with the admissible system (one of D∗j can degenerate).

Theorem 3.1. Let t1, t1 ∈ (0,∞), 0 ≤ θ1 < θ2 < 2π, θ2 − θ1 ≤ π. Then

m(D∗1, 0, e
iθ1) =

t2
πt1

log
1

2| sin θ1−θ2
2 |

,

m(D∗2, 0, e
iθ2) =

t1
πt2

log
1

2| sin θ1−θ2
2 |

.

In the differential (3.2) we have

A =
(t1 + t2)2

4π2
, β = sin−1

(
t2 − t1
t2 + t1

sin
θ1 − θ2

2

)
+
θ1 + θ2

2
,

γ = π − β + θ1 + θ2,

and two critical trajectories of the differential ϕ(z)dz2 starting from the
origin under the angle ϕ(1)

0 = 2πt1
t1+t2

end at the points eiβ and eiγ.

Proof. First we observe that the unit circle T is a trajectory of the differential
(3.2). Therefore, −ϕ(eiθ)e2iθdθ2 > 0 at all regular points of T. This implies
that β + γ = π + θ1 + θ2.

Rotating the configuration by z → zei
θ1+θ2

2 without loss of generality we
assume that θ2 ∈ (0, π/2] and θ1 = −θ2.

Close to the origin the map g1(z) has the expansion g1 = zπ/ϕ
(1)
0 (c1+ . . . ).

Tending in (3.3) z → 0 for j = 1 we obtain t21

(ϕ
(1)
0 )2

= A. Close to the origin

the map g2(z) has the expansion g2 = zπ/ϕ
(2)
0 (c2 + . . . ). Tending in (3.3)

z → 0 for j = 2 we obtain t22

(ϕ
(2)
0 )2

= A. We calculate A = (t1+t2)2

4π2 and see
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that the extremal domains D∗1, D
∗
2 satisfy the condition of compatibility of

weights and angles. Close to the point eiθ1 the map g1(z) has the expansion
g1 = (z − eiθ1)(d1 + . . . ). Tending in (3.3) z → eiθ1 for j = 1 we obtain

2t1
t1+t2

= 1− sin β
sin θ1

or β = sin−1
(
t2−t1
t2+t1

sin θ1
)
.

Suppose j = 1. We take the square root in (3.3) and integrate it putting
the branch of the root so that g(0) = ∞ and g(eiθ2) = 0. We normalize the
function g(z) so that the part of the the boundary of D∗1 lying on the unit
circle is mapped into the real axis. Therefore, normalizing the imaginary
constant in the logarithm and exponentiating we obtain

g1(z) =
(z − eiθ1)(z − e−iθ1)t2/t1

z
t1+t2
2t1

e
i
“
θ1

t2−t1
2t1

−π
2

t1+t2
t1

”
.(3.4)

Suppose j = 2. By analogy to the previous case we obtain

g2(z) =
(z − eiθ1)t1/t2(z − e−iθ1)

z
t1+t2
2t2

e
i
“
θ1

t2−t1
2t2

−π
2

t1+t2
t2

”
.(3.5)

The reduced modulus of the digon H+ with respect to its vertices at 0 and∞
is equal to zero. Therefore, calculating the derivatives of the maps g1 and g2
and using the formulas (1.3), (1.4) on the change of the reduced moduli under
conformal map, we obtain the values of the reduced moduli m(D∗1, 0, e

iθ1),
m(D∗2, 0, e

iθ2) asserted in Theorem 3.1. This finishes the proof. �

Remark. The case θ2 − θ1 > π can be treated similarly and the moduli in
Theorem 3.1 are the same interchanging γ ↔ β.

2. Now we consider another problem about the extremal partition of D′.
In D′ with two fixed boundary points ζ1, ζ2 we set the admissible homotopy
curve system γ(m) = (γ1, γ

(m)
2 ), m = 1, 2. For definiteness we assume 0 ≤

θ1 < θ2 < 2π, θ2 − θ1 ≤ π. The case θ2 − θ1 > π is symmetric as it was
mentioned in the remark after Theorem 3.1. The curve γ1 is a circle {z :
|z| = ε} for a sufficiently small ε. γ(m)

2 is the segment [eiθ1 , eiθ2 ] for m = 1
or the broken line with the legs [eiθ1 ,−1

2e
i(θ2−θ1)/2] and [−1

2e
i(θ2−θ1)/2, eiθ2 ]

for m = 2.
We consider the pairs of non-overlapping domains (D1, D2) in D′ associ-

ated with the curve system γ(m), i.e., D1 is a simply connected hyperbolic
domain, 0 ∈ D1, and D2 is a digon with the vertices at ζ1, ζ2. We require
the digon D2 to be conformal at its vertices and to satisfy the condition of
compatibility of angles and weights, i.e., ϕζ1 = ϕζ2 = π are the inner angles
of the digon D2. Therefore, the reduced modulus m(D2, ζ1, ζ2) exists. We
call the system D of such (D1, D2) the admissible system of domains.

We set a weight nonzero vector (t1, t2) with nonnegative coordinates. The
results in [2, 7] (see also [14]) imply that any collection of non-overlapping
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admissible domains associated with the curve system γ(m) = (γ1, γ
(m)
2 ) and

the condition of compatibility of angles and weights for digon satisfies the
following inequality

t21m(D1, 0)− t22m(D2, ζ1, ζ2) ≤ t21m(D∗1, 0)− t22m(D∗2, ζ1, ζ2)(3.6)

for the weight vector (t1, t2) fixed with the equality sign only for Dj = D∗j ,

j = 1, 2. We denote this minimum by M(m)
2 (t1, t2, 0, eiθ1 , eiθ2) displaying its

dependence on parameters.
Rotating the configuration by z → zei

θ1+θ2
2 we assume that θ2 ∈ (0, π/2]

and θ1 = −θ2.
We consider m = 1. Under the conformal transformation

z → z + 1/z − 2 cos θ2
2− 2 cos θ2

(3.7)

the extremal configuration (D∗1, D
∗
2) is mapped onto the extremal configu-

ration (B∗1 , B
∗
2) in the following problem on the extremal partition which is

given in Theorems 3.2-3.3.
Let S0 = C \ {0, a} be the twice-punctured complex plane. Assume a 6= 1

and the case a = 1 is the limiting case as a→ 1.
We consider on S0 the admissible system (γ1, γ2) where γ1 = {z : |z| =

1/ε} and γ2 = {z : |z − a| = a} so that ε is sufficiently small such that γ1

and γ2 do not intersect. With this admissible system we associate admissible
pairs (B1, B2) of circular domains B1 in S0 so that ∞ ∈ B1 and digons B2

with the vertices at 0. Each digon B2 has its inner angles π at 0 (the
condition of compatibility).

Let B be the set of all pairs (B1, B2) each of which consists of a circular
domain and a digon associated with the admissible system (γ1, γ2). Then
the problem of the extremal partition of S0 consists of maximizing the sum
t21m(B1,∞) − t22m(B2, 0, 0) as (B1, B2) ∈ B. Without loss of generality,
we assume t1 = t, t2 = 1, t ∈ [0,∞), and the maximum of this sum we
denote by M(t, a). There is a unique pair (B∗1 , B

∗
2) which is extremal in

this problem. B∗1 is the circular domain and B∗2 is the strip domain in the
trajectory structure of the differential

φ(z)dz2 = −A(z − c)dz2

z2(z − a)
, A > 0, c ≤ 0.

Here A and c are functions of t. If t = 0, then B∗1 = ∅ and B∗2 = C\(−∞, a] is
the digon with two vertices with the same support 0. In this case M(0, a) =
2
π log 4a. If t→∞, then D∗1 = C \ [0, a]. In this case M(∞, a) = 1

2π log 4/a.
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Theorem 3.2. Let 0 < t <∞. Then

m(B∗1 ,∞) =
1
2π

log
4t2

a(1 + t2)
− 1
πt

(
π

2
− tan−1 1

t

)
,

m(B∗2 , 0, 0) =
2
π

log
4a

1 + t2
+

4t
π

(
π

2
− tan−1 1

t

)
.

The constants for the differential φ are A = t/4π2, c = −a/t2.

Proof. We consider the mapping u = u(z) whose inverse is

z = c
a+ 1 + (a− 1) cos u
(c+ 1) + (c− 1) cos u

,(3.8)

and obtain the representation of the differential φ in terms of the parameter
u in regular points

φ(z)dz2 = Q(u)du2(3.9)

=
4Ac(a− c)2(1 + cos u)2

((c+ 1) + (c− 1) cos u)2((a+ 1) + (a− 1) cos u)2
du2.

Here ∣∣∣∣a+ 1
a− 1

∣∣∣∣ > 1, and
∣∣∣∣c+ 1
c− 1

∣∣∣∣ ≤ 1.

Now we study the trajectory structure of this quadratic differential that
is a complete square of a linear one. The differential Q(u)du2 has zeros of
order 4 at the points π + 2πk which are the images of c under the mapping
u(z). Furthermore, u(0) = ±ηk, so that Re η0 = 0 in case a < 1 or Re η0 = π
in case a > 1, and

ηk = cos−1 1 + a

1− a
, k = 1, 2, . . . , n, . . . .

For definiteness, assume now a < 1. Then u(∞) = θk = cos−1(1+c)/(1−c),
θ0 ∈ (0, π) and θk, ηk are the poles of second order. The points u(a) = 2πk
are regular for this differential.

Consider a fixed branch of the function u(z) which maps C \ [c, a] onto
the strip 0 < Reu < π. The circular domain Bu

1 = u(D∗1) is bounded by
the critical trajectory of Q(u)du2 starting and ending at π enclosing the real
point θ0. The strip domain Bu

2 = u(D∗2) is bounded by the same trajectory,
the imaginary axis, and the straight line Reu = π.

Let ζj(u), j = 1, 2 be conformal mappings from the domains Bu
j onto the

unit disk D and the digon C \ [0,∞) respectively, such that ζ1(θ0) = 0 and
ζ2(η0) = 0, ζ2(−η0) = ∞. These functions satisfy in the domains Bu

1 the
differential equation

t
dζ1(u)
ζ1(u)

= 2π
√
−Q(u)du,(3.10)
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and in the domains Bu
2 the differential equation

dζ2(u)
ζ2(u)

= 2π
√
Q(u)du,(3.11)

or in terms of the parameter z

t

(
dζ1(u(z))
ζ1(u(z))

)2

= −4π2φ(z)dz2,(3.12) (
dζ2(u(z))
ζ2(u(z))

)2

= 4π2φ(z)dz2.(3.13)

Letting z → ∞ in (3.12) in the case of j = 1 or z → 0 in (3.13) in the
case of j = 2, we obtain A = t/4π2 and c = −a/t2.

Now we calculate the reduced modulus of the circular domain. The part
[θ0 + δ, π] of the orthogonal trajectory of the differential Q(u)du2 for suf-
ficiently small δ has a preimage [−1/ε1, c] under the mapping u(z). From
(3.8) we derive

δ =
√
−c(a− c)
1− c

ε1 +O(ε21).(3.14)

These two segments have the image in the ζ-plane [εeiβ, eiβ]. Without loss
of generality assume β = 0.

Let z = f1(ζ) = A−1/ζ + A0 + A1ζ + . . . be a function from D onto
B∗1 . Then the reduced modulus of B∗1 can be calculated as m(B∗1 ,∞) =
1
2π log 1/|A1|. We have directly from (3.9)

√
−Q(u) = 2

√
−cA

(
1

c+ 1 + (c− 1) cos u
− 1
a+ 1 + (a− 1) cos u

)(3.15)

= ± 1
2π

· d
du

(
t log

t tan u
2 −

√
a

t tan u
2 +

√
a
− 2 tan−1 tan u

2√
a

)
.

Let us choose the branch of the root such that we have (+) in front of
the previous expression. Moreover, tan(θ0/2) =

√
−c =

√
a/t. Integrating

(3.10) along the described segments we derive

ε =
t tan θ0+δ

2 −
√
a

t tan θ0+δ
2 +

√
a
· exp

(
2
t

(
π

2
− tan−1 tan θ0+δ

2√
a

))

=
(a+ t2)
4t
√
a

exp
(

2
t

(
π

2
− tan−1 1

t

))
· δ +O(δ2)

and, finally, using (3.14) we obtain

A1 =
a(1 + t2)

4t2
exp

(
2
t

(
π

2
− tan−1 1

t

))
.
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Then the modulus m(B∗1 ,∞) has the form stated in Theorem 3.2.

Next we calculate the reduced modulus of the digon B∗2 with respect to
its two vertices with the same support 0. For this we consider the strip
domain Bu

2 in the u-plane and the segment of the imaginary axis [0, η0− iδ]
that belongs to the critical trajectory of the differential Q(u)du2. It has a
preimage [ε1, a] in the z-plane under the mapping u(z). We calculate from
(3.8) that

δ =
c− a

c
√
a(a− 1)

ε1 +O(ε21).(3.16)

For these two segments there is an image in the ζ-plane [1, 1/ε] that belongs
to the boundary of the digon C\ [0,∞) which is the image of the domain B∗2
under the map ζ2(u(z)). We find that the lengths of the segments [ε, 1] and
[1, 1/ε] are equal in the metric |dζ|/|ζ| and, therefore, 1 = ζ2(0). Let z =
f2(ζ) = B−1/ζ+B0+B1ζ+. . . be the conformal map from C\[0,∞) onto B∗2 .
Then the reduced modulus of B∗2 turns out to be m(B∗2 , 0, 0) = 2

π log |B−1|.
Here we understand this derivative as one of the angular derivatives in B∗2 .

By (3.15) we have

√
Q(u) = ± i

2π
· d
du

(
t log

t tan u
2 −

√
a

t tan u
2 +

√
a
− 2 tan−1 tan u

2√
a

)
.(3.17)

Again we choose the branch of the root such that we have (+) in front of the
right-hand side of (3.17). We have tan(η0/2) = i

√
a. We rewrite Equation

(3.11) as

dζ

ζ
= i

d

du

(
t log

t tan u
2 −

√
a

t tan u
2 +

√
a
− 2 tan−1 tan u

2√
a

)
du.

Since we use the complex tangent, we better transfer the right-hand side
using the transform identity

tan−1 w =
1
2i

log
1 + iw

1− iw
.

Then,

dζ

ζ
=

d

du

−2t tan−1 i
√
a

t tan u
2

− log
1 + i

tan u
2√
a

1− i
tan u

2√
a

 .(3.18)



442 CH. POMMERENKE AND A. VASIL’EV

Integrating (3.18) along the segment [1, 1/ε] in the left-hand side and along
the vertical segment [0, η0− iδ], Im η0 > 0, in the right-hand side, we deduce

ε =
1 + i

tan
η0−iδ

2√
a

1− i
tan

η0−iδ
2√
a

· exp

(
2t

(
tan−1 i

√
a

t tan η0−iδ
2

− π

2

))

=
1− a

4
√
a

exp
(

2t
(

tan−1 1
t
− π

2

))
δ +O(δ2).

Finally, using (3.14) and substituting c = −a/t2 we obtain

|B1| =
4a

1 + t2
exp

(
2t
(
π

2
− tan−1 1

t

))
.

This leads to the expression in Theorem 3.2. The case a > 1 can be obtained
by applying the mapping w = kz, where k > 1/a. This leads to the same
expressions. �

Let S1 = C \ {c1, 0, a1}, a1 > 0, c1 < 0, be the thrice-punctured complex
plane. We consider on S1 the admissible system (γ1, γ2) where γ1 = {z :
|z| = 1/ε} and γ2 = {z : |z − a1 − ε| = a1 + ε}, so that ε is sufficiently
small. Let B be the set of all pairs (B1, B2) consisting of a circular domain
and a digon associated with the admissible system (γ1, γ2). The condition of
compatibility for the digon B2 is the same as before. The inner angles of D2

at the vertices over 0 are π. Then the problem of extremal partition of S1

consists of finding the maximum of the sum t21m(B1,∞) − t22m(B2, 0, 0) as
(B1, B2) ∈ B. Without loss of generality, assume t1 = t, t2 = 1, t ∈ [0,∞),
and the maximum of this sum we denote by M(t, c1, a1). There is a unique
pair (B∗1 , B

∗
2) that is extremal in this problem. B∗1 is the circular domain

and B∗2 is the strip domain in the trajectory structure of the differential

ψ(z)dz2 = −A (z − b)2dz2

z2(z − a1)(z − c1)
, A > 0, b ≤ 0.(3.19)

Here A and b are functions of t. For t ∈
[
0,
√

a1
−c1

]
the problem can be

reduced to that in the previous case with a = a1. If t → ∞, then B∗1 =
C \ [c1, a1]. In this case M(∞, c1, a1) = 1

2π log 4/(a1 − c1).

Theorem 3.3. Let
√

a1
−c1 ≤ t <∞. Then

m(B∗1 ,∞) =
1
2π

log
4

a1 − c1
− 1
πt

(
π

2
− tan−1

√
−c1
a1

)
,

m(B∗2 , 0, 0) =
2
π

log
−4a1c1
a1 − c1

+
4t
π

(
π

2
− tan−1

√
−c1
a1

)
.

The constants for the differential ψ are A = t/4π2, b = −
√
−a1c1/t.
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The proof is similar to that for Theorem 3.2
By Theorems 3.2–3.3 and the conformal transformation (3.7) using the

formulas of the change of the reduced moduli (see §1) we obtain that in the
problem about M(1)

2 (t, 1, 0, ζ1, ζ2) for all θ1, θ2 such that |θ2 − θ1| ≤ π and
for

0 < t ≤

√
1− cos θ2−θ12

1 + cos θ2−θ12

= tan
θ2 − θ1

4

the reduced moduli are expressed as

m(D∗1, 0) =
1
2π

log
2t2

(1 + t2)(1− cos θ2−θ12 )
− 1
πt

(
π

2
− tan−1 1

t

)
,

m(D∗2, ζ1, ζ2) =
2
π

log
4

1 + t2
1− cos θ2−θ12

sin θ2−θ1
2

+
4t
π

(
π

2
− tan−1 1

t

)
.

For

t > tan
θ2 − θ1

4
the reduced moduli are expressed as

m(D∗1, 0) = −θ2 − θ1
4πt

,

m(D∗2, ζ1, ζ2) =
2
π

log
(

2 sin
θ2 − θ1

2

)
+
t

π
(θ2 − θ1).

In the problem about M(2)
2 (t, 1, 0, ζ1, ζ2) we use the conformal transfor-

mation

z → −z + 1/z − 2 cos θ2
2 + 2 cos θ2

,

instead of (3.7) and deduce analogously for

0 < t ≤ tan−1 θ2 − θ1
4

the reduced moduli are expressed as

m(D∗1, 0) =
1
2π

log
2t2

(1 + t2)(1 + cos θ2−θ12 )
− 1
πt

(
π

2
− tan−1 1

t

)
,

m(D∗2, ζ1, ζ2) =
2
π

log
4

1 + t2
1 + cos θ2−θ12

sin θ2−θ1
2

+
4t
π

(
π

2
− tan−1 1

t

)
.

For

t > tan−1 θ2 − θ1
4
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the reduced moduli are expressed as

m(D∗1, 0) =
1
πt

(
θ2 − θ1

4
− π

2

)
,

m(D∗2, ζ1, ζ2) =
2
π

log
(

2 sin
θ2 − θ1

2

)
+
t

π
(2π − (θ2 − θ1)) .

The limiting case t→∞ yields M(j)
2 (∞, 1, 0, ζ1, ζ2) = 0; t→ 0 yields

M(j)
2 (0, 1, 0, ζ1, ζ2) =

2
π

log 4
1− (−1)j cos θ2−θ12

sin θ2−θ1
2

, j = 1, 2.

4. Extremal problems.

In this section we apply the results about the extremal partition to finding
the sharp estimates of the functionals in the class of bounded univalent
functions f : D → D, f(0) = 0 with the finite angular limits and derivatives.
We start with functions that have the angular limits f(ζ1), f(ζ2) ∈ T at the
points ζ1, ζ2 ∈ T and the finite nonzero angular derivatives f ′(ζ1), f ′(ζ2).

First of all, we give another proof of Corollary 2.5 using extremal parti-
tions and Theorem 3.1. We use the inequality (3.1) to derive the inequality
(2.25). Let f be an arbitrary mapping with the properties asserted in the
corollary. Without loss of generality, we again assume here that ζ1 = ζ2.
We use the notations of Corollary 2.5. Let us fix the positive values of t1, t2.
Let the pair of domains (D∗1, D

∗
2) be an extremal pair for the minimum

M(t1, t2, ζ1, ζ2) of the sum (3.1). Then the pair of domains (f(D∗1), f(D∗2))
is an admissible pair for the minimum M(t1, t2, w1, w2). Therefore, the in-
equality

t21m(f(D∗1), 0, w1) + t22m(f(D∗2), 0, w2) ≥ t21m(B∗1 , 0, w1) + t22m(B∗2 , 0, w2),
(4.1)

holds where (B∗1 , B
∗
2) is the extremal pair for the minimumM(t1, t2, w1, w2).

By (1.3), (1.4) we deduce that

t21m(f(D∗1),0, w1) + t22m(f(D∗2), 0, w2)(4.2)

= t21m(D∗1, 0, w1) + t22m(D∗2, 0, w2)

+
t21
π

log |f ′(ζ1)|+
t22
π

log |f ′(ζ2)|+
(t1 + t2)2

2π
log α.

Now we use Theorem 3.1 and calculate the moduli in (4.1) and (4.2). Thus,
normalizing t1 + t2 = 1, the inequalities (4.1) and (4.2) imply the inequality
(2.25) in the assertion of Corollary 2.5.

Now we derive the extremal function w = f∗(ζ) and Equation (2.26). We
examine the function g1(ζ) given by (3.4) that maps the domain D∗1 onto
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the upper half-plane H+, and the function G1 that maps the domain B∗1
onto H+. The function G1 satisfies the differential equation

t21

(
G′1(w)
G1(w)

)2

= π2ψ(w).

By analogy to (3.4), we obtain

G1(w) =
(w − w1)(w − w2)t2/t1

w
t1+t2
2t1

w
−t1/2
1 w

−t2/2
2 e

i
“
−π

2
t1+t2

t1

”
.

The superposition G−1
1 ◦ g1(ζ) after normalization f∗(z) = αz + . . . gives

us Equation (2.26) defined in the domain D∗1. Now we repeat the same
observations for G2(ζ) that maps the domain B∗2 onto H+ and satisfies in
D∗2 the differential equation

t22

(
G′2(w)
G2(w)

)2

= π2ψ(w).

The equation that we deduce for the superposition G−1
2 ◦ g2(ζ) is the same

as for f∗. The condition α ∈ (0, α0(w1, w2)] follows from the subordination
of domains. Therefore, the function f∗ is defined in the whole disk D and
maps the extremal configuration (D∗1, D

∗
2) onto the extremal configuration

(B∗1 , B
∗
2). Thus, it gives the equality sign in (4.1-4.2), and, therefore, also in

(2.25). �
Now we continue with bounded univalent functions f : D → D, f(0) = 0

that have the finite angular limits f(ζ) ∈ T in the points of the arc of T
connecting two points ζ1, ζ2 ∈ T and the finite nonzero angular derivatives
f ′(ζ1), f ′(ζ2). This means that f is continuous and analytic on this arc.

Lemma 4.1. Let D(θ1, θ2) denote the triangle D\(−e
θ1+θ2

2 , 0] with a vertex
at the origin and the opposite leg {z : z = eiθ, θ ∈ [θ1, θ2]}, 0 < θ2−θ1 < 2π.
Then, its reduced modulus with respect to the origin is

m∆(D(θ1, θ2), 0) =
1
2π

log
2

1− cos θ2−θ12

.

Proof. Obviously, one can rotate the configuration z → ze
θ2+θ1

2 So, we as-
sume θ1 = −θ2. Then, we transfer the triangle D(θ1, θ2) onto the triangle
D(−π, π) by the map w(z) which is the solution of the equation(

z +
1
z
− 1− cos θ2

)
2

1− cos θ2
= w +

1
w
.

We derive that |w′(0)| = 1−cos θ2
2 and, moreover, m∆(D(−π, π), 0) = 0. The

formula of the change the reduced modulus of a triangle under conformal
map and the mentioned rotation lead to the assertion of Lemma 4.2. �
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The Löwner Lemma (see [10, Proposition 4.15]) yields that if f(z) is a
conformal map f : D → D, f(0) = 0 which has the finite angular limits
f(eiθ) = eiσ, θ ∈ [θ1, θ2], σ ∈ [σ1, σ2], 0 < θ2 − θ1 < 2π, 0 < σ2 − σ1 < 2π,
then

σ2 − σ1 ≥ θ2 − θ1.(4.3)

The equality sign is given by the identity mapping. Moreover, the following
assertion is true.

Lemma 4.2. Let f(z) be a conformal map f : D → D, f(0) = 0 which has
the finite angular limits f(eiθ) = eiσ, σ ∈ [σ1, σ2], θ ∈ [θ1, θ2], 0 < θ2 − θ1 <
2π, σ2 − σ1 ≤ 2π. Then, the inequality

1− cos θ2−θ12

1− cos σ2−σ1
2

≤ |f ′(0)| ≤ 1(4.4)

holds. The left-hand side inequality is sharp with the Pick extremal function
gκ
α (z), κ = θ1+θ2

2 and σ1 = arg gκ
α (eiθ1), σ2 = arg gκ

α (eiθ2). The right-hand
side inequality is obvious due to the Schwarz lemma.

Proof. We use the results by A.Yu. Solynin [14] about the extremal par-
titions. Let us consider the triangle f(D(θ1, θ2)) that is admissible in the
family of all triangles in D with the vertex at the origin, with the inner
angle 2π, and the opposite leg lying on T connecting the points eiσ1 , eiσ2 .
The extremal triangle is D(σ1, σ2). Then, due to the change of the reduced
modulus under a conformal map f(z) we have

m∆(D(θ1, θ2), 0) +
1
2π

log |f ′(0)| ≥ m∆(D(σ1, σ2), 0).

Lemma 4.1 leads to the inequality we need. The assertion about the sharp-
ness is obvious. �

Remark. The Pick function which gives the equality sign to (4.4) is subject
to the choice of α ∈ (sin2 θ2−θ1

4 , 1].

Suppose 0 < θ2 − θ1 < σ2 − σ1 < π. Set the functions x(t), y(t) defined
in the segment

tan
θ2 − θ1

4
≤ t ≤ tan

σ2 − σ1

4
(4.5)
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by the formulas

x(t) =
2t2

(1 + t2)(1− cos σ2−σ1
2 )

exp
2
t

(
tan−1 1

t
− π

2
+
θ2 − θ1

4

)
,

(4.6)

y(t) =
4

(1 + t2)2
(1− cos σ2−σ1

2 )2

sin2 σ2−σ1
2 sin2 θ2−θ1

2

exp 4t
(
π

2
− θ2 − θ1

4
− tan−1 1

t

)
,

(4.7)

and in the ray

t ≥ tan
σ2 − σ1

4
(4.8)

by the formulas

x(t) = exp
1
2t

((θ2 − θ1)− (σ2 − σ1)),(4.9)

y(t) =
sin2 σ2−σ1

2

sin2 θ2−θ1
2

exp t((σ2 − σ1)− (θ2 − θ1)).(4.10)

The function x(t) is continuous and increases in

t ∈
[
tan

θ2 − θ1
4

,∞
]

from
1− cos θ2−θ12

1− cos σ2−σ1
2

to 1.

Theorem 4.3. Let f(z) be a conformal map f : D → D, f(0) = 0 which has
the finite angular limits f(eiθ) = eiσ, θ ∈ [θ1, θ2], σ ∈ [σ1, σ2] and the finite
nonzero angular derivatives f ′(ζ1), f ′(ζ2) in two points ζ1 = eiθ1 , ζ2 = eiθ2,
0 < θ2 − θ1 < π. We suppose that θ2 − θ1 < σ2 − σ1 ≤ π, fixed and we
consider all such functions. If α := |f ′(0)|, then there exists a unique real
number

t∗ ∈
[
tan

θ2 − θ1
4

,∞
]

such that x(t∗) = α and |f ′(ζ1)f ′(ζ2)| ≥ y(t∗). This means that the range of
the system of functionals (|f ′(0)|, |f ′(ζ1)f ′(ζ2)|) as the set in the R2-plane is
bounded from the below by an arc of the curve Γ− which is given parametri-
cally by (x(t), y(t)) with t ∈

[
tan θ2−θ1

4 ,∞
]
.

Proof. In order to prove this theorem we use the inequality (3.6) and the
extremal partition of D by digons and circular domains. First we note that
the conditions of Theorem 4.3 satisfy the inequality (4.3). This implies that
the intervals (4.5), (4.8) are well-defined for σ1, σ2 given by the conditions of
Theorem 4.3. The conditions of Theorem 4.3 imply that f : D → D, f(0) =
0, and the function f has the finite angular limits f(ζ1) = eiσ1 , f(ζ2) = eiσ2

with a fixed value of σ2 − σ1. We consider all such functions with a fixed
|f ′(0)| = α. The function x(t) increases. Moreover, Lemma 4.2 yields that
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there exists a unique t = t∗ such that x(t∗) = α. Let D∗1 and D∗2 be extremal
circular and strip domains respectively in the problem ofM(1)

2 (t∗, 1, 0, ζ1, ζ2).
Then, the pair of the domains f(D∗1), f(D∗2) have the reduced moduli

m(f(D∗1), 0) = m(D∗1, 0) +
1
2π

log α,(4.11)

and

m(f(D∗2), e
iσ1 , eiσ2) = m(D∗2, ζ1, ζ2) +

1
π

log |f ′(ζ1)f ′(ζ2)|.(4.12)

This pair f(D∗1), f(D∗2) is admissible in the problem of M(m)
2 (t∗, 1, 0, f(ζ1),

f(ζ2)) for m = 1 or 2. In our case σ2−σ1 < π, therefore, m = 1. This leads
to the inequality

(4.13) (t∗)2m(f(D∗1), 0)−m(f(D∗2), e
iσ1 , eiσ2)

≤ (t∗)2m(B∗1 , 0)−m(B∗2 , e
iσ1 , eiσ2) = M(1)

2 (t∗, 1, 0, f(ζ1), f(ζ2))

whereB∗1 andB∗2 are the pair of extremal domains forM(1)
2 (t∗, 1, 0, eiσ1 , eiσ2).

Given t from the interval (4.5) we calculate the reduced moduli with x(t),
y(t) provided by the formulas (4.6-4.7) and deduce thatm(B∗1 , 0) = m(D∗1, 0)
+ 1

2π log x(t∗) and m(B∗2 , e
iσ1 , eiσ2) = m(D∗2, ζ1, ζ2) + 1

π log y(t∗). Taking
into account x(t∗) = α we finally derive from (4.11-4.13) the inequality
|f ′(ζ1)f ′(ζ2)| ≥ y(t∗) which proves the assertion of Theorem 4.3 about the
estimate and the lower boundary curve Γ−. �

Remarks.
1. One can deduce similar results for other distributions of θ1, θ2, σ1, σ2

using M(2)
2 (t, 1, 0, ζ1, ζ2).

2. From Theorem 2.1, formula (2.4) we get the inequality

2 log
1
α

log
∣∣∣∣f ′(ζ1)f ′(ζ2)(f(ζ1)− f(ζ2))2

(ζ1 − ζ2)2

∣∣∣∣ ≥ (arg
f(ζ1)
ζ1

− arg
f(ζ2)
ζ2

)2

.

(4.14)

Theorem 4.3 implies that the inequality (4.14) describes a part of the curve
Γ− which is parameterized by t ∈ [tan σ2−σ1

4 ,∞]. The rest of Γ− lies above
the curve given by (4.14) because the extremal function does not give the
equality sign in (4.14), say the extremal function maps D onto D minus a
fork-shaped slit which can not be represented by Theorem 2.3.

3. One could assume f(ζ1) = ζ1, f(ζ2) = ζ2 which makes no use Theo-
rem 4.3 instead of (4.14) but this assumption leads only to the trivial case
of the identical map. Thus, the part of Γ− which is not given by (4.14) is
always valuable.

Corollary 4.4. Let f(z) be a conformal map f : D → D, f(0) = 0 which
has the finite angular limits f(eiθ) = eiσ, θ ∈ [θ1, θ2], σ ∈ [σ1, σ2], 0 <



ANGULAR DERIVATIVES ... 449

σ2− σ1 < 2π and the finite nonzero angular derivatives f ′(ζ1), f ′(ζ2) in two
points ζ1 = eiθ1 , ζ2 = eiθ2, |θ2 − θ1| ≤ π. Then the inequality

|f ′(ζ1)f ′(ζ2)| ≥ tan2 σ2 − σ1

4
cot2

θ2 − θ1
4

(4.15)

holds with the equality sign for the identical map as well as for the canonical
map gκ

α (z), κ = θ1+θ2
2 with α = sin2 θ2−θ1

4 sin−2 σ2−σ1
4 .

Proof. Let f be a map satisfying the conditions of Corollary 4.4. Then, by
analogy to (4.11-4.13), we deduce that the inequality

M(1)
2 (t, 1, 0, eiθ1 , eiθ2) +

t2

2π
log |f ′(0)| − 1

π
log |f ′(ζ1)f ′(ζ2)|

≤ M(1)
2 (t, 1, 0, eiσ1 , eiσ2)

holds for all t > 0. Considering t→ 0 we deduce the inequality (4.15). �
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