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We study the Diophantine equation xm−1
x−1

= yn−1
y−1

in inte-
gers x > 1, y > 1, m > 1, n > 1 with x 6= y. We show that, for
given x and y, this equation has at most two solutions. Fur-
ther, we prove that it has finitely many solutions (x, y, m, n)
with m > 2 and n > 2 such that gcd(m − 1, n − 1) > 1 and
(m − 1)/(n − 1) is bounded.

1. Introduction.

Goormaghtigh [7] observed in 1917 that

31 =
25 − 1
2− 1

=
53 − 1
5− 1

and 8191 =
213 − 1
2− 1

=
903 − 1
90− 1

are two solutions of the Diophantine equation
(1)

xm − 1
x− 1

=
yn − 1
y − 1

in integers x > 1, y > 1, m > 2, n > 2 with x 6= y.

There is no restriction in assuming that y > x in (1) and thus we have
m > n. This equation asks for integers having all their digits equal to one
with respect to two distinct bases and we still do not know whether or not
it has finitely many solutions. Even if we fix one of the four variables, it
remains an open question to prove that (1) has finitely many solutions.

However, when either the bases x and y, or the base x and the exponent
n, or the exponents m and n are fixed, then it is proved that (1) has finitely
many solutions (see [3] for references). In the first two cases, thanks to
Baker’s theory of linear forms in logarithms, we can compute explicit (huge)
upper bounds for the size of the solutions. As for the number of solutions,
Shorey [14] proved that for two integers y > x, the Diophantine equation

(2)
xm − 1
x− 1

=
yn − 1
y − 1

in integers m > 1, n > 1,

has at most 17 solutions, independently of x and y. One of the purposes
of the present work is to considerably improve this estimate by showing
that (2) has at most one solution provided that y is large enough and that
otherwise (2) has at most two solutions.
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62 Y. BUGEAUD AND T.N. SHOREY

When the exponents m and n are fixed, Davenport, Lewis and Schinzel
[6] proved that (1) has finitely many solutions, but their proof rests on a
theorem of Siegel and it is ineffective. However, when gcd(m−1, n−1) > 1,
they are able to replace Siegel’s result by an effective argument due to Runge.

Theorem DLS. Equation (1) with gcd(m − 1, n − 1) > 1 implies that
max(x, y) is bounded by an effectively computable number depending only on
m and n.

Recently, this has been improved by Nesterenko & Shorey [13] as follows.

Theorem NS. Let d ≥ 2, r ≥ 1 and s ≥ 1 be integers with gcd(r, s) = 1.
Assume that m − 1 = dr and n − 1 = ds. If (x, y, m, n) satisfy (1), then
max{x, y, m, n} is bounded by an effectively computable number depending
only on r and s.

This is the first result of the type where there is no restriction on the
bases x and y and the exponents m and n extend over an infinite set. In
the present work, we show that the assertion of Theorem NS continues to
be valid when the ratio (m− 1)/(n− 1) is bounded.

2. Statement of the results.

Our first result deals with the number of solutions of Equation (2) and
improves a previous estimate of Shorey [14].

Theorem 1. Let y > x > 1 be integers. If gcd(x, y) > 1 or if y ≥ 1011,
then (2) has at most one solution. Further, if y ≥ 7, then (2) has at most
two solutions. Finally, the only solutions of (2) with y ≤ 6 are given by
(x, y, m, n) = (2, 5, 5, 3) or (2, 6, 3, 2).

M. Ma̧kowski and A. Schinzel [12] proved that (2) with y ≤ 10 and
m > n > 2 has only the solution (x, y, m, n) = (2, 5, 5, 3), however, for
sake of completeness, we give a proof of the last statement of Theorem 1.
Our proof is based on an idea of Le [10] and it combines the theory of
linear forms in logarithms together with a strong gap principle proved by
elementary means. As is apparent from the proof, one can derive several
other interesting statements including the following.

Theorem 2. Let y > x > 1 be coprime integers and assume that the small-
est integer s ≥ 1 such that xs ≡ 1 (mod y) satisfies

(3) s > 4811(log y)2(log log y).

Then Equation (2) has no solution.

Remark 1. We point out that for given y sufficiently large, Theorem 2
solves (2) for a wide set of integers x, indeed for at least ϕ(y) − ϕ(y)2/3

integers x, with 1 ≤ x ≤ y and gcd (x, y) = 1. Here, ϕ denote the Euler
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totient function. A proof of this assertion is given just after the proofs of
Theorems 1 & 2.

Remark 2. Theorem 1 implies that the equations
2m − 1
2− 1

=
5n − 1
5− 1

and
2m − 1
2− 1

=
90n − 1
90− 1

have exactly one solution in integers m > 1 and n > 1, namely (m,n) =
(5, 3) and (13, 3), respectively.

Remark 3. M. Ma̧kowski and A. Schinzel [11] proved that (2) with y ≤ 10
and m > n > 2 has only the solution (x, y, m, n) = (2, 5, 5, 3), however, for
sake of completeness, we give a proof of the last statement of Theorem 1.

In Theorem NS quoted in the Introduction, the exponents m and n are
allowed to vary such that the ratio (m−1)/(n−1) is constant. This condition
also implies that y cannot be too large compared with x. We now present
two new results under a similar hypothesis. The first one can be seen as an
improvement of Theorem NS, although it does not imply the latter. The
second one is of a different nature, namely, there is no restriction on the
exponents m and n and the bases x and y extend to an infinite set.

Theorem 3. Let α > 1. Equation (1) with gcd (m−1, n−1) ≥ 4α+6+ 1
α

and (m − 1)/(n − 1) ≤ α implies that max (x, y, m, n) is bounded by an
effectively computable number depending only on α.

Theorem 3 does not contain Theorem NS because of the condition im-
posed on gcd(m − 1, n − 1). If r and s are fixed, we may remove this con-
dition by Theorem DLS and then Theorem NS follows from Theorem 3. In
the course of the proof of Theorem 3, we need an auxiliary result (namely,
Lemma 4 below) which enables us to considerably improve Theorem 2 of
[13].

Theorem 4. Let (x, y, m, n) be a solution of (1) with y > x. Then we have

gcd(m− 1, n− 1) ≤ 33.4 m1/2.

Remark 4. Theorem 2 of [13] only asserts that there exist an effectively
computable absolute constant C such that

gcd(m− 1, n− 1) ≤ Cm4/5(log m)3/5.

Further, its proof combines the theory of linear forms in logarithms together
with sharp upper bounds for the size of the solutions of (1) obtained by
Runge’s method, whereas the proof of Theorem 4 depends only on estimates
for linear forms in two logarithms.

Theorem 5. Let a > 1. Let y > x > 1 be integers such that x divides y− 1
and y ≤ xa. If (x, y, m, n) satisfies (1), then

n < m ≤ 14000 a2(log 3a)2
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and
x < n, y < na.

Remark 5. It follows from Theorem 5 that for a given a > 1, Equation (1)
has only finitely many solutions (x, y, m, n) with y ≤ xa and x | (y − 1).

3. Auxiliary lemmas.

We begin with the following theorem of Baker and Wüstholz [2] on linear
forms in logarithms.

Lemma 1. Let α1, . . . , αd be positive rational numbers of heights not ex-
ceeding A1, . . . , Ad, respectively, where Aj ≥ e for 1 ≤ j ≤ d. Put

Ω =
d∏

j=1

log Aj .

Then the inequalities

0 < |b1 log α1 + · · ·+ bd log αd| < exp
(
−(16d)2(d+2)Ω log B

)
have no solution in integers b1, . . . , bd of absolute values not exceeding B,
where B ≥ e.

In order to prove Theorems 1 & 2, we need an explicit estimate for the
size of the solutions of (2).

Lemma 2. Let y > x > 1 be integers and let (m,n) be a solution of (2).
Then we have

(4) m ≤ 2× 4810(log y)2(log m) + 1.

Proof. We rewrite (2) as
xm

x− 1
− yn

y − 1
=

1
x− 1

− 1
y − 1

,

thus we get

0 < 1− ynx−m

(
x− 1
y − 1

)
< x−m,

which implies that

(5) 0 <

∣∣∣∣n log y −m log x + log
(

x− 1
y − 1

)∣∣∣∣ < 2x−m.

Now we apply Lemma 1 with d = 3, A1 = y, A2 = x+1, A3 = y and B = m
to derive∣∣∣∣n log y −m log x + log

(
x− 1
y − 1

)∣∣∣∣ > exp
(
−(48)10(log y)2 log(x + 1) log m

)
which, combined with (5), yields the estimate stated in the lemma. �
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Apart from Lemma 1, we shall also need the following refinement, due to
Mignotte [12], of a theorem of Laurent, Mignotte & Nesterenko [9] on linear
forms in two logarithms.

Lemma 3. Consider the linear form

Λ = b2 log α2 − b1 log α1,

where b1 and b2 are positive integers. Suppose that α1 and α2 are multi-
plicatively independent. Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R].

Let a1, a2, h, k be real positive numbers, and ρ a real number > 1. Put
λ = log ρ, χ = h/λ and suppose that χ ≥ χ0 for some number χ0 ≥ 0 and
that

h ≥ D

(
log
(

b1

a2
+

b2

a1

)
+ log λ + f(dK0e)

)
+ 0.023,

ai ≥ max
{
1, ρ | log αi| − log |αi|+ 2Dh(αi)

}
, (i = 1, 2),

a1a2 ≥ λ2

where

f(x) = log

(
1 +

√
x− 1

)√
x

x− 1
+

log x

6x(x− 1)
+

3
2

+ log
3
4

+
log x

x−1

x− 1
,

and

K0 =
1
λ

(√
2 + 2χ0

3
+

√
2(1 + χ0)

9
+

2λ

3

( 1
a1

+
1
a2

)
+

4λ
√

2 + χ0

3
√

a1a2

)2

a1a2.

Put

v = 4χ + 4 + 1/χ and m = max
{
25/2(1 + χ)3/2, (1 + 2χ)5/2/χ

}
.

Then we have the lower bound

log |Λ| ≥ − 1
λ

(
v

6
+

1
2

√
v2

9
+

4λv

3

( 1
a1

+
1
a2

)
+

8λm

3
√

a1a2

)2

a1a2

−max
{

λ(1.5 + 2χ) + log
((

(2 + 2χ)3/2

+ (2 + 2χ)2
√

k∗
)
A + (2 + 2χ)

)
, D log 2

}
where

A = max{a1, a2} and k∗ =
1
λ2

(
1 + 2χ

3χ

)2

+
1
λ

(
2
3χ

+
2
3

(1 + 2χ)1/2

χ

)
.

Proof. This is Theorem 2 of [12]. �

We apply Lemma 3 for deriving the following result:
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Lemma 4. Let α > 1 and d > 1 be an integer. Suppose that (x, y, m, n)
with y > x is a solution of (1). Assume that

gcd(m− 1, n− 1) = d,
m− 1
n− 1

≤ α.

Then we have

d ≤ 743
(

α +
1
2

)
.

Proof. Let α > 1 and d > 1 be an integer. We suppose that (1) with
gcd(m− 1, n− 1) = d and (m− 1)/(n− 1) ≤ α is satisfied and we put

m− 1 = dr, n− 1 = ds

where r and s are positive integers. In view of the last assertion of Theo-
rem 1, whose proof is independent of Lemma 3, we may assume that y ≥ 7.
We write (1) as

x

x− 1
xrd − y

y − 1
ysd =

1
x− 1

− 1
y − 1

which implies that

(6) 0 < log
x(y − 1)
y(x− 1)

− d log
ys

xr
< y−sd.

Now we apply Lemma 3 with b1 = d, b2 = 1, α1 = ys/xr and α2 = (x(y −
1))/(y(x − 1)) in order to get a lower bound for Λ = b2 log α2 − b1 log α1.
We observe that h(α1) ≤ s log y, h(α2) ≤ 2 log y and that α1 and α2 are
multiplicatively independent. Further, we put

ρ = 1 +
3 log y

4 log(1 + 1
x−1)

.

Then we may take

a1 = (2s + 3/4) log y and a2 = (19 log y)/4.

Thus, we check that

(7) log x ≤ log
(

1 +
3
4
(x− 1) log y

)
≤ λ := log ρ ≤ 4

3
log y

and

(8) a1a2 ≥ 7λ2, a1a2/λ ≥ 19.

By (2), we observe that yn−1 ≤ 2xm−1 which implies that

(9)
log y

log x
≤ α +

1
2
.

We may assume that d ≥ 30. By (7) and since dK0e ≥ 16, in order to apply
Lemma 3, we have to choose the parameter h such that

h ≥ log d + 0.3.
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Assume first that λ ≥ log d+0.3 and apply Lemma 3 with h = λ and χ = 1.
Thus v = 9, m = 16 and, using that y ≥ 7 in the definition of ρ, we infer
that k∗ ≤ 2.4. Now, we notice that λ/a1 + λ/a2 ≤ 0.77 and use (8), to
obtain that

(10) log Λ > −19.65
λ

a1a2 − 3.5λ− log(56.7a1 + 4).

Finally, using y ≥ 7, we conclude from (7), (9), (10) and (6) that

d ≤ 96
(

2 +
3
4s

)(
α +

1
2

)
.

We observe that the right hand side of the preceding inequality does not
exceed 264(α + 1/2). Therefore, we may suppose that λ < log d + 0.3, that
is, in view of (7)

(11) log

(
1 +

3 log y

4 log(1 + 1
x−1)

)
< log d + 0.3.

Next, we show that

(12) d ≤ 135 log y.

For the proof of (12), we assume that d > 135 log y and we shall arrive at
a contradiction. We apply Lemma 3 once again, but with another choice of
the radius ρ. Namely, we take ρ = e4. Then λ = 4. We set

h = log
(

b1

a2
+

b2

a1

)
+

57
20

and we see that h ≥ 6, thus we may choose χ0 = 3
2 . We observe that

a1a2 ≥ 49 and dK0e ≥ 27. Further, we have v ≤ h + 14
3 ,m ≤ 25/2(1 + χ)3/2

and we put H = h + 14
3 . Now, Lemma 3 yields

log Λ ≥ − 3
40

H2a1a2 − 6− 2h− log(2h2a1a2)

≥ − 17
200

H2a1a2,

since H ≥ 32
3 and a1a2 ≥ 49. Combining the preceding estimate with (6),

we get
d

log y
≤ 57

50

(
log
(

4d

19 log y
+

1
5

)
+

451
60

)2

.

This is not possible and the proof of (12) is complete.

We combine (7), (11) and (12) to conclude that

3
4
(x− 1) log y < 183 log y.
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Thus x ≤ 244. Finally, we apply (9) and (12) to conclude that d ≤ 743(α +
1/2). �

In addition to Lemma 4, the proof of Theorem 3 uses an irrationality
measure [15] of certain algebraic numbers derived from a Theorem of Baker
[1].

Lemma 5. Let A,B, K and n be positive integers such that A > B,K <
n, n ≥ 3 and ω = (B/A)1/n is not a rational number. For 0 < φ < 1, put

δ = 1 +
2− φ

K
, σ =

δ

1− φ

and
u1 = 40n(K+1)(σ+1)/(Kσ−1), u−1

2 = K2K+σ+140n(K+1).

Assume that
A(A−B)−δu−1

1 > 1.

Then ∣∣∣∣ω − p

q

∣∣∣∣ > u2

AqK(σ+1)

for all integers p and q with q > 0.

Proof. This is Lemma 1 of Shorey & Nesterenko [15]. We notice that this
has been refined by Hirata-Kohno in [8] but the statement of [15] is sufficient
for our purpose. �

Our last auxiliary result is an estimate from the theory of p-adic linear
forms in (two) logarithms. For this, we need some notation.

Let m > 1 be an integer and write m = pu1
1 . . . puw

w , where p1 < · · · < pw

are distinct prime numbers and the ui’s are positive integers. Let x be a
nonzero integer and let p be a prime. We recall that the p-adic valuation
of x, denoted by vp(x), is the greatest nonnegative integer v such that pv

divides x. Analogously, we define the m-adic valuation of x, which we denote
by vm(x), to be the greatest nonnegative integer v such that mv divides x.
We observe that

vm(x) = min
1≤i≤w

[
vpi(x)

ui

]
,

where [·] denotes the integer part. Further, if a/b is a nonzero rational
number with a and b coprime, we set vm(a/b) = vm(a)− vm(b).

We let x1/y1 and x2/y2 be two nonzero rational numbers with x1/y1 6= ±1.
Lemma 6 provides an upper bound for the m-adic valuation of

Λ =
(

x1

y1

)b1

−
(

x2

y2

)b2

,
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where b1 and b2 are positive integers, assuming that

vpi

(
x1

y1
− 1
)
≥ ui, vpi

(
x2

y2
− 1
)
≥ 1 for all prime pi, 1 ≤ i ≤ w

and that either m is odd or 4 divides m. Further, let A1 > 1, A2 > 1 be real
numbers such that

log Ai ≥ max{log |xi|, log |yi|, log m}, (i = 1, 2),

and put

b′ =
b1

log A2
+

b2

log A1
.

Lemma 6. With the previous notation and under the above hypothesis, if
moreover m, b1 and b2 are relatively prime, then we have the upper estimate

vm(Λ) ≤ 66.8
(log m)4

(
max{log b′ + log log m + 0.64, 4 log m}

)2 log A1 log A2.

Proof. This is Theorem 2 of [4]. �

4. Proofs.

Proofs of Theorems 1 and 2. Let y > x ≥ 2 be integers and denote by d
their greatest common divisor. Set x0 = x/d and y0 = y/d. Assume that
(2) has two distinct solutions (m2, n2) and (m1, n1) with m2 > m1 > 1.
Then we get

(13) (dy0 − 1)(dx0)m2 − (dx0 − 1)(dy0)n2 = dy0 − dx0

and

(14) (dy0 − 1)(dx0)m1 − (dx0 − 1)(dy0)n1 = dy0 − dx0.

We first observe that d and x0 are coprime. Indeed, let p be a prime such that
pa‖d and p|x0. Thus p2a must divide the left-hand side of (13) since m2 ≥ 2
and n2 ≥ 2. But pa+1 divides dx0, hence p must divide y0 contradicting
gcd(x0, y0) = 1. Similarly, we prove that d and y0 are coprime. Using (14)
to replace dy0 − dx0 in (13) and dividing (13) by (dx0 − 1)(dy0)n1 , we get

(15) 1 =
(dx0)m1(dy0 − 1)(1− (dx0)m2−m1)

(dy0)n1(dx0 − 1)
+ (dy0)n2−n1 .

Since d and x0y0 are coprime, this implies that d divides the right-hand side
of (15), hence d = 1. Consequently, if x and y have a common factor, then
(2) has at most one solution.

In the sequel of the Proof of Theorem 1, we always assume that x and y
are coprime. Further, we assume that there exist pairs of positive integers
(m3, n3), (m2, n2) and (m1, n1), with m3 > m2 > m1 ≥ 1 and

xmj − 1
x− 1

=
ynj − 1
y − 1

, j = 1, 2, 3.
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Since y > x, we clearly have mj+1 −mj ≥ 2 for j = 1, 2. Further

(16) nj+1 − nj ≥ 2, j = 1, 2.

Indeed, if for example n2 = n1 + 1, then we get
xm2 − 1
x− 1

=
xm1 − 1
x− 1

+ yn1 ,

and x divides y, which is a contradiction. This proves (16).
Let δ = gcd(x−1, y−1) and put a = (y−1)/δ, b = (x−1)/δ, c = (y−x)/δ.

Let s denote the smallest integer ≥ 1 such that

xs ≡ 1(mod byn1).

Then, for j = 1, 2, we have

(17) axmj+1 − bynj+1 = c

and

(18) axmj − bynj = c.

Therefore

(19) xmj+1−mj ≡ 1(mod bynj ),

thus m3 −m2 and m2 −m1 are multiples of s.
Further, (17) and (18) with j = 1 yield

1 =
axm1(1− xm2−m1)

byn1
+ yn2−n1 ,

from which we deduce that y and (1− xm2−m1)/(byn1) are coprime. By the
definition of s, we deduce that

(20) gcd
(

y,
xs − 1
byn1

)
= 1.

Write m3 −m2 = su, with u ≥ 1 integer. By (19), we see that byn2 divides
xsu − 1, thus yn2−n1 divides

(21) (1 + xs + · · ·+ xs(u−1))
xs − 1
byn1

.

From (20) and (21), we then obtain that

(22) 1 + xs + · · ·+ xs(u−1) ≡ 0 (mod yn2−n1).

Let p be a prime and assume that pα‖y. By the definition of s, there exists
an integer λ ≥ 1 such that xs = 1+λpαn1 . We infer from (22) that pα(n2−n1)

divides
(
(1 + λpαn1)u − 1

)
/(λpαn1) = u + u(u− 1)λpαn1/2 + . . . If p is odd

or if αn1 ≥ 2, we get that pα(n2−n1) divides u. If p = 2, then x is odd
and b must be even, thus λ is also even and, arguing as above, we see that
2α(n2−n1) divides u. Consequently, yn2−n1 divides u and we get

(23) m3 −m2 ≥ yn2−n1 .
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By (17) and (18), we have also

ynj+1 − ynj ≡ 1 (mod axmj )

for j = 1, 2 and we argue as above to conclude that

(24) n3 − n2 ≥ xm2−m1 .

Assume that (2) has two solutions (m3, n3) and (m2, n2) with m3 > m2 >
1. We apply our preceding results with m1 = n1 = 1 and (23) yields
m3 > yn2−1. By (16), we have n2 ≥ 3, thus

(25) m3 > y2.

Combined with Lemma 2, (25) yields y < 1011, as claimed.

Assume now that (2) has three solutions (m4, n4), (m3, n3) and (m2, n2)
with m4 > m3 > m2 > 1. By (23) we get

m4 > yn3−n2 ,

and by (24), (2) and (16) we see that

n3 − n2 > xm2−1 ≥ yn2−1/2 ≥ y2/2.

Finally, we have
m4 > yy2/2,

which, combined with Lemma 2, yields y ≤ 6.
Now, we solve (2) for any pair (x, y) with 2 ≤ x < y ≤ 6. For (2, 3)

and (3, 4), we observe that the equation |3u − 2v| = 1 has the only solution
(2, 3) in integers u > 1 and v > 1. For (x, y) = (2, 4), (2, 6), (3, 6) and
(4, 6) we conclude by arguing, respectively, modulo 4, 8, 9 and 4 that (2)
has no solution other than the one given by x = 2, y = 6,m = 3, n = 2. For
(x, y) = (4, 5), we have to solve the equation 4u−3 ·5v = 1. Arguing modulo
5, we see that u is even, hence (4u/2− 1)(4u/2 +1) = 3 · 5v and u = 2, v = 1.
We deal with (x, y) = (5, 6) in a similar manner.

Now, for (x, y) = (2, 5), we are left with the equation 5u+3 = 2v. Modulo
8, we see that u is odd, hence (5(u−1)/2, v) is a solution of 5X2 + 3 = 2k. By
Theorem 1 of [5], this equation has only two solutions, namely (X, k) = (1, 3)
and (5, 7).

Finally, it remains us to treat the pair (3, 5), hence the equation 2 · 3u −
5v = 1. Modulo 3, we see that v is odd, thus (5(v−1)/2, u) is a solution of
1 + 5X2 = 2 · 3k. By Theorem 2 of [5], this equation has only the solution
(X, k) = (1, 1). This completes the proof of Theorem 1. �

The Proof of Theorem 2 is now easy. Indeed, set m1 = n1 = 1 and let
(m2, n2) be a solution of (2). As noticed just below (19), s divides m2 − 1.
Thus s < m2 which, together with (4), contradicts (3). Theorem 2 is then
a straightforward consequence of Lemma 1. �
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Now, we give a proof of Remark 1. Let y be a given positive integer. For
an integer 1 ≤ x ≤ y coprime with y, we denote by ordy(x) the smallest
integer s ≥ 1 such that xs ≡ 1 (mod y). Further, we write∑

d|ϕ(y),d<
√

ϕ(y)

ϕ(d) +
∑

d|ϕ(y),d≥
√

ϕ(y)

ϕ(d) = ϕ(y),

and we denote by A1 (resp. A2) the first (resp. the second) summation in
the above formula. We observe that

A1 ≤ D(ϕ(y))
√

ϕ(y),

where D(n) is the number of divisors of the integer n. Thus, for y large
enough, we have A1 ≤ ϕ(y)2/3.

For any positive integer x ≤ y coprime to y, we have that ordy(x) di-
vides ϕ(y), thus A2 is exactly the number of integers x, 1 ≤ x ≤ y, with
gcd(x, y) = 1, such that there exists an integer d ≥

√
ϕ(y) with d | ϕ(y)

and ordy(x) = d. Such integers satisfy ordy(x) ≥ min
`≥
√

ϕ(y)
ϕ(`). But the

latter function is at least ϕ(y)1/3 when y is large enough. Thus, the hy-
pothesis of Theorem 2 is satisfied for large y by at least A2 integers. Since
A2 ≥ ϕ(y)− ϕ(y)2/3, the remark following Theorem 2 is proved. �

Proof of Theorem 3. Let 0 < φ < 1 and α > 1. We denote by C1, C2

and C3 effectively computable positive numbers depending only on α. Let
(x, y, m, n) be a solution of (1) such that gcd (m − 1, n − 1) = d ≥ 3 and
(m− 1)/(n− 1) ≤ α. We write

m− 1 = dr, n− 1 = ds

where r and s are positive integers. Now we infer from (1) that

x ≤ 2ys/r, y ≤ 2xr/s.

By Lemma 4, we know that d ≤ C1. By Theorem 1, we may also suppose
that y ≥ C2 with C2 sufficiently large. Further, we rewrite (1) as

x
xdr

x− 1
− y

yds

y − 1
=

1
x− 1

− 1
y − 1

,

which implies that

(26)

∣∣∣∣∣
(

y(x− 1)
x(y − 1)

)1/d

− xr

ys

∣∣∣∣∣ < 1
yds

.

Now we apply Lemma 5 with A = x(y − 1), B = y(x− 1), d = n, σ = s and
K = [2α] + 1. We may suppose that K < n. We choose φ, depending only
on α, suitably such that

1 +
1
α

+ sK

(
1 +

1
1− φ

+
2− φ

K(1− φ)

)
<

(
4α + 6 +

1
α

)
s.
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Finally, setting δ = 1 + (2 − φ)/K and u1 = 40d(K+1)(δ+1−φ)/(Kδ+1−φ), we
observe that

A(A−B)−δu−1
1 > C3y

1+ 1
α (y − x)−δ > C3y

1+ 1
α
−δ > 1

if C2 is sufficiently large. Hence, we conclude from Lemma 5 that the left
hand side of (26) exceeds

y−s(4α+6+1/α),

hence
d < 4α + 6 +

1
α

,

as claimed. �

Proof of Theorem 4. Set d = gcd(m − 1, n − 1). We apply Lemma 4 with
α = (m − 1)/(n − 1). We conclude that d2 ≤ d(n − 1) ≤ 1114.5 m, whence
d ≤ 33.4 m1/2. �

Proof of Theorem 5. Let (x, y, m, n) be a solution of (1) with x < y ≤ xa

and y ≡ 1 (mod x). Regarding (1) modulo x, we deduce that n ≡ 1 (mod
x), thus n > x. We set

Λ := (y − 1)xm = (x− 1)yn − (x− y)

and we observe that vx(Λ) ≥ m + 1. Further, if x 6= 2, then according as
2‖x or not we have

vx(Λ) ≤ vx/2

(
yn −

(
1− y − 1

x− 1

))
or

vx(Λ) = vx

(
yn −

(
1− y − 1

x− 1

))
.

We check that the hypotheses of Lemma 6 are satisfied, and, thanks to that
Lemma, we obtain for x > 2 that

m + 1 ≤ 66.8
(log x

2 )4

(
max

{
log

n + 1
log y

+ log log
x

2
+ 0.64, 4 log

x

2

})2

(log y)2.

Further, log y ≤ a log x and log x/ log x
2 ≤ log 6/ log 3 ≤ 1.631, hence we get

m ≤ max{2843a2, 148(log2 m + 0.64)a2}.
It follows that m ≤ 14000a2(log 3a)2, as claimed. �
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