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The paper concerns the topology of an isospectral real
smooth manifold for certain Jacobi element associated with
real split semisimple Lie algebra. The manifold is identified as
a compact, connected completion of the disconnected Cartan
subgroup of the corresponding Lie group G̃ which is a disjoint
union of the split Cartan subgroups associated to semisimple
portions of Levi factors of all standard parabolic subgroups of
G̃. The manifold is also related to the compactified level sets
of a generalized Toda lattice equation defined on the semisim-
ple Lie algebra, which is diffeomorphic to a toric variety in the
flag manifold G̃/B with Borel subgroup B of G̃. We then give
a cellular decomposition and the associated chain complex of
the manifold by introducing colored-signed Dynkin diagrams
which parametrize the cells in the decomposition.

1. Introduction.

In this paper, we study the topological structure of certain manifolds that
are interesting in two different ways. First they are isospectral manifolds for
a signed Toda lattice flow [14]; an integrable system that arises in several
physical contexts and has been studied extensively. Secondly they are shown
in §8 to be the closures of generic orbits of a split Cartan subgroup on a real
flag manifold. These are certain smooth toric varieties that glue together the
disconnected pieces of a Cartan subgroup of a semisimple Lie group of the
form G̃. In this paper we start from the Toda lattice aspect of this object and
end the paper inside a real flag manifold. We thus start by motivating and
describing our main constructions from the point of view of the Toda lattice;
then we trace a path that starts with this Toda lattice and that naturally
leads to the (disconnected) Cartan subgroup of a split semisimple Lie group
and a toric orbit. Another path that also leads to a Cartan subgroup starts
with Kostant’s paper [16]; this approach is described in §8.

From the Toda lattice end of this story, these manifolds are related to the
compactified level set of a generalized (nonperiodic) Toda lattice equation
defined on the semisimple Lie algebra (see for example [16]) and, although
they share some features with the Tomei manifolds in [21], they are different
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from those (e.g., nonorientable). As background information, we start with
a definition of the generalized Toda lattice equation which led us to our
present study of the manifolds.

Let g denote a real split semisimple Lie algebra of rank l. We fix a
split Cartan subalgebra h with root system ∆ = ∆(g, h), real root vectors
eαi associated with simple roots {αi : i = 1, . . . , l} = Π. We also denote
{hαi , e±αi} the Cartan-Chevalley basis of g which satisfies the relations,

[hαi , hαj ] = 0, [hαi , e±αj ] = ±Cj,ie±αj , [eαi , e−αj ] = δi,jhαj

where the l × l matrix (Ci,j) is the Cartan matrix corresponding to g, and
Ci,j = αi(hαj ).

Then the generalized Toda lattice equation related to real split semisim-
ple Lie algebra is defined by the following system of 2nd order differential
equations for the real variables fi(t) for i = 1, . . . , l,

d2fi

dt2
= εi exp

− l∑
j=1

Ci,jfj

(1)

where εi ∈ {±1} which correspond to the signs in the indefinite Toda lattices
introduced in [5, 14]. The main feature of the indefinite Toda equation
having at least one of εi being −1 is that the solution blows up to infinity in
finite time [14, 10]. Having introduced the signs, the group corresponding to
the Toda lattice is a real split Lie group G̃ with Lie algebra g which is defined
in §3. For example, in the case of g = sl(n, R), if n is odd, G̃ = SL(n, R),
and if n is even, G̃ = Ad(SL(n, R)±).

The original Toda lattice equation in [20] describing a system of l particles
on a line interacting pairwise with exponential forces corresponds to the case
with g = sl(l + 1, R) and εi = 1 for all i, and it is given by

d2qi

dt2
= exp(qi−1 − qi)− exp(qi − qi+1), i = 1, . . . , l,

where the physical variable qi, the position of the i-th particle, is given by

qi = fi − fi+1, i = 1, . . . , l,

with fl+1 = 0 and f0 = fl+2 = −∞ indicating q0 = −∞ and ql+1 = ∞.
The system (1) can be written in the so-called Lax equation which de-

scribes an iso-spectral deformation of a Jacobi element of the algebra g. This
is formulated by defining the set of real functions {(ai(t), bi(t)) : i = 1, . . . , l}
with

ai(t) :=
dfi(t)

dt
, bi(t) := εi exp

− l∑
j=1

Ci,jfj(t)

(2)
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from which the system (1) reads

dai

dt
= bi,

dbi

dt
= −bi

 l∑
j=1

Ci,jaj

.(3)

This is then equivalent to the Lax equation defined on g (see [7] for a nice
review of the Toda equation).

dX(t)
dt

= [P (t), X(t)],(4)

where the Lax pair (X(t), P (t)) in g is defined by
X(t) =

l∑
i=1

ai(t)hαi +
l∑

i=1

(bi(t)e−αi + eαi)

P (t) = −
l∑

i=1

bi(t)e−αi .

(5)

Although a case with some bi = 0 is not defined in (2) the corresponding
system (3) is well-defined and is reduced to several noninteracting subsys-
tems separated by bi = 0. The constant solution ai for bi = 0 corresponds
to an eigenvalue of the Jacobi (tridiagonal) matrix for X(t) in the adjoint
representaion of g. We denote by S(F ) the ad diagonalizable elements in
g⊗RF with eigenvalues in F , where F is R or C.

Then the purpose of this paper is to study the disconnected manifold ZR
of the set of Jacobi elements in g associated to the generalized Toda lattices,

ZR =
{

X = x +
∑l

i=1
(bie−αi + eαi) : x ∈ h, bi ∈ R \ {0}, X ∈ S(R)

}
,

its iso-spectral leaves Z(γ)R, γ ∈ Rl and the construction of a smooth
connected compactification, Ẑ(γ)R of each Z(γ)R. The construction of
Ẑ(γ)R generalizes the construction of such a smooth compact manifold which
was carried out in [15] in the important case of g = sl(l+1, R). The construc-
tion there is based on the explicit solution structure in terms of the so-called
τ -functions, which provide a local coordinate system for the blow-up points.
Then by tracing the solution orbit of the indefinite Toda equation, the dis-
connected components in Z(γ)R are all glued together to make a smooth
compact manifold. The result is maybe well explained in Figure 1 for the
case of sl(3, R). In the figure, the Toda orbits are shown as the dotted lines,
and each region labeled by the same signs in (ε1, ε2) with εi ∈ {±} are glued
together through the boundary (the wavy-lines) of the hexagon. At a point
of the boundary the Toda orbit blows up in finite time, but the orbit can
be uniquely traced to the one in the next region (marked by the same letter
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A,B or C). Then the compact smooth manifold Ẑ(γ)R in this case is shown
to be isomorphic to the connected sum of two Klein bottles. In the case of
sl(l + 1, R) for l ≥ 2, Ẑ(γ)R is shown to be nonorientable and the symmetry
group is the semi-direct product of (Z2)l and the Weyl group W = Sl+1,
the permutation group. One should also compare this with the result in
[21] where the compact manifolds are associated with the definite (original)
Toda lattice equation and the compactificationis done by adding only the
subsystems. (Also see [4] for some topological aspects of the manifolds.)
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Figure 1. The manifold Z(γ)R and the Toda orbits for sl(3, R).

The study of Z(γ)R and of the compact manifolds Ẑ(γ)R, can be physi-
cally motivated by the appearance of the indefinite Toda lattices in the con-
text of symmetry reduction of the Wess-Zumino-Novikov-Witten (WZNW)
model. For example, the reduced system is shown in [6] to contain the in-
definite Toda lattices. The compactification Ẑ(γ)R can then be viewed as
a concrete description of (an expected) regularization of the integral mani-
folds of these indefinite Toda lattices, where infinities (i.e., blow up points) of
the solutions of these Toda systems glue everything into a smooth compact
manifold.

In addition our work is mathematically motivated by:
a) The work of Kostant in [16] where he considered the real case with all

bi > 0,
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b) the construction of the Toda lattice in [17].
In [17], the solution {bi(t) : i = 1, . . . , l} in (2) of the generalized Toda lattice
equation is shown to be expressed as an orbit on a connected component Hε

labeled by ε = (ε1, . . . , εl) with εi = ±1, of the Cartan subgroup HR defined
in §3,

HR =
⋃

ε∈{±1}l

Hε.

This can be seen as follows: Let gε be an element of Hε given by

gε = hε exp

(
l∑

i=1

fihαi

)
,(6)

which gives a map from ZR into HR. Here the element hε ∈ Hε satisfies
χαi(hε) = εi for the group character χφ determined by φ ∈ ∆. The solution
{bi(t) : i = 1, . . . , l} in (2) is then directly connected to the group character
χ−αi evaluated at gε, i.e.,

bi(t) = χ−αi(gε).

The Toda lattice equation is now written as an evolution of gε,
d

dt
g−1
ε

d

dt
gε =

[
g−1
ε e+gε, e−

]
,

where e± are fixed elements in the simple root spaces g±Π so that all the
elements in g±Π can be generated by e±, i.e., g±Π = {Adh(e±) : h ∈ H}. In
particular, we take

e± =
l∑

i=1

e±αi .

Thus the Cartan subgroup HR can be identified as the position space (e.g.,
fi = qi + · · ·+ ql for sl(l +1, R)-Toda lattice) of the generalized Toda lattice
equation, whose phase space is given by the tangent bundle of HR.

One should also note that the boundary of each connected component
Hε is given by either bi = 0 (corresponding to a subsystem) or |bi| = ∞
(to a blow-up). We are then led to our main construction of the compact
smooth manifold of HR in attempting to generalize [16] Theorem 2.4 to our
indefinite Toda case including bi < 0.

We define a set ĤR containing the Cartan subgroup HR by adding pieces
corresponding to the blow-up points and the subsystems (Definition 6.1).
Thus the set ĤR is defined as a disjoint union of split Cartan subgroups HA

R
associated to semisimple portions of Levi factors of all standard parabolic
subgroups determined by A ⊂ Π, (Definition 3.10),

ĤR =
⋃

A⊂Π

⋃
w∈W/WΠ\A

w
(
HA

R
)
× {[w]A}.
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The space ĤR then constitutes a kind of compact, connected completion
of the disconnected Cartan subgroup HR. Figure 1 also describes how to
connect the connected components of HR to produce the connected mani-
fold ĤR in the case of sl(3, R). The signs must now be interpreted as the
signs of simple root characters on the various connected components. The
pair of signs (+,+) corresponds to the connected component of the identity
H and regions with a particular sign represent one single connected com-
ponent of HR. Boundaries between regions with a fixed sign correspond
to connected components of Cartan subgroups arising from Levi factors of
parabolic subgroups. In addition the Weyl group W acts on ĤR.

Most of this paper is then devoted to describing the detailed structure
of the manifold ĤR, and in §8 we conclude with a diffeomorphism defined
between ĤR and the isospectral manifold Ẑ(γ)R as identified with a toric
variety (HRgB) in the flag manifold G̃/B.

1.1. Main Theorems. In connection with the construction ĤR, we intro-
duce in Definition 4.1 the set of colored Dynkin diagrams. The colored
Dynkin diagrams are simply Dynkin diagrams D where some of the vertices
have been colored red or blue. For example in the case g = sl(3, R):◦R − ◦
(the sub-index R indicates that ◦ is colored red). The full set of colored
Dynkin diagrams consists of pairs: (D, [w]Π\S) where D is a colored Dynkin
diagram, S ⊂ Π denotes the set of vertices that are colored in D and [w]Π\S

is the coset of w in W/WS . To each pair (D, [w]Π\S) one can associate a set
which is actually a cell. First Notation 6.2 associates a subset of ĤR also
denoted (D, [w]Π\S).

(      , e ) (      , S    )α1

(        ,  [e])R(        ,  [e])R (        ,  [e])B

sα1

Figure 2. The manifold ĤR parametrized by colored Dynkin
diagrams for sl(2, R).

This turns out to be a cell of codimension k with k = |S|. We illustrate
the example of sl(2, R) in Figure 2.

We consider the set Dk of colored Dynkin diagrams (D, [w]Π\S) with |S| =
k. In Figure 2, we have D0 = {(◦, e), (◦, sα1)}, D1 = {(◦B, [e]), (◦R, [e])}. We
then obtain the following theorem:
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Theorem 1.1. The collection of the sets {Dk : k = 0, 1, . . . , l} gives a cell
decomposition of ĤR.

The chain complex M∗ is introduced in §4. The construction, in the case
of sl(2; R), is as follows:

M1 = Z
[
D0
] ∂1−→M0 = Z

[
D1
]
.

Here the boundary map ∂1 is given by{
∂1(◦, e) = (◦B, [e])− (◦R, [e]),
∂1(◦, sα1) = (◦B, [sα1 ])− (◦R, [sα1 ]).

In particular, (◦) :=
∑

w∈W (−1)`(w)(◦, w) = (◦, e)−(◦, sα1) is a cycle, where
`(w) is the length of w, and (◦) represents the ĤR. The following theorem
gives a topological description of ĤR:

Theorem 1.2. The manifold ĤR is compact, nonorientable (except if g is of
type A1), and it has an action of the Weyl group W . The integral homology
of ĤR can be computed as a Z[W ]-module as the homology of the chain
complex M∗ in (13).

Theorem 1.2 is completed in Proposition 7.7. The W -action is (abstractly)
introduced in Definition 4.4 in terms of a representation-theoretic induction
process from smaller parabolic subgroups of W . The proof that the W -
action is well-defined is given in Proposition 4.5 and Proposition 5.3. The
chain complex MCW

∗ in Definition 7.6 is defined so that it computes in-
tegral homology. Since each Xr \Xr−1 in Definition 7.6 is a union of cells
(D, [w]Π\S) ∈ Dl−r, we obtain an identification between MCW

∗ and the chain
complex M∗.

Then using the Kostant map which can be described as a map from ĤR
into the flag manifold G̃/B (in Definition 8.8), that is, a torus imbedding,
we obtain the following theorem:

Theorem 1.3. The toric variety Ẑ(γ)R is a smooth compact manifold which
is diffeomorphic to ĤR.

The complex version of this theorem has been proven in [9], and our proof
is essentially given in the same manner.

1.2. Outline of the paper. The paper is organized as follows:
In §2, we begin with two fundamental examples, g = sl(l + 1, R) for

l = 1, 2, which summarize the main results in the paper.
In §3, we present the basic notations necessary for our discussions. We

then define a real group G̃ of rank l whose split Cartan subgroup HR con-
tains 2l connected components. We also define the Lie subgroups of G̃ cor-
responding to the subsystems and blow-ups of the generalized Toda lattice
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equations. The reason for the introduction of G̃ and the Cartan subgroup
HR can be appreciated in Remark 8.10 and Corollary 8.11.

In §4, we introduce colored Dynkin diagrams which will be shown to pa-
rametrize the cells in a cellular decomposition of the manifold ĤR. We then
construct a chain complex M∗ of the Z[W ]-modules Ml−k (Definition 4.9).
The parameters involved in the statement of Theorem 1.1 are given here.

In §5 we show that Weyl group representations introduced in §4 are well-
defined. In addition we define H◦

R in §5 by adding some Cartan subgroups
associated to semisimple Levi factors of parabolic subgroups to HR.

In §6, we define ĤR as a union of the Cartan subgroup associated to
semisimple Levi factors of certain parabolic subgroups (Definition 6.1) using
translation by Weyl group elements. We also associate subsets of ĤR to
colored Dynkin diagrams.

In §7, we discuss the toplogical structure of ĤR expressing ĤR as the
union of the subsets determined by the colored Dynkin diagrams. We then
show that ĤR is a smooth compact manifold and those subsets naturally
determine a cell decomposition (Theorem 1.2).

In §8, we consider a Kostant map between the isotropy subgroup Gz
C of

GC with Ad(g)z = z and the isospectral manifold J(γ)C for some γ ∈ Rl,
which can be also described as a map into the flag manifold G̃/B. Then
we show that the toric variety (HRnB) is a smooth manifold and obtain
Theorem 1.3.

2. Examples of sl(l + 1, R), l = 1, 2.

This section contains two examples which are the source of insight for the
main theorems in this paper. Most of the notation and constructions used
later on in the paper can be anticipated through these examples.

Our main object of study in this paper, ĤR, has nothing to do, in its
construction, with the moment map and the Convexity Theorem of [1].
However, because of [1] it is expected to contain a polytope with vertices
given by the action of the Weyl group which, gives rise to it through some
gluings along its faces. We will identify a convenient polytope of this kind
in h′ (dual of Cartan subalgebra) and show how all the pieces of ĤR would
fit inside it. The polytope in the example of sl(3, R) is a hexagon. Since
we are not dealing with the moment map in this paper, this is just done for
the purposes of motivation and illustration. The polytope of the Convexity
Theorem in [1], strictly speaking, is the convex hull of the orbit of ρ. This
sits inside the convex hull of the orbit of 2ρ which is all a part of ĤR.

The terms dominant and antidominant being relative to a choice of a
Borel subalgebra, we refer to the chamber in h′ containing ρ as antidominant
for no other reason than the fact that we will make it correspond to what
we call the antidominant chamber of the Cartan subgroup HR. This odd
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convention is applicable throughout this section always in connection with
the 2ρ polytope and our figures.

At this stage it is useful to keep in mind that:

1) The bulk — interior — of ĤR is made up of a split Cartan sub-
group HR which has 2l connected components Hε parametrized by
signs ε = (±, . . . ,±) for g with rank l, i.e., HR =

⋃
ε∈{±1}l Hε. These

disconnected pieces are glued together into a connected manifold by
using Cartan subgroups HA

R associated to Levi factors of parabolic
subgroups, which are determined by the set of simple roots Π \ A for
each A ⊂ Π.

2) The language of colored Dynkin diagrams and signed colored Dynkin
diagrams is introduced in this paper in order to parametrize the pieces
of ĤR. However the motivation for their introduction is that these di-
agrams parametrize the pieces of a convex polytope (hexagon) which
lives in h′, including its external faces and internal walls. The param-
eters for the pieces are colored and signed-colored Dynkin diagrams.

3) If one just looks at the antidominant chamber intersected with the
2ρ polytope, then it is easy to see that it forms a box. This box is
the closure of the antidominant chamber H<

R of the Cartan subgroup

HR (Definition 3.10) inside ĤR, i.e., ĤR =
⋃

w∈W w
(
H<

R

)
. The box

H<
R has internal chamber walls corresponding to simple roots (thus

a Dynkin diagram appears) and it has external faces which are also
parametrized by simple roots. Hence one needs not just a Dynkin
diagram but also two colors to indicate internal walls and external
faces. The color blue indicates internal chamber walls and the color
red indicates external faces. The S is usually reserved for the set of
colored vertices of a colored Dynkin diagram.

4) To have a correspondence with the 2l connected components of the
Cartan subgroup HR of diagonal matrices, the box H<

R must be further
subdivided into 2l boxes H<

ε with signs ε, i.e., H<
R =

⋃
ε∈{±1}l H<

ε .

These boxes are parametrized by a Dynkin diagram where each simple
root has a sign attached to it. The boundaries of these boxes are
portions of the internal and external walls. Hence we use Dynkin
diagrams with both signs and colors. The boundaries between two
signs require to be labeled as 0. The A is usually reserved for the set
of vertices of a signed-colored Dynkin diagram assigned 0 (subsystems).

5) To translate the notation of colored and signed-colored Dynkin dia-
grams to other chamber one needs to consider pairs (D,w) where w is
a Weyl group element. However since the Weyl group action has non-
trivial isotropy groups in portions of the polytope, it is necessary to
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consider Weyl group cosets [w]Π\S for S ⊂ Π the set of colored simple
roots (giving reflections generating an isotropy group).

6) To translate the Levi subgroups around, note that the Weyl group
of the Levi factor stabilizes the Cartan subgroup of the Levi factor
corresponding to the simple roots in Π\A. Because of that we consider
products w(HA

R )× {[w]A} so that [w]A is a coset in W/WΠ\A,

ĤR =
⋃

A⊂Π

⋃
w∈W/WΠ\A

w
(
HA

R
)
× {[w]A}.

2.1. The example of sl(2, R). The corresponding group in this example
is given by G̃ = Ad(SL(2, R)±). The geometric picture that corresponds to
ĤR is a circle. Consider the interval [−2, 2] where −2 and 2 are identified.
Here 2 represents 2ρ. Inside this interval (−2, 2) we consider the subset
[−1, 1]. The points −1, 0, 1 divide [−2, 2] into four open intervals. These
open intervals will correspond to the connected components of a Cartan
subgroup HR of Ad(SL(2, R)±) when the walls corresponding to the points
0 and 2 are deleted. Below we list each cell w(HA,<

ε )×{[w]A} in ĤR, where
HA,<

ε is the intersection of HA
ε with the strictly antidominant chamber (the

superscript ≤ means that the walls are included):
Let us take hα1 = diag(1,−1) ∈ h and hε = Ad(diag(ε, 1)) ∈ Hε. Then

any element in HR can be expressed as hε exp(thα1) with some parameter
t ∈ R. We denote exp(thα1) = diag(a, a−1).

We first consider A = ∅. Then the cell H<
+ × {[e]} is given by{

Ad(diag(a, a−1)) : 0 < a < 1
}
× {[e]} = (◦+, e) ↔ (0, 1).

Here χα1(h) = a2 for h ∈ H+. Also we have the set H<
− × {[e]} as{

Ad(diag(−a, a−1)) : 0 < a < 1
}
× {[e]} = (◦−, e) ↔ (1, 2)

with χα1(h) = −a2 for h ∈ H−.
We now consider the case of A = {α1} = Π, which corresponds to a

subsystem of Toda lattice with b1 = 0 in (5). Then we have HΠ,≤
R = {e}.

This is the degenerate case of A = Π which gives rise to the Levi factor of
a Borel subgroup. Since the Levi factor does not contain a semisimple Lie
subgroup, HA

R is defined to be {e} (Definition 3.9). Here [w]A is just the
element w. We have

{Ad(h+)} × {e} = (◦0, e) ↔ {1}.

We now describe the box containing the strictly antidominant chamber H<
R

of HR. Since H<
R is disconnected, (◦0, e) has been used to glue the pieces

together. We then have a box given by

(◦, e) = (◦+, e) ∪ (◦−, e) ∪ (◦0, e) ↔ (0, 2).(7)
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The bijection which gives rise to local coordinates φe in Subsection 7.2 is
given by either ±a2 or 0. The set (◦, e) is sent by φe to the interval (−1, 1).

We now apply sα1 on H<
ε × {[e]} to obtain the cell in the sα1-chamber

which corresponds to the negative intervals:{
Ad(diag(a−1, a)) : 0 < a < 1

}
× {[e]} = (◦+, sα1) ↔ (−1, 0)

with χα1(h) = a−2. However the local coordinate φsα1
is χ−α1 which equals

a2. We also have{
Ad(diag(a−1,−a)) : 0 < a < 1

}
× {[e]} = (◦−, sαi) ↔ (−2,−1).

Also for the case A = {α1}, and the set sα1(H
A,≤
R )× {sα1} is given by

{Ad(h+)} × {sα1} = (◦0, sα1) ↔ {−1}.

Once again φsα1
is given as 0, and we have the set sα1(H

<
R ), giving rise to

an open box by gluing two disconnected pieces as before,

(◦, sα1) = (◦+, sα1) ∪ (◦−, sα1) ∪ (◦0, sα1) ↔ (−2, 0).

(      , e ) (      , S    )α1

(        ,  [e])R(        ,  [e])R (        ,  [e])B

(        , e )+

(        ,  e )0

(        ,  S    )α1+

(        ,  S    )α10

(        ,  e )_(        , S   )α1
_

Figure 3. The manifold ĤR parametrized by signed-colored
Dynkin diagrams for sl(2, R). The endpoints in the interval
are identified giving rise to a circle.

The image of (◦, sα1) under φsα1
is thus(−1, 1). We also have the internal

and external walls of the Cartan subgroup,respectively:

{Ad(h+)} × {[e]} = (◦B, [e]) ↔ {0}
{Ad(h−)} × {[e]} = (◦R, [e]) ↔ {2}.

These are already associated to colored Dynkin diagrams ◦B and ◦R.
We can write down {−2} by applying sα1 as we did above. However noting

Ad(diag(−1, 1)) = Ad(diag(1,−1)), we obtain the same set that defines {2}.
Thus {2} and {−2} are identified. We then obtain the interval [−2, 2] with
−2 identified with 2, which is ĤR diffeomorphic to a circle. We illustrate
this example in Figure 3.
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Figure 4. The square formed by the intersection of the an-
tidominant chamber with the 2ρ hexagon for sl(3, R).

Maps can be easily found between the intervals on the left and the sets on
the right above. With a suitable topology associated to the (D, [w]), topol-
ogy defined in terms of the coordinate functions φe and φsα1

in Section 7.3,
each interval or point on the left side is homeomorphic to the interval on
the right. This is what is indicated with ↔.
2.2. The example of sl(3, R). We here consider the dual of its Cartan
subalgebra h′ and, inside it, a convex region bounded by a hexagon which is
determined by the W orbit of 2ρ. We will later describe how to identify some
of the faces of this hexagon. In Figure 4, we illustrate the parametrization
of the faces. The two walls of the antidominant chamber intersected with
this convex region are denoted by the colored Dynkin diagrams ◦B − ◦ (the
sα1-wall) and ◦ − ◦B (the sα2-wall). The intersection of two of the sides or
faces of the 2ρ hexagon with the antidominant chamber are each denoted
by a colored Dynkin diagram ◦R − ◦ or ◦ − ◦R. The four colored Dynkin
diagrams ◦B − ◦, ◦ − ◦B, ◦R − ◦, ◦ − ◦R form a square. This square is the
intersection of the antidominant chamber and the 2ρ hexagon.

We now further subdivide this square into four subsquares (see Figure 1
and Figure 4). Inside the 2ρ hexagon is the orbit of ρ which gives rise
to a new smaller hexagon. Consider the two faces in the smaller hexagon
intersecting the antidominant chamber. Denote these (intersected with the
antidominant chamber) by signed-colored diagrams. The ◦0−◦+ corresponds
to the unique face intersecting the wall ◦ − ◦B, and ◦+ − ◦0 corresponds to
the unique face intersecting the wall ◦B − ◦. Denote by ◦0 − ◦0 the vertex
of the ρ hexagon which is the intersection of these two faces. We now add a
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segment joining the vertex ◦0 − ◦0, to a point in the interior of ◦R − ◦, say
the midpoint. Denote this segment by the signed-colored diagram ◦− − ◦0.
We add another segment joining ◦0 − ◦0 to a point in the interior of ◦ − ◦R

and denote this second segment by the signed-colored diagram ◦0−◦−. Now
the square is divided into four “square” regions denoted by ◦± − ◦±.

Note that both ◦R − ◦ and ◦ − ◦R segments parametrized by colored
Dynkin diagrams, are now subdivided into two segments parametrized with
signed-colored Dynkin diagrams. For instance ◦ − ◦R contains ◦+ − ◦R and
◦− − ◦R and the intersection of these two is the point ◦0 − ◦R. Now the
square ◦−−◦−, for example, has a boundary which consists of the segments
parametrized by ◦R−◦−, ◦−−◦R, ◦0−◦− and ◦−−◦0. The square ◦−−◦+

has boundary ◦R−◦+, ◦−−◦B, ◦0−◦+, ◦−−◦0. Here the α2-wall ◦−◦B has
also been subdivided into two pieces ◦+−◦B and ◦−−◦B by the intersection
with the ρ hexagon.

If we now consider the full set of signed-colored Dynkin diagrams by
translating with W , we can fill the interior of the 2ρ hexagon with a total
of 12 regions. The four squares (◦± − ◦±, e) form the intersection of the
antidominant chamber with the inside of the 2ρ hexagon.

2.2.1. The sets in ĤR parametrized by the colored and signed-
colored Dynkin diagrams. We now proceed to describe explicitly some
of the pieces of ĤR corresponding to the signed-colored Dynkin diagrams
(D, [w]Π\S) with +,− or 0 on the vertices in Π \ S of the diagram D and
[w]Π\S ∈ W/WS .

When A = ∅ implying no 0’s in the vertices, we have HA
R = HR which

has 4 connected components,

HR =
⋃

ε∈{±1}2
{hεdiag(a, b, c) : a > 0, b > 0, abc = 1},(8)

where hε = h(ε1,ε2) = diag(ε2, ε1ε2, ε1) satisfying χαi(hε) = εi. Since A = ∅,
WΠ\A = W , and there is only one coset [e]A = [e] in the ĤR construction.
We now consider the signed-colored Dynkin diagrams setting S = ∅, that is,
all the vertices are uncolored and they give a subdivision of the antidominant
chamber inside the 2ρ hexagon. In order to move around this chamber and
its subdivisions using the Weyl group we must also consider six elements
[w]Π = w ∈ W . We then have, for S = ∅ and A = ∅, and (ε1, ε2) = (±1,±1),

(◦ε1 − ◦ε2 , e) =
{
hεdiag(a, b, (ab)−1) : ab−1 < 1, ab2 < 1

}
× {[e]}

Note here that the inequalities |χαi | < 1 guarantee that the set in question
is contained in the chamber associated to e. Here the local coordinate φe is
given by (χα1 , χα2) which equals (ab−1, ab2).

For A = {α1}, we have hε = diag(ε2, ε2, 1) ∈ HA
ε with ε = (1, ε2); and

we multiply this element with diag(1, a, a−1). This is a typical element in
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the connected component of the Cartan associated to the Levi factor, in
accordance with the definition of HA

R in Definition 3.10. This gives:

(◦0 − ◦ε2 , e) =
{
diag(ε2, ε2a, a−1) : 0 < a < 1

}
× {[e]A}

where the local coordinate φe is given by (0, ε2a
2).

For A = {α2}, we have in a similar way with h(ε1,1) = diag(1, ε1, ε1):

(◦ε1 − ◦0, e) =
{
diag(a, ε1a

−1, ε1) : 0 < a < 1
}
× {[e]A}

where φe now equals (ε1a2, 0).

We have an open square associated with the interior of the antidominant
chamber,

(◦ − ◦, e) =
⋃

(ν1,ν2)∈{±1,0}2
(◦ν1 − ◦ν2 , e).(9)

The image of this set under the map φe is an open square (−1, 1)× (−1, 1).
We now write down the boundary of this square: We here give an explicit

form of (◦R − ◦, [e]Π\S), and the others can be obtained in the similar way.
We first have, for S = {α1}, A = ∅, so that [e]A = [e] = [sαi ] for i = 1, 2,(

◦R − ◦ε2 , [e]
{α2}

)
=
{
diag

(
ε2a,−ε2a,−a−2

)
: 0 < a < 1

}
× {[e]}.

Here φe equals (χα1 , χα2), and is given by (−1, ε2a
3).

With A = {α2}, we have:(
◦R − ◦0, [e]{α2}

)
= {diag(1,−1,−1)} ×

{
[e]{α2}

}
.

The map φe is (χ∆A

α1
, 0) and equals (−1, 0). We then have(

◦R − ◦, [e]{α2}
)

=
⋃

ν∈{±1,0}

(
◦R − ◦ν , [e]{α2}

)
.

The image of this set under φe is thus {−1} × (−1, 1).

We now consider the parts of the Cartan subgroup of Levi factors cor-
responding to other chambers inside the hexagon. Note that if we apply
sα1 = w to (◦ε1 − ◦ε2 , e), we obtain

(◦ε1 − ◦ε1ε2 , sα1) =
{
diag

(
ε1ε2b, ε2a, ε1(ab)−1

)
: ab−1 < 1, ab2 < 1

}
× {[e]}.

Since sign(χα1) = ε1 and sign(χα2) = ε1ε2, this set is no longer contained in
H(ε1,ε2) but rather in H(ε1,ε1ε2). This justifies the notation (◦ε1 −◦ε1ε2). One
should note that ε for the component Hε in HR did not change when one
uses the simple roots associated to the new positive system sα1∆+.
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Figure 5. Gluing creates a Mobius band out of two contigu-
ous chambers.

Also notice that for S = {α1} we have(
◦R − ◦+, [sα1 ]

Π\S
)

=
{
diag

(
−a, a,−a−2

)
: a > 0

}
× {[e]}

and we have an identification of (◦R − ◦+, [sα1 ]
Π\S) and (◦R − ◦−, [e]Π\S).

They are the same set. In fact, now S = {α1} and e and sα1 give the same
coset in W/WS so the corresponding signed-colored Dynkin diagrams agree
too. Similarly (◦R − ◦−, [sα1 ]

Π\S) is the same as (◦R − ◦+, [e]Π\S). In our
hexagon this means that two of the outer walls must be glued. The fact that
a segment with a sign + is glued to one with − corresponds to the fact that
the two contiguous chambers will form a Mobius band after the gluing (see
Figure 5).

What this means is that in our geometric picture consisting of the inside
of the 2ρ hexagon, some portions of the boundary need to be identified. Such
identifications take place on all the chambers. This identification provides
the gluing rule given in Lemma 4.2 in [15] for the case of sl(n, R).
2.3. The chain complex M∗. We describeM∗ in terms of colored Dynkin
diagrams. The Z modules of chains Mk are then given by (see Figure 6):

• M2 = Z [(◦ − ◦, w) : w ∈ W ]. The cells are the chambers of the 2ρ
hexagon, and dimM2 = 6.

• M1 consists of the cells parametrized by the colored Dynkin dia-
grams (◦R−◦, [w]{α2}), (◦B −◦, [w]{α2}) with w ∈ {e, sα2 , sα1sα2} and
(◦ − ◦R, [w]{α1}), (◦ − ◦B, [w]{α1}) with w ∈ {e, sα1 , sα2sα1}. These
are the sides of the different chambers of the hexagon. The blue (B)
stands for internal chamber wall and the red (R) for external face of
the hexagon. The dimension is then given by dimM1 = 12.
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Figure 6. The manifold ĤR parametrized by colored Dynkin
diagrams for sl(3, R).

• M0 = Z [(◦s − ◦t, [e]) : s, t ∈ {R,B}]. These are the four vertices of
a chamber. Because of identifications, there are only four different
points coming from all the six chambers, that is, dimM0 = 4.

The chain complex M∗ : M2
∂2−→ M1

∂1−→ M0 leads to the following
integral homology: H2 = 0 , H1 = Z3 ⊕ Z/2Z, H0 = Z. This implies
that ĤR is nonorientable and is equivalent to the connected sum of two
Klein bottles. Also note that the Euler character is 6 − 12 + 4 = −2.
According to Proposition 7.7 this computes the homology H∗(ĤR, Z) of the
compact smooth manifold ĤR. The torsion Z/2Z in H1 has the following
representative:

c1 =
∑

w∈W/W{sα2}

(−1)`(w)
(
◦R − ◦, [w]{sα2}

)
−

∑
w∈W/W{sα1}

(−1)`(w)
(
◦R − ◦, [w]{sα1}

)
.

Here `(w) denotes the length of w. If we let

c2 =
∑

w∈W

(−1)`(w)(◦ − ◦, w),

then ∂2(c2) = 2c1.
From the chain complex one can compute the three dimensional vector

space H1(ĤR, Q) as a W -module. This is a direct sum of a one dimensional
nontrivial (sign) representation and the two dimensional reflection represen-
tation. The representation H0(ĤR, Q) is trivial.
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3. Notation, the group G̃.

3.1. Basic Notation. The important Lie group for the purposes of this
paper is a group G̃ that will be technically introduced in Subsection 3.2.
This group is R split and has a split Cartan subgroup with 2l components
with l = rank(G). For example SL(3, R) is of this kind but SL(4, R) is not.
We need to introduce the following standard objects before it is possible to
define and study G̃.

Notation 3.1 (Standard Lie theoretic notation). We adhere to standard
notation and to the following conventions: . . .C denotes a complexification;
for any set S ⊂ Π, . . .S is an object related to a parabolic subgroup or
subalgebra determined by S; for any subset A ⊂ Π , . . .A is associated to
the parabolic determined by Π \ A. However we will not simultaneously
employ . . .A and . . .S for the same object . . .. As in the introduction g
denotes a real split semisimple Lie algebra of rank l with complexification
gC = g⊗

R
C. We also have GC the connected adjoint Lie group with Lie alge-

bra gC (GC = Ad(Gs
C)) and G the connected real semisimple Lie subgroup

of GC with Lie algebra g. Denote Gs
C the simply connected complex Lie

group associated to gC. We list some additional very standard Lie theoretic
notation:

• g′ = HomR(g, R) and g′C = HomC(gC, C).
• Given λ ∈ g′ and x ∈ g, 〈λ, x〉 is λ evaluated in x, 〈λ, x〉 = λ(x).
• (, ) the bilinear form on g or gC given by the Killing form (the same

notation applies to the Killing form on g′ and g′C).
• θ a Cartan involution on g.
• g = k+p the Cartan decomposition of g associated to θ, where k is the

Lie algebra of a maximal compact subgroup K of the adjoint group G
and p is the orthogonal complement to k with respect to the Killing
form.

• eφ ∈ g, h root vectors chosen so that (eφ, e−φ) = 1.
• ∆+ ⊂ ∆ be a fixed system of positive roots.
• b = h +

∑
φ∈∆+

Reφ (Borel subalgebra).

• n = [b, b] =
∑

φ∈∆+

Reφ and n =
∑

φ∈∆+

Re−φ.

• nC = n⊗
R

C, nC = n⊗
R

C.

• HC Cartan subgroup of GC with Lie algebra hC.
• H = H(∆) the connected Lie subgroup of G with Lie algebra h, H =

exp(h).
• H1

R Cartan subgroup of G with Lie algebra h.
• W the Weyl group of g with respect to h or the Weyl group of H1

R.
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• WS ⊂ W , the group generated by the simple reflections corresponding
to the elements in S ⊂ Π.

Remark 3.2. The group H1
R [22] p. 59, 2.3.6 consists of all g ∈ G such that

Ad(g) restricted to h is the identity. This Cartan subgroup will be usually
disconnected and H is the connected component of the identity e. The Weyl
group W of the Cartan subgroup H1

R is isomorphic to the group which is
generated by the simple reflections sαi with αi ∈ Π and which agrees with
the Weyl group associated to the pair (gC, hC). This is because our group is
assumed to be R split.

Example 3.3. The reader may wish to read the whole paper with the
following well-known example in mind. Let Gs

C = SL(n, C) and GC =
Ad(SL(n, C)). The second group is obtained by dividing SL(n, C) by the
finite abelian group consisting of the n roots of unity times the identity ma-
trix. We can set G = Ad(SL(n, R)). Note that if n is odd then SL(n, R) =
Ad(SL(n, R)) = G. If n is even then Ad(SL(n, R)) is obtained by dividing
by {±I} (I the identity matrix). In this example, g consists of traceless n×n
real matrices. The Cartan subalgebra h in the Ad(SL(n, R)) case can be
taken to be the space of traceless n×n real diagonal matrices. The root vec-
tors eφ are the various matrices with all entries ai,j = 0 if (i, j) 6= (io, jo) and
aio,jo = 1 where io 6= jo are fixed integers. In this case of G = Ad(SL(n, R)),
with h chosen as above, the Cartan subgroup H1

R of G consists of Ad ap-
plied to the group of real diagonal matrices of determinant one. The group
H consists of Ad applied to all diagonal matrices diag(r1, . . . , rn) with ri > 0
the connected component of the identity of H1

R.

Notation 3.4. The following elements in h and its dual h′ will appear often
in this paper:

• α̌i = 2αi
(αi,αi)

the coroots.
• mαi i = 1, . . . , l, the fundamental weights, (mαi , α̌j) = δi,j .
• m◦

αi
the unique element in h defined by 〈mαi , x〉 = (m◦

αi
, x).

• hαi is the unique element in h such that (hαi , x) = 〈α̌i, x〉.
• yi =

2πm◦
αi

(αi,αi)
.

• h< = {x ∈ h : 〈αi, x〉 < 0 for all αi ∈ Π}.
Example 3.5. Consider GC = Ad(SL(n, C)) ⊂ Ad(GL(n, C)) and n even.
We view gC inside the Lie algebra of GL(n, C) (as n × n complex traceless
matrices). Then m◦

αi
= diag(t1, . . . , tn)+z where tj = 1 for j ≤ i and tj = 0

for j > i. The element z is in the center of the Lie algebra of GL(n, C)
and thus ad(z) = 0. For instance if n = 2 then m◦

α1
= diag(1

2 ,−1
2) =

diag(1, 0)− diag(1
2 , 1

2).

3.2. The group G̃. We now define, following [16], 3.4.4 in p. 241 an en-
largement G̃ of the split group G. The purpose of this is to “complete”
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the Cartan subgroup H1
R forcing it to have 2l connected components where

l is the rank of G. In the case G = SL(l + 1, R) where l is even, G̃ = G
already. We thus consider another real split group, slightly bigger than G.
Let x, y ∈ h so that x+

√
−1y ∈ hC. We recall the conjugate linear automor-

phism of gC given by zc = x−
√
−1y where z = x +

√
−1y and x, y ∈ g. We

recall that this automorphism induces an automorphism GC → GC, g 7→ gc.
We thus let

G̃ = {g ∈ GC : gc = g}.
By [16] Proposition 3.4, we also have:

G̃ = {g ∈ GC : Ad(g)g ⊂ g}.
Then we have the following Proposition whose proof will be given later (right
after Proposition 3.15):

Proposition 3.6. Let G = Ad(SL(n, R)), then G̃ ∼= SL(n, R) for n odd
and G̃ ∼= Ad(SL(n, R)±) if n is even. Thus G̃ is disconnected whenever n
is even.

We now describe an element hi in the Cartan subgroup of G̃. First we
have:

Lemma 3.7. Let x, y ∈ h and αi ∈ Π. Then the numbers exp(〈αi, x +√
−1y〉) are real if and only if y has the form: y =

∑l
i=1kiyi where ki is an

integer and yi is as in Notation 3.4. The elements hi = exp(
√
−1kiyi) with

ki odd are in G̃ and satisfy h2
i = e with hi 6= e.

Proof. It is enough to consider the case when x = 0. Suppose first that
y =

∑l
i=1kiyi where each ki is an integer. Then e

√
−1〈αi,y〉 = e

√
−1πki takes

either +1 or −1. Conversely, suppose that all the e〈αi,
√
−1y〉 with i = 1, . . . , l

are real. Then e〈αi,
√
−1y〉 equals ±1 and 〈αi, y〉 = kiπ for all i = 1, . . . , l.

This implies that, for each i, 〈α̌i, y〉 = 2kiπ
(αi,αi)

. Since g is semisimple and

the {m◦
αi

: i = 1, . . . , l} forms a basis of h, necessarily y =
∑l

i=1cim
◦
αi

with
〈α̌i, y〉 = ci and 〈α̌i, y〉 = 2kiπ

(αi,αi)
. This proves the first part of the statement

in Lemma 3.7. We note that since all the e〈αj ,yi〉 are real then e〈φ,
√
−1yi〉

is also real for any root φ which is not necessarily simple. Therefore each
Ad(hi) stabilizes all the root spaces of h in g. Since h is also stabilized,
we obtain that Ad(hi)(g) ⊂ g and thus hi ∈ G̃. Clearly hi = exp(

√
−1yi)

satisfies h2
i = 1 where hi 6= e. This is because hi is representable by a

diagonal matrix with entries of the form ±1. Moreover, at least one diagonal
entry must be equal to −1. �

Example 3.8. In the case of Ad(SL(n, R)±) with n even, hi = exp(
√
−1yi)

is just Ad(diag(r1, . . . , rn)) where rj = 1 if j ≤ i and rj = −1 if j > i. When
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n is odd then we have hi = (−1)n−idiag(r1, . . . , rn) with the same notation
as above for the ri. In this case SL(n, R) = Ad(SL(n, R)).

We now describe a split Cartan subgroup HR of G̃ and other items related
to it. The HR is the real part of HC on G̃,

HR = HC ∩ G̃,

which has 2l components (see Proposition 3.15 below). We denote by B a
Borel subgroup with Lie algebra h + n contained in G̃ or G as will be clear
from the context. Thus in G̃ this is HRN , N = exp(n). From the Bruhat
decomposition applied to G̃, we have

G̃ =
⋃

w∈W

NŵHRN,

with N = exp(n). Here ŵ stands for any representative of the Weyl group
element w ∈ W in the normalizer of the Cartan subgroup. Keeping this in
mind we will harmlessly drop theˆfrom the notation.

In addition let χφ denote the group character determined by φ ∈ ∆; on HR
each χφ is real and cannot take the value zero. Thus a group character has a
fixed sign on each connected component. We denote by sign(χφ(g)) the sign
of this character on a specified element g of HR. We let E = E(∆) = {±1}l =
{(ε1, . . . , εl) : εi ∈ {±1}, i = 1, . . . , l}. Then the set E of all 2l elements ε
(or functions ε : Π → {±1}) will parametrize connected components of the
Cartan subgroup HR of G̃ and corresponds to the signs εk = sksk+1 in the
indefinite Toda lattice in p. 323 of [14]. In connection with the connected
components let hε =

∏
εi 6=1 hi for ε ∈ E and hi = exp(

√
−1yi) in Lemma 3.7.

Now Hε = hεH = {h ∈ HR : sign(χαi(h)) = εi for all αi ∈ Π}, and we have:

HR =
⋃
ε∈E

Hε.

Notation 3.9. We need notation to parametrize connected the components
of a split Cartan subgroup, roots and root characters. Unfortunately we
need such notation for all the parabolic subgroups associated to arbitrary
subsets of Π. Recall (Notation 3.1) that notation associated to a parabolic
subgroup determined by a subset Π \ A, A ⊂ Π is usually indicated by
changing the standard notation with the use of a superscript . . .A. Thus we
have: ∆A ⊂ ∆, root system giving rise to a semisimple Lie algebra lA ⊂ g.
Also there are corresponding connected semisimple Lie subgroups LA

C ⊂ GC,
LA ⊂ LA

C . The adjoint group is denoted by LC(∆A) = Ad(LA
C) and it has a

real connected Lie subgroup L(∆A). Let L̃(∆A) be defined in the same way
as G̃ but relative to the root system ∆A. We let hA be the real span of the hαi

with αi 6∈ A. This is a (split) Cartan subalgebra of lA denoted as HA
R . The
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corresponding connected Lie subgroup is HA = exp(hA) (exponentiation
taking place inside GC).

We also consider Lie subgroups of G̃ corresponding to the subsystems
of the Toda lattice. In accordance to our convention for Levi subgroups
associated with A ∈ Π, we have

EA = {ε = (ε1, . . . , εl) : εi = 1 if αi ∈ A}.
Thus HA is by definition a subgroup of H. This Lie subgroups of H is
isomorphic to the connected component of the identity of a Cartan subgroup
of a real semisimple Lie group that corresponds to lA. There is a bijection

EA ∼= E(∆A) = {(εj1 , . . . , εjm) : αji 6∈ A for i = 1, . . . ,m = |Π \A|}(10)

which is given in the obvious way by restricting a function ε : Π → {±1}
such that εi = ε(αi) = 1 for αi ∈ A to a new function ε(∆A) with domain
Π \A.

We now consider the Cartan subalgebras and the Cartan subgroups for
Levi factors of parabolic subalgebras and subgroups dtermined by A ⊂ Π:

Definition 3.10. For A ⊂ Π, we denote:
• HA

R =
⋃

ε∈EA

hεH
A (if ∆A = ∅ (i.e., A = Π) then HA

R = {e}).

• HR(∆A) a Cartan subgroup of L̃(∆A), defined in the same way as HR
and having Lie algebra hA (HR(∆A) = {e} if ∆A = ∅).

• HA,≤
ε = {h ∈ hεH

A : for all αi ∈ Π \ A : |χαi(h)| ≤ 1} the antidomi-
nant chamber of HA

ε = hεH
A. Similarly we consider HA,<

ε using strict
inequalities.

• H(∆A)≤ε = {h ∈ H(∆A)ε : for all αi ∈ Π \ A : |χ∆A

αi
(h)| ≤ 1}.

Similarly we consider a version with strict inequalities.
• χ∆A

αi
the root character associated to αi on the Cartan HR(∆A).

We use notation . . .≤ to indicate the antidominant chamber on Cartan sub-
algebras and subgroups and . . .< for strictly antidominant chambers.

Example 3.11. In the case of G̃ = SL(3, R), HR is the group

HR = {diag (a, b, c) : a 6= 0, b 6= 0, abc = 1} .

For A = {α1}, HA is the group {diag(1, a, a−1) : a > 0}. The set EA

consists of (1, 1) and (1,−1). The element h(1,−1) = diag(−1,−1, 1) and
thus h(1,−1)H

A = {diag(−1,−a, a−1) : a > 0}. These two components form
HA

R . Note that HRLA is the Lie subgroup of SL(3, R) consisting of all real
matrices of the form,

HRL{α1} =

a 0 0
0 b c
0 d e
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having determinant one. The group LA is obtained by setting a = 1
and the determinant equal to one. The group L(∆A) is isomorphic to
Ad(SL(2, R)) the adjoint group obtained from LA and L̃(∆A) is isomor-
phic to Ad(SL(2, R)±). Thus these three groups LA, L(∆A) and L̃(∆A) are
all different in this case.

Definition 3.12. Recall that the S is a subset of Π indicating colored ver-
tices in a Dynkin diagram. Let η : S → {±1} be any function. We let
εη ∈ EΠ\S defined by εη(αi) = η(αi) if αi ∈ S, εη(αi) = 1 if αi 6∈ S. Thus
there is a bijective correspondence between the set of all functions η and the
set EΠ\S and (by Equation (10)) a second bijection with the set E(∆Π\S):

η 7→ εη ∈ EΠ\S ,

and

η 7→ εη(∆Π\S) ∈ E(∆Π\S).

The exponential map hε exp : h → hεH allows us to define chamber walls in
H and therefore in any of the connected components of HR. For any root
φ ∈ ∆ the set {h ∈ hεH : |χφ(h)| = 1} defines the φ-wall of Hε = hεH.
The intersection of all the αi-walls of Hε is the set {hε}. This is also the
intersection of all the φ-walls of Hε with φ ∈ ∆.

We also define the following subsets of Hε:

Definition 3.13. We denote:
• D = D(∆) = {hε : ε ∈ E}.
• D(∆Π\S) = {hε : ε ∈ E(∆Π\S)}.

The set D has two structures: It is a finite group and also a set with an
action of W . In Proposition 3.15 it is the first structure that is emphasized
but in the Proof of Proposition 4.5 it is the second structure which is relevant.
We now look at the W -action.

Since W acts on HR and w ∈ W sends a φ-wall of Hε to the w(φ)-wall of
some other Hε′ , this set D is preserved by W and thus acquires a W -action.
Given S ⊂ Π we similarly obtain that D(∆Π\S) has a WS-action.

The map

D(∆Π\S) → E(∆Π\S)(11)

sending hε 7→ ε also defines an action of WS on the set of signs E(∆Π\S).
Recall (Notation 3.9) that EΠ\S ⊂ E denotes those ε for which εi = 1
whenever αi 6∈ S. We have a bijection (by (11) together with(10))

EΠ\S ∼= D(∆Π\S).

The WS-action on the set D(∆Π\S) thus gives a WS-action on EΠ\S such
that for any ε ∈ EΠ\S only the εj with αj ∈ S may change in sign under
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the action. Note that this construction requires looking at the hε with
ε ∈ E(∆Π\S) in the adjoint representation of lA.

Remark 3.14. The root characters can be expressed as a product of the
simple root characters raised to certain integral powers φ =

∑l
i=1ciαi with

ci ∈ Z, eφ =
∏l

i=1χ
ci
αi

. Therefore if h ∈ HC the scalars χαi(h) determine
all the scalars eφ(h) = χφ(h) and thus h is uniquely determined. Moreover
e〈φ,x+

√
−1y〉 is real for all φ ∈ ∆ if and only if e〈αi,x+

√
−1y〉 is real for all

αi ∈ Π.

Proposition 3.15. The Cartan subgroup HR of G̃ has 2l components. We
have HR = DH where D (Definition 3.13) is the finite group of all the hε,
ε ∈ E.

Proof. It was shown in Lemma 3.7 that the elements exp(x +
√
−1y) with

x, y ∈ h such that e〈αi;x+
√
−1y〉 is real for all αi ∈ Π are those for which y

has the form y =
∑l

i=1 kiyi with yi as in Notation 3.4, and ki are integers.
Moreover as in Remark 3.14 we also have that e〈φ,x+

√
−1y〉 is real for any φ ∈

∆ exactly when y =
∑l

i=1 kiyi for some integers ki . Therefore all the root
spaces of g are stabilized under the adjoint action of exp(x +

√
−1y). Since

clearly h is also stabilized, then exp(x +
√
−1y) stabilizes all of g and this

implies that exp(x+
√
−1y) ∈ G̃. In fact this shows that exp(x+

√
−1y) ∈ G̃

if and only if y has the form y =
∑l

i=1 kiyi for certain ki integers. Thus
Lemma 3.7 and these remarks compute the intersection G̃∩HC. From here
it is easy to conclude. �

Note that Proposition 3.15 implies that D(∆) in Definition 3.13 is iso-
morphic to HR/H as a set with a W -action. That the W -actions agree is
verified in Corollary 4.6.

We now give the Proof of Proposition 3.6:

Proof. Let Ad denote the representation of GL(n, C) on sl(n, C). Then we
have Ad(GL(n, C)) = Ad(SL(n, C)). If n is odd, Ad(SL(n, C)) is isomor-
phic to SL(n, C). Denote Di = diag(r1, . . . , rn) with ri as in Example 3.8.
We set hi = Di when n is even and hi = (−1)n−iDi when n is odd. Let
hi = Ad(hi). We have that for each hi ∈ G̃, χαi(hi) = eπ

√
−1δi,j for αi ∈ Π.

The hi generate the group D with 2l elements where l = n − 1 and now
the group G1 = 〈Ad(SL(n, R)), hi, i = 1, . . . , l〉 is a subgroup of G̃ and it is
isomorphic to Ad(SL(n, R)±) for n even and to Ad(SL(n, R)) ∼= SL(n, R)
for n odd. What remains is to verify that G̃ ⊂ G1.

Let K̃ = {Ad(g) : g ∈ U(n)} ∩ G̃. By the Iwasawa decomposition of G̃

and G1, it suffices to show that K̃ = KD, K = SO(n). The right side,
KD is either O(n) or SO(n) according to the parity of n. Recall that the
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maximal compact Lie subgroup K̃ of G̃ acts transitively on the set X of all
maximal abelian Lie subalgebras a which are contained in the vector space
p. The action of K = Ad(SO(n)) is also transitive on X (by (2.1.9) of [22])
and thus for any g ∈ K̃ there is k ∈ K such that g = kD where D is the
isotropy group (in K̃) of an element in X, for instance of the element h ∈ X.
However this isotropy group D has been computed implicitly in the Proof
of Proposition 3.15 and D = D. Therefore K̃ = KD. �

Proposition 3.16. Let αi ∈ Π and assume that ε = (ε1, . . . , εl) ∈ E. Then
sαihε = hε′ where ε′j = εjε

−Cj,i

i with (Ci,j) the Cartan matrix.

Proof. This follows from the expression of the Weyl group action on elements
in h′C given by: sαix = x− (α̌i, x)αi. If this expression is applied to x = αj

it gives sαiαj = αj − Cj,iαi. On the level of root characters this becomes,
by exponentiation of the previous identity,

sαiχαj = χαjχ
−Cj,i
αi .

Now recall that εj is just χαj evaluated at hε. Also ε′j will be χαj evaluated at
sαihε. When we evaluate χαj on sαihε in order to compute the corresponding
j-th sign, we obtain χsαiαj (hε). Therefore the sign of χαj on the sαihε is

given by the product εjε
−Cj,i

i . Finally we use the fact that the set of all
scalars χαi(h) determines h. Thus ε′ determines the element hε′ giving rise
to the equation sαihε = hε′ . �

The sign change εj → ε′j in Proposition 3.16 is precisely the gluing rule in
Lemma 4.2 for the indefinite Toda lattice in [15]. Then the gluing pattern
using the Toda dynamics is just to identify each piece of the connected
component Hε (see Figure 1). The sign change on subsystem corresponding
to HA

R with A ⊂ Π can be also formulated as:

Proposition 3.17. Let αi ∈ Π \ A and assume that ε = (ε1, . . . , εl) ∈ EA.
Then:

a) If εi = 1, sαihε = hε. If εi = −1 then sαihε = hε′ where ε′j = εjε
−Cj,i

i .
In addition hε′ factors as a product (

∏
αj∈A,Cj,i is odd hj)hεA where

εA ∈ EA.
b) If εi = 1, sαiH

A
ε ⊂ HA

ε . If εi = −1 then sαiH
A
ε ⊂ hε′H

A where ε′j =

εjε
−Cj,i

i . In addition hε′ factors as a product (
∏

αj∈A,Cj,i is odd hj)hεA

where εA ∈ EA.
c) The sign εk =sign(χαk

(h)) for any h ∈Hε agrees with sign(χsαiαk
(h′))

for any h′ ∈ sαi(Hε).

Proof. Part a) follows from Proposition 3.16 but with the observation that
in this case, ε′ may fail to be in EA even if ε ∈ EA. This happens exactly
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when εi = −1 and αj ∈ A with Cj,i odd (either −3 or −1). Under these
circumstances ε′j = −1 (rather than one as required in the definition of EA).
We can fix this problem by factoring hε′ as a product (

∏
αj∈A,Cj,i is odd hj)hεA

where εA ∈ EA.
Part b) follows from Part a) and the fact that each hεH is a connected

component of HR in Proposition 3.15.
Part c) follows easily from χsαiαk

(sαih) = χαk
(sαi(sαih)) = χαk

(h). Also
by the fact that the sign of a root character is constant along a connected
component and that we have h ∈ Hε and sαih is in the new component
sαiHε. The two desired signs have thus been computed in the two connected
components and they agree. �

Remark 3.18. From Proposition 3.17 it follows that any connected compo-
nent HA

ε , is the union of chambers of the form w
(
HA,≤

ε(w)

)
, with w ∈ WΠ\A,

ε(w) ∈ E ,

HA
ε =

⋃
w∈WΠ\A

w
(
HA,≤

ε(w)

)
.

4. Colored Dynkin diagrams.

We now introduce some notation that will ultimately parametrize the cells in
a cellular decomposition of the smooth compact manifold ĤR to be defined
in §6.

4.1. Colored Dynkin Diagrams. Let us first define:

Definition 4.1 (Colored Dynkin diagrams D(S)). A colored Dynkin dia-
gram is a Dynkin diagram where all the vertices in a set S ⊂ Π have been
colored either red R or blue B. For example, in sl(4, R), ◦R−◦−◦B is a col-
ored Dynkin diagram with S = {α1, α3}. Thus a colored Dynkin diagram
where S 6= ∅, corresponds to a pair(S, εη) with S ⊂ Π and η : S → {±1} any
function. Here η(αi) = −1 if αi is colored R and η(αi) = 1 if αi is colored
B. If S = ∅ then εo with εo(αi) = 1 for all αi ∈ Π replaces εη. We denote:

• D = (S, εη) or (S, εη(∆Π\S)) with εη ∈ EΠ\S ;
• D(S) = {D = (S, εη) : the vertices in S are colored}.

We also introduce an oriented colored Dynkin diagram which is defined as a
pair (D, o) with o ∈ {±1} and D a colored Dynkin diagram.

4.2. Boundary of a colored Dynkin diagram. We now define the
boundaries of a cell parametrized by a colored Dynkin diagram D.

Definition 4.2 (The boundary ∂j,cD). For each (j, c) with c = 1, 2 and
j = 1, . . . ,m we define a new colored Dynkin diagram ∂j,cD, the (j, c)-
boundary of the D by considering {αij : 1 ≤ i1 < · · · < im ≤ l} the set
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j=1, c=1

j=2, c=1
j=2, c=1

j=1
, c

=1

j=1, c=2

j=2, c=2

j=
2,

c=
2

α1s

α2s

o-o

oR -o

oB -o

o
 -o

R

o -
oB

Figure 7. The boundary ∂j,c in the case of sl(3, R).

Π\S of uncolored vertices and m = |Π\S|. The ∂j,cD is then a new colored
Dynkin diagram obtained by coloring the ij-th vertex with R if c = 1 and
with B if c = 2. The boundary of an oriented colored Dynkin diagram
(D, o), o ∈ {±1} is, in addition, given an orientation defined to be the sign
(−1)j+c+1o. Recall that a colored Dynkin diagram D corresponds to a pair
(S, εη) with S ⊂ Π and η : S → {±1} (Definition 3.12). Thus the boundary
∂j,c determines a new pair (S ∪ {αij}, εη′) associated to ∂j,cD. We can then
define the following boundary maps,

(−1)j+c+1∂j,c : Z [D(S)] → Z
[
D(S ∪ {αij})

]
.(12)

Example 4.3. The boundary of ◦ − ◦ (which we can picture as a box)
consists of segments (one dimensional boxes) given by ∂1,1(◦ − ◦) = ◦R − ◦,
∂2,1(◦ − ◦) = ◦ − ◦R, ∂1,2(◦ − ◦) = ◦B − ◦ and ∂2,2(◦ − ◦) = ◦ − ◦B. The
orientation sign associated to ◦R − ◦ is the following: With c = 1 and j = 1
one has (−1)j+c+1 = (−1)3 = −1. We illustrate the example in Figure 7.

4.3. WS-action on colored Dynkin diagrams. We now move these col-
ored Dynkin diagrams around with elements in W . A WS-action on the
diagram D ∈ D(S), WS : D(S) → D(S), is defined as follows:

Definition 4.4. For any αi ∈ S (the αi vertex is colored), sαiD = D′ is a
new colored Dynkin diagram having the colors according to the sign change
ε′j = εjε

−Cj,i

i in Proposition 3.17 with the identification that R if the sign is
−1, and B if it is +1. For example, in the case of sl(3, R),sα1(◦R − ◦B) =
◦R − ◦R, sα1(◦B − ◦R) = ◦B − ◦R.
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We also define a WS-action on the set D(S) × {±1} of oriented colored
Dynkin diagrams. If αi ∈ S, the action of sαi on the pair (D, o) is given by
sαi(D, o) = (sαiD, (εi)rαi o) where rαi is the number of elements in the set
{αj ∈ Π \ S : Cj,i is odd} and εi = ±1 depending on the color of αi.

We confirm the Definition:

Proposition 4.5. Definition 4.4 above gives a well-defined action of WS on
the set D(S) of colored Dynkin diagrams with set of colored vertices S.

Proof. This follows from Proposition 3.16 and the correspondence (S, εη) →
hεη giving a bijection between D(S) and D(∆Π\S). �

Corollary 4.6. There is a bijection of D(∆) → HR/H intertwining the
W -actions on both sets.

Proof. The two sets D(∆) and HR/H are clearly in bijective correspondence
and an element hε corresponds to the coset hεH. By Proposition 3.17,
Notation 4.4 and Proposition 4.5, the actions on these two sets agree. They
are both given by Part a) in Proposition 3.17. �

Notation 4.7. Motivated by Example 2.2 we consider the set W ×
WS

D(S)

the W translations of the set D(S). We write the elements in this set as
pairs (w,D) and introduce an equivalence relation ∼ on these pairs, where
for any x ∈ WS , (wx, D) ∼ (w, xD). Denote the equivalence classes [(w,D)].
This set of equivalence classes is then in bijective correspondence with the
set D(S) × W/WS of pairs (D, [w]) with [w] = [w]Π\S ∈ W/WS and D in
D(S). The correspondence is such that [(w•, D)] corresponds to (D, [w•])
with w• ∈ [w]Π\S a minimal length representative of a coset in W/WS .

We denote

Dk = {(D, [w]Π\S) : S ⊂ Π, |S| = k, w ∈ W},
which also parametrizes all the connected components of the Cartan sub-
groups of the form HR(w(∆Π\S)).

Remark 4.8. For the reader who is not interested in the W -action or tor-
sion, the object defined in Definition 4.9 becomes over Q the vector space
with basis given by the full set of colored Dynkin diagrams having a fixed
number of uncolored vertices. The boundary maps are obtained by translat-
ing around the ∂j,c defined for the antidominant chamber (see (14) below).
Perhaps this boundary construction can be appreciated in Example 2.2 in
Section 2 where portions of the boundary of a chamber are translated and
some identifications take place. The tensor product notation below accom-
plishes the required boundary identifications algebraically.

Definition 4.9 (The Z[W ]-modules M(S)). The full set of colored Dynkin
diagrams is the set D(S)×W/WS of all pairs (D, [w]Π\S).
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We can also define the full set of oriented colored Dynkin diagrams by
considering D(S) × {±1} ×W/WS for different subsets S ⊂ Π. As W sets
these correspond to W ×

WS

D(S)× {±1}.

If we consider D(S) × {±1} as imbedded in Z[D(S)] by sending (D, o)
to oD, o ∈ {±1} we may consider a WS-action on ±D(S), namely the
action on oriented colored Dynkin diagrams. This produces a Z[W ]-module
Z[W ] ⊗

Z[WS ]
Z[D(S)], and we denote this module by

M(S) = Z[W ] ⊗
Z[WS ]

Z[D(S)].

Also denote by Ml−k the direct sum of all these modules over all sets S
with exactly k elements,

Ml−k =
⊕
|S|=k

M(S).

Remark 4.10. Assume that A is a Z[WS ]-module and B is a Z[WS′ ]-
module with S ⊂ S′. In particular B can be regarded as a Z[WS ]-module
by restriction. Let f : A → B be a map intertwining these two Z[WS ]-
module structures involved. Then, tensoring with Z[W ] we obtain a map of
Z[W ]-modules:

F (f) : Z[W ] ⊗
Z[WS ]

A → Z[W ] ⊗
Z[WS ]

B.

Since, in addition, B is a Z[WS′ ]-module where S ⊂ S′ then there is a second
map:

g : Z[W ] ⊗
Z[WS ]

B → Z[W ] ⊗
Z[WS′ ]

B.

Let g ◦ F (f) = T (f). This is then a map of Z[W ] modules

T (f) : Z[W ] ⊗
Z[WS ]

A → Z[W ] ⊗
Z[WS′ ]

B.

We now give the boundary maps of Ml−k. We regard D(S) × {±1} as
a Z[WS ]-module using Definition 4.4 the oriented case. We can view a pair
(D, o) instead as ±D ∈ Z[D(S)]. This gives a Z[WS ]-module structure to
each of the Z modules involved on the domain of the map in (12) and a
WS∪{αij

} to those on the co-domain. The map in (12) now has the form
described in Remark 4.10. We apply the construction T (∂j,c) in Remark 4.10
to (12) and add over all possible subsets S ⊂ Π with |S| = k on the left side
and with |S| = k + 1 on the right side. We then obtain the boundary maps,

∂l−k : Ml−k →Ml−(k+1),(13)
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which are all given by

∂l−k(w• ⊗X) =
l−k∑
j=1

2∑
c=1

(−1)j+c+1w• ⊗ T (∂j,c)X,(14)

where X ∈ D(S) and w• ∈ [w]Π\S is the minimum length representative in
W/WS (see Notation 4.7). We thus have:

Proposition 4.11. The maps ∂l−k of (14) define a chain complex M∗ of
Z[W ]-modules.

5. Cartan subgroups and Weyl group actions.

We here discuss relations between some Cartan subgroups of Levi factors,
and verify the WS-action on oriented colored Dynkin diagrams.

5.1. Cartan subgroups of Levi factors. Let Ad∆A
denote the adjoint

representation of the Lie subgroup HRLA of G on the Lie algebra lA. Note
that we are deviating slightly from the standard convention and denoting by
Ad∆A

the representation of HRLA acting on the semisimple part of the Levi
factor lA, seen as a quotient of the group action on hA + lA (thus dividing by
the center of this Lie algebra which corresponds to a trivial representation
summand). We will use this same notation Ad∆A

when restricting to various
Lie subgroups of HRLA containing LA. The notation Adw(∆A) with w ∈
W refers to the similar construction with respect to w(∆A). When A =
Π and ∆A = ∅ then Adw(∆A) will refer to the (trivial) one dimensional
representation of {e}.

Definition 5.1. Let HA
fund be defined by:

exp

∑
αi 6∈A

cim
◦
αi

: ci ∈ R


 = HA

fund.(15)

Note that usually HA 6= HA
fund.

Then we have:

Proposition 5.2. The images of Ad∆A
on subsets of Cartan subgroups sat-

isfy

1) Ad∆A
(D(∆)) = D(∆A),

2) Ad∆A
(HA

R ) = HR(∆A),
3) Ad∆A

(HA
fund) = Ad∆A

(HA).

Proof. We first point out that the exponential map in the Lie groups LA
R ,

Ad∆A
gives a diffeomorphism between hA and the corresponding connected
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Lie group. Thus the Lie groups HA, Ad∆A
(HA) are isomorphic. This takes

care of Part 2) on the level of the connected component of the identity.
Also the image under ad∆A

of the set {m◦
αi

: αi 6∈ A} gives rise to a
basis of the Cartan subalgebra of ad∆A

(lA). Thus exponentiating we obtain
Part 3).

Recall that χαi(hj) = exp(π
√
−1δi,j) and Ad∆A

(h) = I if and only if
χαi(h) = 1 for all αi ∈ Π \ A. We have thus Ad∆A

(hi) = I for αi ∈ A and
{Ad∆A

(hε) : ε ∈ E} = {Ad∆A
(hε) : ε ∈ EA} = D(∆A). The elements hi with

αi ∈ A are in the center of HRLA. This proves Part 1).
For Part 2), we proceed by noting that by definition of HR(∆A) it must be

generated by the Lie group Ad∆A
(HA) with Lie algebra hA and the elements

Ad(hi) with αi ∈ Π \ A (playing the role that the hi play in the definition
of HR). This is the same as Ad∆A

(HA
R ). �

5.2. Action of the Weyl group on oriented colored Dynkin dia-
grams.

Proposition 5.3. The action of WS on D(S) × {±1} in Definition 4.4 is
well-defined.

Proof. Recall that W is a Coxeter group, (Proposition 3.13 [12]) and it thus
has defining relations s2

αi
= e and (sαisαj )

mij = e where mij is 2, 3, 4, 6
depending on the number of lines joining αi and αj in the Dynkin diagram.
The case mij = 2 occurring when αi and αj are not connected in the Dynkin
diagram. The only relevant cases then are when αi, αj are both colored and
connected in the Dynkin diagram. The only relevant vertices in the Dynkin
diagram are those connected with these two and which are uncolored. We
are thus reduced to very few nontrivial possibilities: D5, A4, F4, B4, C4;
smaller rank cases being very easy cases. We verify only one of these cases,
the others being almost identical with no additional difficulties. Consider
the case of D5 where αi = α, αj = β are the two simple roots which are not
“endpoints” in the Dynkin diagram and all the others are uncolored. Then
rα = 1 but rβ = 2. For book-keeping purposes it is convenient to temporarily
represent red as −1 and blue as 1 and simply follow what happens to these
two roots and an orientation o = 1. Hence all the information can be
encoded in a triple (ε1, ε2, o) representing the colors of these two roots and
the orientation o. Now we apply (sαsβ)3 to (ε1, ε2, o):

(ε1, ε2, o = 1)
sβ−→ (ε1ε2, ε2, (ε2)2o = 1) sα−→

(ε1ε2, ε1, (ε1ε2)1o)
sβ−→ (ε2, ε1, (ε1)2ε1ε2o = ε1ε2o)

sα−→
(ε2, ε1ε2, (ε2)1ε1ε2o = ε1o)

sβ−→ (ε1, ε1ε2, (ε1ε2)2ε1o = ε1o)
sα−→

(ε1, ε2, o).

�
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5.3. The set H◦
R. By Proposition 5.2, if χ∆A

αi
, αi ∈ Π\A is a root character

of HR(∆A) acting on lA, then it is related to χαi by χ∆A

αi
◦Ad∆A

= χαi . The
map χ∆A

αi
, αi ∈ Π \ A provides the local coordinates on H◦

R which consists
of the Cartan subgroups HR(∆A).

Definition 5.4. Let H◦
R be defined as

H◦
R =

⋃
A⊂Π

HR(∆A)× {[e]A}.

We then define a map φe : H◦
R → Rl as follows:

φe(h, [e]A) = (φe,1(h), . . . , φe,l(h)),

where φe,i(h) = χ∆A

αi
(h) whenever αi 6∈ A and φe,i(h) = 0 if αi ∈ A. Denote

φA
e the restriction of φe to HR(∆A)× {[e]A}.

By Proposition 5.2 Part 2) we can compose with Ad∆A × 1 and re-write
the domain of φe ◦ (Ad∆A × 1) as

⋃
A⊂Π

HA
R × {[e]A} . We also define

φw = (φw,1, . . . , φw,l) : w(H◦
R) −→ Rl,

with

w(H◦
R) :=

⋃
A⊂Π

HR(w(∆A))× {[w]A},

by setting

φw,i(x, [w]A) = χw(∆A)
wαi

(Adw(∆A)(wh)) = χwαi(wh) = χαi(h),

where x = Adw(∆A)(wh) ∈ HR(w(∆A)) with h ∈ HR, if αi 6∈ A. For the
case when αi ∈ A, we set

φw,i(x, [w]A) = 0.

5.4. The sets HA
R . We here note an isomorphism between several presen-

tations of a split Cartan subgroup of a Levi factor.

Proposition 5.5. All the following are isomorphic as Lie groups:
1) HA

R ,
2) Ad∆A

(HR),
3) Ad∆A

(HA
R ),

4) HR(∆A).

Proof. The groups in 3) and 4) are isomorphic by Proposition 5.2. We can
write hC = z + hA

C where z is defined by z ∈ z if and only if 〈αi, z〉 = 0 for
all αi ∈ Π \A.
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Now the group exp(z) is the center of HCLA
C . Intersecting with G̃ we

obtain the center of HRLA. To find this intersection with G̃, we must find
all x +

√
−1y ∈ z such that e〈αj ,x+

√
−1y〉 is real for all αi ∈ Π (see the Proof

of Lemma 3.7). We find that x ∈ z ∩ h and that y is an integral linear
combination of the yi. As in the Proof of Proposition 5.2 the elements
exp(

√
−1yi) which are in the center of HRLA are those for which αi ∈ A.

The center of HRLA is then the group generated by hi with αi ∈ A and
exp(z∩h). Since exp(z∩h)∩HA = {e}, we have that HR divided by exp(z∩h)
is isomorphic to DHA

R . The groups HA
R , DHA

R and those involved in 2), 3)
or 4) all differ by a subgroup of the D ⊂ exp(z) which is annihilated by
Ad∆A

. From here and Proposition 5.2 Part 1), the isomorphism between 2),
3) and 4) follows. �

6. The set ĤR.

We here define our main object ĤR as a union of Cartan subgroups of Levi
factors and their W -translations.

Let Ŵ be the disjoint union of all the quotients W/WΠ\A over A ⊂ Π.
Each of the elements [w]A ∈ W/WΠ\A parametrizes a parabolic subgroup.
First [e]A corresponds to a standard parabolic subgroup of GC (Proposition
7.76 or Proposition 5.90 of [13]). This is just the parabolic subgroup deter-
mined by the subset Π\A of Π. Then we translate such a parabolic subgroup
with w ∈ W . The resulting parabolic subgroup corresponds to [w]A. Thus
Ŵ is the set of all the W -translations of standard parabolic subgroups.

Definition 6.1. We define

ĤR =
⋃

A⊂Π

⋃
w∈W

HR(w(∆A))× {[w]A}.(16)

From Proposition 5.5, HA
R can be replaced by HR(∆A) or Adw(∆A)(HR).

Thus we can alternatively write ĤR as a subset of HR × Ŵ . We recall w•,A

or just w• as in Notation 4.7. We then have:

ĤR =
⋃

A⊂Π

⋃
w•,A∈W/WΠ\A

w•,A(HA
R )× {[w]A}.(17)

Also fixing an isomorphism ξw : HR(∆A) → HR(w(∆A)) inducing a set
bijection (by composition) ξ∗w : w(Π) → Π, we have

ĤR ∼=
⋃

A⊂Π

W ×
WΠ\A

HR(∆A),

where an element (w•,A, h) on the right-hand side is sent to (ξw(h), [w]A).
This endows ĤR with a W -action.
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In what follows it is useful to think of a colored Dynkin diagram (e.g.,
◦R−◦) as parametrizing a “box” (e.g., [−1, 1]). We need to further subdivide
this box into 2l smaller boxes by dividing it into regions according to the
sign of each of the coordinates (e.g., [−1, 0] [0, 1]). We also need to consider
the boundary between these 2l regions (e.g., {0}). We will introduce an
additional sign or a zero to keep track of such subdivisions (e.g., ◦R − ◦+,
◦R − ◦−, ◦R − ◦0 for [−1, 0], [0, 1], {0}) (see also Example in Section 2). We
will then do the same thing with a colored Dynkin diagram of the form
(D, [w]Π\S) by assigning labels in {±1, 0} to the vertices in Π \ S.

The main purpose of the following is to associate certain sets in ĤR to
the colored Dynkin diagrams, the signed-colored Dynkin diagrams and the
sets associated to them only play an auxiliary role.

We introduce the following notation. This notation is illustrated in Ex-
ample in Section 2 and Figure 3.

Notation 6.2. A signed-colored Dynkin diagram Ď is a Dynkin diagram
with some vertices colored (R or B) and the remaining vertices labled +,−
or 0. The followings are auxiliary objects to keep track of signs, zeros and
colors.

• η̌ : Π → {±1, 0} function which agrees with η on S and determines the
sign labels in Ď.

• A = A(Ď) = A(η̌) = {αi ∈ Π : η̌(αi) = 0}.
• K(η) the set of all η̌ : Π → {±1, 0} which agree with η in S.
• εη̌ ∈ EA the element which agrees with η̌ on Π \A (A = A(Ď)).
• Ď(S, A, εη̌, [w]Π\S) the unique signed-colored Dynkin diagram attached

to a colored Dynkin diagram (D, [w]Π\S) or to (S, η, [w]Π\S), where the
vertices in Π \ S are given a label in {±1, 0}.

We now associate a subset of ĤR to a signed-colored Dynkin diagram with
S = ∅. Notice that in this case εη̌ can be any element of EA. Recall that
εη̌(∆A) is then the element of E(∆A) that corresponds.

We associate to a signed colored Dynkin diagram (∅, A, εη̌, [e]Π\S) two
sets, one includes walls and the other doesn’t (in order to avoid duplicate
notation we denote the signed-colored Dynkin diagram and the set with the
same notation):

(∅, A, εη̌, [e]Π\S)
≤

= H(∆A)≤
εη̌(∆A)

× {[e]A}.

When A = ∅ (no zeros), these are the 2l boxes in the antidominant chamber.
We define the second related set as:

(∅, A, εη̌, [e]Π\S) = H(∆A)<
εη̌(∆A)

× {[e]A}.

The chamber walls of the antidominant chamber of the Cartan subgroup are
defined as:
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• D(αi, A, ε)≤ = {h ∈ H(∆A)≤
ε(∆A)

: |χαi(h)| = 1} (the αi-wall),

• D(αi, A, ε)< = D(αi, A, ε)≤ ∩ {h ∈ H(∆A)≤
ε(∆A)

: |χαj (h)| < 1 if j 6=
i, αj ∈ Π \A}.

We next consider the case of S = {αi} 6∈ A and then the general case of
any S ⊂ Π with A ⊂ Π \ S and any εη̌ ∈ EA. This defines the walls for Levi
factor pieces corresponding to subsystems of the Toda lattice (we here list
open walls):

• ({αi}, A, εη̌) = D(αi, A, εη̌)< × {[e]A}.
• (S, A, εη̌) =

⋂
αi∈S

({ αi}, A, εη̌).

We now associate a set in ĤR to a colored Dynkin diagram. We define a set
denoted D = (S, εη) as follows: For S 6= ∅ (so that there is an η : S → {±1}),

• (S, εη) =
⋃

η̌∈K(η)

(S, A(η̌), εη̌), and if S = ∅, (∅, εo) =
⋃

η̌∈{±1,0}l

(∅, εη̌).

Here εo = (1, . . . , 1), and see (7) and (9) in Section 2.
We consider the w-translations of the colored Dynkin diagrams: For this

write w uniquely as w = w•w• with w• ∈ WS .

• (w•D, [w]Π\S) = w((D, [e]Π\S)).

In order to define the W -translations of sets associated to signed-colored
Dynkin diagrams we have to extend the definition of the WS-action to the
signed-colored Dynkin diagrams. The definition is exactly the same if we
treat the label − as if it were an R and the label + as if it were a B as in
Definition 4.4. Then consider (w•Ď, [w]Π\S) and let:

• (w•Ď, [w]Π\S) = w((Ď, [e]Π\S)).

Remark 6.3. We refer to the set (∅, εo)⊂ĤR as the antidominant chamber

of ĤR. Recall Notation 4.7 w•,A ∈ [w]A. The following justifies our definition
of the “antidominant chamber” of ĤR using (17) in the definition of ĤR.

Proposition 6.4. We have

ĤR =
⋃

A⊂Π

⋃
w•,A∈W
σ∈WΠ\A

w•,A
(
σ
(
HA,≤

ε(σ)

))
× {[w]A}.(18)

Proof. We set w• = w•,A for simplicity. By Proposition 3.17 Part b), we
have that each HA

R can be written as a union over σ ∈ WΠ\A of sets of

the form σ
(
HA,≤

ε(σ)

)
and thus by the definition (17) of ĤR, we conclude the

statement. �
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7. Colored Dynkin diagrams and the corresponding cells.

Here we consider the manifold structure and the topology of ĤR as the union
of cells parametrized by colored Dynkin diagrams.
7.1. Action of the Weyl group on the sets (S, εη). Let Mgeo be the
complex with the sets (D, [w]Π\S). We then consider the action of WS on
the union of all the sets D = (S, εη) having a fixed nonempty set S of colored
vertices and endowed with an orientation o. Similarly we can endow each
of the terms in the chain complex Mgeo with a action of W by translating
the sets corresponding to colored Dynkin diagrams with the W -action and
taking into account changes of orientation induced on the oriented boxes.
This new action of W on Mgeo could in principle be different from the
W -action on the chain complex M∗ (see Proposition 4.11).

We now become more explicit about the W -action that was just intro-
duced onMgeo

∗ : Note that since χαji
(h) = ±1 for any αji ∈ S and h ∈ (S, εη)

(Notation 6.2), if h ∈ (S, εη) then sαji
χαj (h) = χαj (h)χαji

(h)−Cj,ji =
±χαj (h). Hence, in terms of the coordinates given by φe, the action of sαji

is given by a diagonal matrix whose nonzero entries are ±1. This matrix has
some entries corresponding to the set S and other entries corresponding to
Π \S. The entries corresponding to the set S change by a sign as described
in Proposition 3.16. The statement in Proposition 3.16 just means that the
set (S, εη) is sent to (S, εη′) with η′ = (ηj1 , . . . , ηjs), and η′ji

= ηji(−1)Cj,ji .
The determinant of the diagonal submatrix corresponding to elements in
Π \ S is the sign (ηi)r with (see Definition 4.4)

r =
∣∣∣{αj ∈ Π \ S : Cj,i is odd}

∣∣∣.
Consider the set (S, εη) endowed with a fixed orientation ω corresponding

to o = 1. Then sαi with αi ∈ S sends (S, εη) to (S, εη′) endowed with
the orientation (ηi)rω. We now consider the Z module of formal integral
combinations of the sets (S, εη),

Z
[
(S, εη) : S ⊂ Π, |S| = k, εη ∈ EΠ\S

]
.

We keep track of the orientation by putting a sign ± in front of (S, εη). This
Z module acquires a Z[WS ]-action that corresponds to the abstract construc-
tion given in Definition 4.9 with colored Dynkin diagrams. By considering
all the W -translations of the (S, εη) we generate the module denoted above
by M(S). The direct sum of all these M(S) over |S| = k is denoted Ml−k

(see Definition 4.9). Hence there is no difference as W -modules between
Mgeo

∗ and M∗.
We can now summarize this discussion in the following:

Proposition 7.1. The action of W on M∗ (Subsection 4.3) and the action
of W on Mgeo are isomorphic.
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We will then drop the superscript . . .geo from the notation in view of
Proposition 7.1.

7.2. Manifold structure on ĤR. Recall the map φe in Definition 5.4

whose domain is
◦
HR =

⋃
A⊂Π

HR(∆A)× {[e]A} and co-domain is Rl. We also

have defined φw, with domain
⋃

A⊂Π

HR(w(∆A)× {[w]A}). We will use these

maps to give ĤR coordinate charts leading to a manifold structure. We then
have the following three Propositions:

Proposition 7.2. The image φe(HR(∆A))×{[e]A} consists of all (t1, ..., tl)
∈ Rl such that ti 6= 0 if and only if αi 6∈ A. The map φe is a bijection

between
◦
HR =

⋃
A⊂Π

(HR(∆A))× {[e]A} and Rl.

Proof. We start with the last statement, that φe is a bijection; we have that
φe is injective because the scalars χ∆A

αj1
(h), . . . , χ∆A

αjm
(h) determine all the root

characters χ∆A

φ (h), φ ∈ ∆A for h ∈ HR(∆A) and these scalars determine h

in the adjoint group (Remark 3.14). From Proposition 5.2 Part 2) it follows
that we can regard HR(∆A) as Ad∆A

(HR) (see (15)). We prove surjectivity
by proving first the statement concerning the image φe ◦ (Ad∆A × 1)(HA ×
{[e]A}) . When all the sets A are considered then all of Rl will be seen to be

in the image of φe. First consider hεh with h = exp
( ∑

αi 6∈A

cim
◦
αi

)
and ε ∈ EA.

We now apply φe◦(Ad∆A×1). Since
〈

αi,
∑

αj 6∈A

cjm
◦
αj

〉
= ci

(αi,αi)
2 we obtain,

by exponentiating, χαi(hεh) = εie
ci

(αi,αi)

2 . The set φe(HR(∆A) × {[e]A})
becomes the image of the map: Rl → Rl given by first defining a map that

sends (ε1t1, . . . , εltl) → (f1, . . . , fl) with fi = εit
(αi,αi)

2
i for ti > 0. This map

is modified so that whenever αi ∈ A then the i-th coordinate is replaced
with 0. We denote this modified map by FA. The domain and the image of
FA therefore consists of the set {(s1, . . . , sl) : si = 0 if αi ∈ A}.

Together all these FA give rise to one single map F : Rl → Rl which is
surjective. �

Proposition 7.3. The image φw(HR(w(∆A))× {[w]A}) consists of all (t1,
. . . , tl) ∈ Rl such that ti 6= 0 if and only if αi 6∈ A.

Proof. This follows from Proposition 6.4 and the fact that φe,i(w(h), A) =
χwαi(w(h)) = χαi(h) for αi 6∈ A. �

Proposition 7.4. The image φw((∅, εo)) consists of all (t1, . . . , tl) ∈ Rl

such that −1 < ti < 1. The sets φw((S, εη, [w]Π\S)) as S ⊂ Π, S 6= ∅ varies,
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give a cell decomposition of the boundary of the box [−1, 1]l. In particular,
the sets (S, εη, [w]Π\S) give a cell decomposition of the smooth manifold ĤR.

Proof. This follows from Proposition 7.3 but is better understood in Exam-
ple 2.2. We omit details. �

Remark 7.5. There is a more convenient cell decomposition of ĤR for the
purpose of calculating homology explicitly. The only change is that the l
dimensional cell becomes the union of all the l-cells together with all the
(internal) boundaries corresponding to colored Dynkin diagrams where all
the colored vertices are colored B. This is the set:

ĤR \
⋃

S⊂Π, w∈W
η such that η(αi)=−1 for some αi∈S

(S, εη, [w]Π\S).

This set can be seen to be homeomorphic to Rl. With this cell decomposition
there is exactly one l cell; and the other lower dimensional cells correspond
to colored Dynkin diagrams which are parametrized by pairs (D, [w]Π\S),
such that, at least one vertex of D has been colored R. In terms of the
(S, εη, [w]Π\S), the top cell would instead be defined to consist of H◦

R. (See
Figure 6 for this remark.)

The big cell in this decomposition with a fixed orientation corresponds
to the element cl =

∑
w∈W

(−1)l(w)(D, εo, w) (S = ∅). This element satisfies

∂l(cl) = 2(cl−1) for some cl−1 6= 0 (except in the case of type A1). Note
that (D,w) and (D,wsαi), with S = ∅ and l(wsαi) = l(w) + 1, appear with
opposite signs in cl. When ∂l is applied and the αi is colored R the sign
(−1)rαi in Definition 4.4 makes these two terms contribute as 2(D′, [w]Π\{αi})
with D′ the new colored Dynkin diagram obtained. The terms from the
boundary ∂l obtained by coloring αi with B will cancel since the action of
sαi on colored Dynkin diagrams is trivial when αi is colored B. The case
of A1 is an exception because, in that case, once α1 is colored R no more
uncolored vertices remain. The set {αj ∈ Π \ αi : Cj,i is odd} is empty and
rαi = 0. Thus there is cancellation in this case.

7.3. Topology on ĤR, coordinate charts, integral homology. We de-
fine a topology on ĤR in which U ⊂

⋃
A⊂Π

H(w(∆A))×{[w]A} is open if and

only if φw(U) is open in the usual topology of Rl. The maps φw become
coordinate charts and since the compositions φw ◦ φ−1

σ are C∞ on their do-
main, then ĤR acquires the structure of a smooth manifold. The W -action
becomes a smooth action.

Definition 7.6 (Filtration of ĤR and the chain complex MCW
∗ ). We con-

struct a filtration of the topological space ĤR in the sense of [18] p. 222.
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Let Xl−k denote the union of all the sets of the form (D, [w]Π\S) over all
w ∈ W and S ∈ P (Π) such that |S| ≥ k. This is a closed set and Xr \Xr−1

is a union of sets of the form (D, [w]Π\S) with |S| = l− r. The filtration Xr

r = 0, 1, . . . , l satisfies the conditions of Theorem 39.4 in [18]. We define a
chain complex MCW

∗ with boundary operators as in [18]

∂r : Hr(Xr, Xr−1, Z) → Hr−1(Xr−1, Xr−2, Z).

Proposition 7.7. The smooth manifold ĤR is compact, nonorientable
(except if g is of tupe A1). The homology of the chain complex M∗, Hk(M∗)
= Ker ∂k/image(∂k−1) is isomorphic as a Z[W ] module to Hk(ĤR, Z).

Proof. The manifold ĤR is the finite union of the chambers as in Proposi-
tion 6.4. Since the W -action on ĤR is by continuous transformations, it then
suffices to observe that the antidominant chamber is compact. The antidom-
inant chamber (∅, εo) of Definition 6.2 can be seen to be compact by describ-
ing explicitly its image under φe. This image is a “box” inside Rl, as can
be seen in Propositions 7.2, 7.4 namely the set {(t1, . . . , tl) : −1 ≤ ti ≤ 1}.
The space ĤR is now the finite union of the W -translates of this compact
set. That the boundary operators of MCW agree with the boundary opera-
tors of M∗ will follow from the fact that in the φw coordinates the (D, [w])
is a “box” which is itself part of the boundary of a bigger “box” (Propo-
sition 7.4). We start with the set {(t1, . . . , tl) : −1 ≤ ti ≤ 1} and note
that its boundary is combinatorially described by (12) or (13). Note that
(D,w) (with S = ∅, [w]Π = w) represents the open box. The faces are
parametrized by coloring each of the l vertices R or B which then represent
opposite faces in the boundary. The signs are just chosen so that ∂k−1◦∂k = 0
for k = 1, . . . , l. This description may be best understood by working out
Example 2.2.

All the cells thus appear by taking the faces of a box [−1, 1]l and then
faces of faces etc. By the same process of coloring uncolored vertices R or
B which give rise, each time, to a pair of opposite faces in a box. In each
case (12) or (13) correctly describe the process of taking the boundary of a
box. Note that it is enough to study what happens when w = e and then
consider the W -translates.

We now use Theorem 39.4 of [18] to conclude that MCW
∗ computes in-

tegral homology. However each Z[W ]-module appearing in MCW
∗ in a fixed

degree, can easily be seen to be identical with the corresponding term in
M∗. By Proposition 7.1 and the agreement of the boundary operators, we
obtain that M∗ computes integral homology. The nonorientability follows if
we use the second cell decomposition described in Remark 7.5. The unique
top cell then has a nonzero boundary (except in the case of g = sl(2, R)). �
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8. Toda lattice and the manifold ĤR.

We now associate the manifold ĤR with the Toda lattice by extending the
results of Kostant in [16]. We start with the definition of the variety ZR of
Jacobi elements on g where the Toda lattice is defined.

8.1. The variety ZR and isotropy group G̃z.

Definition 8.1 (Varieties of Jacobi elements). Let S(g) be the symmetric
algebra of g. We may regard S(g) as the algebra of polynomial functions on
the dual g′.

If we consider the algebra of G-invariants of S(g), then by Chevalley’s
theorem there are homogeneous polynomials I1, . . . , Il in S(g)G which are
algebraically independent and which generate S(g)G. Thus S(g)G can be
expressed as R[I1, . . . , In].

For F = C or F = R, we consider the variety ZF of normalized Jacobi
elements of gF . Our notation, however, is slightly different from the notation
of [16] in the roles of eαi and e−αi . Thus we let

JF =

{
X = x +

l∑
i=1

(bie−αi + eαi) : x ∈ h, bi ∈ F \ {0}

}
,

ZF =

{
X = x +

l∑
i=1

(bie−αi + eαi) : x ∈ h, bi ∈ F \ {0}, X ∈ S(F )

}
.

We also allow subsystems which correspond to the cases having some bi = 0:

◦
JF =

{
X = x +

l∑
i=1

(bie−αi + eαi) : x ∈ h, bi ∈ F

}
,

◦
ZF =

{
X = x +

l∑
i=1

(bie−αi + eαi) : x ∈ h, bi ∈ F,X ∈ S(F )

}
.

Kostant defines in [16] p. 218 a real manifold Z by considering all elements

x+
l∑

i=1

(bie−αi +eαi) in ZR which in addition satisfy bi > 0. We are departing

in a crucial way from [16] by allowing the bi to be negative or even zero when
A 6= ∅. This extension gives the indefinite Toda lattices introduced in [14].
We let for any ε ∈ E ,

Zε =

{
X = x +

l∑
i=1

(bie−αi + eαi) : εibi > 0, X ∈ S(R)

}
.
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This is a set of real normalized Jacobi elements, that is, the elements of ZR.
Thus the union of all the Zε is all of ZR,

ZR =
⋃
ε∈E

Zε.

The elements in ZR are thus the signed normalized Jacobi elements (in S(R)
and Z simply denotes Zεo where εo = (1, . . . , 1)).

Definition 8.2 (Chevalley invariants and isospectral manifold). If x ∈ g
and gx ∈ g′ is defined by 〈gx, y〉 = (x, y) for any y ∈ g then the map
g → g′ sending x to gx defines an isomorphism. We can then regard S(g) as
the algebra of polynomial functions on g itself by setting for f ∈ S(g) and
x ∈ g, f(x) = f(gx).

The functions I1, . . . , Il now on g and then restricted to JR, ZR or to
ZC are called the Chevalley invariants which are the polynomial functions
of {a1, . . . , al, b1, . . . , bl} for X =

∑l
i=1(aihαi + bie−αi + eαi). The map

I = (I1, . . . , Il) then defines by restriction a map

I = IF : ZF → F l.

Fix γ ∈ F l in the image of the map I, and denote

Z(γ)F = I−1
F (γ) = I−1(γ)

⋂
ZF ,

which defines the isospectral manifold of Jacobi elements of g. Note that in
the real (isospectral) manifold Z(γ) studied in [16] will just be one connected
component of Z(γ)R.

Definition 8.3 (The isotropy subgroup G̃y on G̃). Let Gy
C be the isotropy

subgroup of GC for an element y ∈ gC. The group Gy
C is an abelian connected

algebraic group of complex dimension l (Proposition 2.4 of [16]). If y ∈ g

we denote by G̃y the intersection

G̃y = Gy
C ∩ G̃.

If x ∈ g, the centralizer of x is denoted gx and dim gx ≥ l. We say that x
is regular if dim gx = l.

We consider an open subset of GC given by the biggest piece in the Bruhat
decomposition:

(GC)∗ = NCHCNC = NCBC,(19)

where NC = exp(nC), NC = exp(nC) and BC = HCNC. We let G̃∗ = G̃ ∩
(GC)∗ and, as in Notation 3.9, B = HR exp(n). We then have a map

NC ×BC → (GC)∗,

given by (n, b) 7→ nb which is an isomorphism of algebraic varieties. Given
d ∈ (GC)∗, d has a unique decomposition as d = ndbd as in (2.4.6) of [16].
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We caution the reader that G̃y
∗ is not an intersection with exp(n)H exp(n)

but rather with exp(n)HR exp(n). This is the object that appears, for ex-
ample, in (3.4.10) of [16] and properly contains (3.2.9) in Lemma 3.2 of
[16].

The following Proposition gives the relation between G̃y and HR:

Proposition 8.4. Let y ∈ Zεo. Then G̃y is G̃ conjugate to the Cartan
subgroup HR of G̃.

Proof. By Lemma 2.1.1 in [16], y is regular. Then as in Lemma 3.2 of [16],
y must be conjugate, under an element in H, to an element x in p. Using
Proposition 2.4 of [16] Gx

C is connected. Since x is also a regular element
it follows that gx

C is a Cartan subalgebra and Gx
C is a Cartan subgroup of

GC. Using conjugation by an element in K we may conjugate this Cartan
subgroup if necessary to HC (Proposition 6.61 or Lemma 6.62 of [13]). We
can thus assume that Gx

C = HC. We obtain that G̃y = G̃∩Gy
C is G̃ conjugate

to G̃ ∩HC = HR (see Notation 3.9). �

8.2. Kostant’s map βy
C. Fix y ∈ J(γ)R. Kostant defines a map

βy
C : (Gy

C)∗ −→ J(γ)C
d 7→ Ad(n−1

d )(y)
(20)

with d = ndbd, nd ∈ N and bd ∈ B. Note that we have deviated from
the convention in [16] by exchanging the roles of NC and NC. We did not
exchange the roles of these two groups in (19) but this is compensated by our
use of an inverse in the definition of the Kostant map. Theorem 2.4 of [16]
then implies that βy

C is an isomorphism of algebraic varieties. Denote βy the
restriction of βy

C to the intersection with G̃. Thus we have βy : G̃y
∗ → Z(γ)R

and G̃y
∗ = (Gy

C)∗ ∩ G̃.

Proposition 8.5. Let y ∈ J(γ)R. The map βy is an isomorphism of smooth
manifolds G̃y

∗ → J(γ)R.

Proof. The map βy is the restriction to the Lie group G̃y of the diffeomor-
phism of complex analytic manifolds βy

C. We obtain that βy must be an
injective map. We show surjectivity. If z ∈ J(γ)R then by surjectivity of βy

C
there is gC ∈ (Gy

C)∗ such that βy
C(gC) = z and gC = nCbC. Thus gc

C = nc
Cbc

C
with nc

C ∈ NC and bc
C ∈ BC. Therefore βy(gc

C) = Ad(nc
C)−1y. Since yc = y

we obtain that (Ad(nC)−1y)c = zc. But our assumption is that zc = z.
Hence we have obtained that βy

C(gc
C) = z. By the injectivity of βy

C we ob-
tain that gc

C = gC. Therefore gC ∈ G̃ and thus gC = g ∈ G̃y. This proves βy

is a bijection.
By Proposition 2.3.1 of [16], J(γ)R is a submanifold of real dimension l of

J(γ)C. The diffeomorphism βy
C restricts to the smooth nonsingular map βy.

Since we have shown that βy is a bijection, then it is a diffeomorphism. �
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Remark 8.6. If y ∈ Zεo then G̃y is a Cartan subgroup conjugate to HR
(see Proposition 8.4). However, in general it may happen that y ∈ J(γ)R
is not semisimple or that y is semisimple but G̃y is a Cartan subgroup not
conjugate to HR. For example, take y = a1hα1 + b1e−α1 + eα1 in the case
of sl(2, R) (G̃ = Ad(SL(2, R)±)). We get a nilpotent matrix if a2

1 + b1 = 0.
When a2

1+b1 < 0 then y is semisimple but G̃y is a compact Cartan subgroup
and thus it is not conjugate to HR. In the cases a2

1 + b > 0 one obtains that
G̃y is conjugate to HR.

Assume that we are in the case when G̃y is conjugate to HR (for example
y ∈ Zεo). Combining Proposition 8.4 and Proposition 8.5, Kostant’s map
gives an imbedding of Z(γ)R, where γ ∈ Rl is in the image of I, into ĤR as
an open dense subset.
8.3. Kostant’s map and toric varieties. We first remark that for a fixed
y ∈ Z(γ)εo Kostant’s map βy in (20) is just the map d → n−1

d with d =
ndbd ∈ G̃y

∗ and nd ∈ N , so that it can be described as a map into the flag
manifold: d → gB in G̃/B, restricted to G̃y

∗.
By Proposition 8.5 the map into the flag manifold is a diffeomorphism

onto its image when restricted to G̃y
∗. Hence, since the map is given by the

action of a Cartan subgroup on the flag manifold; this action has a trivial
isotropy group and the map to the flag manifold sends G̃y diffeomorphically
to its image.

The Cartan subgroup G̃y is as good as its conjugate HR but, for conve-
nience, we prefer to deal with HR for which we have established notation.
We let x be an element that conjugates HR to G̃y, x−1HRx = G̃y. Then the
G̃y-orbit of B in G̃/B is x−1HRxB. Since we can translate this set using
multiplication by the fixed element x, we can just study the HR-orbit of xB

in G̃/B.
We denote:
• The map q : G̃y → G̃/B.
• Ẑ(γ)R = (q ◦ (βy)−1Z(γ)R) = x−1((HRxB)).

To study Ẑ(γ), it is enough to describe in detail the toric variety (HRxB).
Thus we focus our attention on objects that have this general form:

Definition 8.7. For any n ∈ G̃, such that nB∩HR = {e}, the toric variety
(HRnB) is called generic in the sense of [8], if n ∈

⋂
w∈W

w(NB)w−1.

We then assume n ∈
⋂

w∈W

w(NB)w−1 and nB ∩ HR = {e}. With these

hypotheses we have:

nB =
∏

φj∈−∆+

exp(tejeφj
)B
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for tej ∈ R, and

nB = n(w(∆))wB =
∏

φj∈−∆+

exp(twj ew(φj))wB

for w ∈ W and twj ∈ R.
We now define:

Definition 8.8. Assume n ∈
⋂

w∈W

w(NB)w−1 and nB ∩HR = {e}. Denote

for any A ⊂ Π,

n(w(∆A))wB =
∏

φj∈−∆A
+

exp(twj ew(φj))wB.

We define a map,

B̌ : ĤR −→ (HRnB)
(Adw(∆A)g, [w]A) 7→ gn(w(∆A))wB

where g ∈ HR (see Definition 6.1 for ĤR). Note here that

gn(w(∆A))wB =
∏

φj∈−∆A
+

exp
(
twj χw(φj)(g)ew(φj)

)
wB.(21)

The map B̌ can be interpreted as a version of Kostant’s map βy for the
subsystem determined by the set A ∈ Π and its w-translation. A detailed

correspondence with the set
◦
ZR(γ) could be made but it requires additional

notation. Note also that we have χw(φj)(g) = χ
w(∆A)
w(φj)

◦ Adw(∆A)(g) for

φj ∈ ∆A. Then we obtain:

Theorem 8.9. Assume n ∈
⋂

w∈W

w(NB)w−1 and nB ∩ HR = {e}. The

function B̌ is a homeomorphism of topological spaces. The toric variety
(HRnB) is a smooth manifold and the map B̌ is a diffeomorphism.

Proof. First we point out that we already have a smooth manifold ĤR and
the assumption n ∈

⋂
w∈W

w(NB)w−1 will simply ensure that we can define

the map to the flag manifold.
We first show the continuity of B̌: We use the local coordinates, {φw : w ∈

W} for ĤR given in Definition 5.4. In these local coordinates, we assume
that for each i = 1, . . . , l, φwwo,i(Adwwo(∆wo(A))(g), [wwo]wo(A)) (which equals

χ
w(∆A)
w(−αi)

(g) or zero) converges to a scalar χo
w(−αi)

. We note that if φj =
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−
l∑

i=1

cijαi with each cij a nonnegative integer, then

χw(φj) =
l∏

i=1

χ
cij

−w(αi)
=

l∏
i=1

φ
cij

wwo,i(Adwwo(∆wo(A)), [wwo]wo(A)).

We thus let

χo
w(φj)

=
l∏

i=1

(
χo
−w(αi)

)cij

.

Let

A′ = {αi ∈ Π : χo
−w(αi)

= 0}.

Then note that χo
w(φj)

= 0 if and only if cij 6= 0 for some αi ∈ A′. Thus the

only χo
w(φj)

which are nonzero correspond to roots in ∆A′
+ .

By the assumption made, we have

gn(w(∆A))wB =
∏

φj∈−∆+

exp
(
twj χw(φj)(g)ew(φj)

)
wB,

which can be written in terms of the coordinate functions φwwo as

∏
φj∈−∆+

exp

(
twj

l∏
i=1

φ
cij

wwo,i(Adwwo(∆wo(A)), [wwo]wo(A))ew(φj)

)
wB.

This then converges (by continuity of φwwo) to∏
φj∈−∆+

exp
(
twj χo

w(φj)
(g)ew(φj)

)
wB,

which only involves roots in ∆A′
+ , and can be written as gn(w(∆A′

))wB.
Since any (Adw(∆A)(g), [w]A) ∈ ĤR is completely determined by the coor-

dinates φw(Adw(∆A)(g), [w]A) and some (Adw(∆A′ )(g), [w]A
′
) uniquely cor-

responds to the coordinates (χo
w(α1)(g), . . . , χo

w(αl)
(g)), then we can con-

clude that B̌(Adw(∆A)(g), [w]A) converges to B̌(Adw(∆A′ )(g), [w]A
′
) when-

ever the argument (Adw(∆A)(g), [w]A) approaches to (Adw(∆A′ )(g), [w]A
′
) in

ĤR. This proves the continuity of the map B̌.
Since ĤR is compact (Proposition 7.7) and B̌(ĤR) contains the orbit

HRnB, then (HRnB) ⊂ B̌(ĤR). From the construction of the map B̌ it
is easy to see that its image is contained in (HRnB) and thus B̌(ĤR) =
(HRnB).
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The smoothness of the map and that it gives a diffeomorphism follows

from the fact that (s1, . . . , s|∆+|) →
|∆+|∏
j=1

exp(sjew(φj))wB constitutes a co-

ordinate system in the flag manifold. �

Remark 8.10. We caution the reader that if one replaces the Cartan sub-
group H1

R of G instead of HR in the statement of Theorem 8.9 then the
closure of the orbit H1

RnB may not be smooth. In fact the structure of
H1

RnB can be explicitly described too. Consider only the connected com-
ponents of each HR(w(∆A)) associated to ε such that Ad(hε) ∈ Ad(H1

R) in
Definition 5.4. This gives a subspace of ĤR that will correspond to H1

RnB.
In terms of the coordinate charts φw one gets locally Rl but now some of its 2l

quadrants may be missing (since Ad(H1
R) may have fewer than 2l connected

components). Thus smoothness is obtained exactly when Ad(H1
R) contains

2l connected components. Examples that lead to nonsmooth closures if one
uses the Cartan subgroup H1

R are all the G = SL(n, R) with n even. In
terms of the Toda lattice this corresponds to considering the indefinite Toda
lattice in (1) in the Introduction but leaving out some of the signs εi. When
n = 2, for example, one obtains a closed interval inside G/B (which is a
circle). The disconnected Lie group G̃ which leads to the Cartan subgroup
HR is then a requirement in all our constructions and main results. We thus
have:

Corollary 8.11. Assume n ∈
⋂

w∈W

w(NB)w−1 and nB ∩H1
R = {e}. Then

H1
RnB is smooth if and only if Ad(H1

R) has 2l connected components.

We also have:

Corollary 8.12. If n ∈
⋂

w∈W

w(NB)w−1 and nB∩HR = {e}, then the toric

variety X = (HRnB) satisfies: XHR = (G/B)HR, the HR-fixed points.

Proof. We use Theorem 8.9. The manifold ĤR has an HR-action and the only
fixed points are the (e, w) with w ∈ W . These get mapped to the fixed points
of the HR-action in G/B, the cosets wB, w ∈ W . Thus XHR = (G/B)HR .
This also follows directly if we consider (21) with A = ∅ and we just let each
χw(φj) go to zero and obtain wB. �
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Remark 8.13.

1) By Theorem 3.6 in [9] and Remark 3 in p. 257 of [8] we may assume
that the map into the flag manifold which appears as a consequence
of Kostant’s map in Subsection 8.3 is such that one in fact obtains the
HR orbit of an element n ∈

⋂
w∈W

w(NB)w−1.

2) In §7 of [2] and in [3] a more restrictive definition of the notion of
genericity is given. This discussion is only relevant for the case of toric
varieties in G/P where P is a parabolic subgroup rather than just
a Borel subgroup as is the case in the present work. In these more
general situations sometimes generic varieties as defined in [8] are not
normal. In any case, note that if P = B our Corollary 8.12 implies
that if n ∈

⋂
w∈W

w(NB)w−1 and nB∩HR = {e} then the corresponding

toric variety is also generic in the sense discussed in [2] or [3]. Finally
we observe that normality is not used in any of our results. Here we
rely instead on explicit coordinate charts to obtain the smoothness of
our toric varieties and describe their topological structure. (We would
like to thank H. Flaschka for sending the papers [2, 3] to us.)

We conclude:

Theorem 8.14. Let γ ∈ Rl, then Ẑ(γ)R is a smooth compact manifold
diffeomorphic to ĤR.

Proof. This is just Theorem 8.9 and the definition of Ẑ(γ). The two condi-
tions in Theorem 8.9 are satisfied by Proposition 8.5 (Subsection 8.3) and
by Theorem 3.6 in [9] and Remark 3 in p. 257 of [8] as noted above in
Remark 8.13. �
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