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We prove that the group of isometries of a Finsler space
is a Lie transformation group on the original manifold. This
generalizes the famous result of Myers and Steenrod on a
Riemannian manifold and makes it possible to use Lie theory
on the study of Finsler spaces.

Introduction.

Let (M,F ) be a Finsler space, where F is positively homogeneous but not
necessary absolutely homogeneous. As in the Riemannian case, we have
two kinds of definitions of isometry on (M,F ). On one hand, we can define
an isometry to be a diffeomorphism of M onto itself which preserves the
Finsler function. On the other hand, since on M we still have the definition
of distance function (although generically it is not a real distance), we can
define an ismotry of (M,F ) to be a mapping of M onto M which keeps the
distance of each pair of points of M .

The equivalence of the two definitions of isometry in the Riemannian case
is a famous result of Myers and Steenrod. They used this result to prove that
the group of isometries of a Riemannian manifold is a Lie transformation
groups on the original manifold [5]. This result plays a fundamental role
on the theory of homogeneous Riemannian manifolds. Since then, many
different proofs were provided, cf., e.g., Palais [6], S. Kobayashi [4].

In this paper we prove that the two definitions of isometry are equivalent
for a Finsler space. Then we prove that the group of isometries has a difer-
entiable structure which turns it into a Lie transformation on the manifold.
This result makes it possible to use Lie theory on the study of Finsler spaces.

In this paper, Finsler structure F is only assumed to be positively ho-
mogeneous but not necessary absolutely homogeneous. We will not point
out this each time. For a mapping φ of a manifold M , we use dφ to denote
its differential. If p ∈ M , dφ|p will denote the differential of φ at p. The
notations of forward and backward metric ball in a Finsler spaces comes
from the newly published book by D. Bao, S.S. Chern and Z. Shen [1].
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1. A result on distance function.

Let (M,F ) be a Finsler space, d be the distance function of (M,F ). We
first need to prove a result on the distance function.

Lemma 1.1. Let x ∈ M . Then for any ε > 0, there exists a neighborhood U
of the original of Tx(M) such that expx is a C1-diffeomorphism from U onto
its image and for any A,B ∈ U , A 6= B, and any C1 curve σ0(s), 0 ≤ s ≤ 1,
connecting A and B which satisfies σ0(s) ∈ U and σ̇0(s) 6= 0, s ∈ [0, 1], we
have ∣∣∣∣ L(σ)

L(σ0)
− 1

∣∣∣∣ ≤ ε,

where L(·) denotes the arc length of a curve and σ(s) = expxσ0(s).

Proof. Let Bx(r) = {A ∈ Tx(M)|F (x,A) < r} be a tangent ball in Tx(M)
such that exp = expx is a C1-diffeomorphism from Bx(r) onto B+

x (x) = {w ∈
M |d(x,w) ≤ r} (cf. [1]). Assume A,B ∈ Bx(r), A 6= B. Let σ0(s), 0 ≤ s ≤
1 be a C1 curve connecting A and B and ∀s, σ0(s) ∈ Bx(r) and σ̇0(s) 6= 0.
Then we can write the velocity vector of σ0(s) as σ̇0(s) = t(s)X(s), where
X(s) satisfies F (x, X(s)) = r

2 ,∀s, and t(s) ≥ 0 is a continuous function on
[0, 1]. Therefore the arc length of σ0 is

L(σ0) =
∫ 1

0
t(s)F (x,X(s))ds.

Denote X1(s) = d(expx)|σ0(s)X(s). Then the velocity vector of the curve
σ(s) = expx(σ0(s)), 0 ≤ s ≤ 1 is

σ̇(s) = d(expx)|σ0(s)(t(s)X(s)) = t(s)d(expx)|σ0(s)(X(s)) = t(s)X1(s).

Therefore, the arc length of σ is

L(σ) =
∫ 1

0
t(s)F (σ(s), X1(s))ds.

Now we select a neighborhood V1 of x in M with compact closure which
is contained in B+

x (r) and fix a coordinate system (x1, x2, . . . , xn) in V1.
Let U1 = exp−1V1. Suppose σ0 ⊂ U1. Denote by M(s) the matrix of
d(expx)|σ0(s) under the base ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn
. Given any positive number

δ < r
2 . Since d(expx)|0 = In and exp is C1 smooth, there exists a neigh-

borhood U2 ⊂ U1 of the original of Tx(M) such that for any C1 curve σ0

satisfying σ0(s) ∈ U2,∀s, we have

‖M(s)− I‖ <
δ

n
, 0 ≤ s ≤ 1,
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where ‖ · ‖ denote the maximum of the absolute value of the entries of a
matrix. Write X(s) and X1(s) as:

X(s) =
n∑

j=1

yj(s)
∂

∂xj

∣∣∣
x
;

X1(s) =
n∑

j=1

y′j(s)
∂

∂xj

∣∣∣
σ(s)

.

Then we have
|y′j(s)− yj(s)| < δ, 1 ≤ j ≤ n.

Consider the set

C0 =
{

(w, (d(expx))|W )y | w ∈ V1, W = exp−1
x w,

y ∈ TW (Tx(M)) = Tx(M), F (x, y) =
r

2

}
.

Since exp is C1 smooth, the closure of C0 is compact. Hence the Finsler
function F is bounded on C0. Suppose F < r1 on C0, r1 > 0. Now write the

Finsler function F (w, y) as F (w, y1, y2, . . . , yn) for y =
n∑

j=1
yj

∂
∂xj

∣∣
w
. Consider

the closure D1 of the set D0 = {(w, y) ∈ TM |w ∈ V1, F (x, y) ≤ r
2 + r1}.

Since F is continuous and D1 is compact, F is uniformly continuous on
D1. Therefore for the given ε > 0, there exists δ1 > 0 and a neighborhood
V2 ⊂ V1 of x such that for any w ∈ V2, |yj − y′j | < δ1, j = 1, 2, . . . , n,
F (x, y1, y2, . . . , yn) < r

2 + r1, F (w, y′1, . . . , y
′
n) < r

2 + r1, we have

|F (x, y1, y2, . . . , yn)− F (w, y′1, y
′2, . . . , y′n)| < r

2
ε.

Therefore if we select the above δ such that δ < δ1. Then for the corre-
sponding U2 and any C1 curve σ0, σ0 ⊂ U2 ∩ (exp)−1V2, we have∣∣∣∣ L(σ)

L(σ0)
− 1

∣∣∣∣ =

∣∣∣∫ 1
0 t(s)(F (x,X(s))− F (σ(s), X1(s)))ds

∣∣∣∣∣∣∫ 1
0 t(s)F (x,X(s))ds

∣∣∣
≤

∫ 1
0 t(s)|F (x,X(s))− F (σ(s), X1(s))|ds

r
∫ 1
0 t(s)ds

≤
r
2ε
r
2

∫ 1
0 t(s)ds∫ 1
0 t(s)ds

= ε.

�
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Theorem 1.2. Let x ∈ M and Bx(r) be a tangent ball of Tx(M) such that
expx is a C1 diffeomorphism from Bx(r) onto B+

x (r). For A,B ∈ Bx(r),
A 6= B, let a = expxA, b = expxB. Then we have

F (x,A−B)
d(a, b)

→ 1

as (A,B) → (0, 0).

Proof. Let B−x (r) = {w ∈ M | d(w, x) < r}. Suppose r is so small that
each pair of points in B+

x ( r
2) ∩ B−x ( r

2) can be joint by a unique minimal
geodesic contained in B+

x (r)(cf. [1]). Let Γ0(s), 0 ≤ s ≤ 1 be the line segment
connecting A and B, and Γ(s) = expxΓ0(s). By Lemma 1.1, we have

L(Γ0)
L(Γ)

=
F (x,A−B)

L(Γ)
→ 1

as (A,B) → (0, 0). Now let a = expxA, b = expxB. Suppose a, b ∈ B+
x ( r

2) ∩
B−x ( r

2). Let γab(s), 0 ≤ s ≤ 1 be the unique minimal geodesic of constant
speed connecting a and b. Let γ0(s), 0 ≤ s ≤ 1 be the unique curve in Bx(r)
which satisfies γab(s) = expxγ0(s). Then by Lemma 1.1, we also have

L(γ0)
L(γab)

→ 1

as (A,B) → (0, 0). Since

d(a, b) ≤ L(Γ), L(γ0) ≥ F (x,A−B),

we have
F (x,A−B)

L(Γ)
≤ F (x,A−B)

d(a, b)
≤ L(γ0)

L(γab)
.

Theorem 1.2 follows. �

2. Differentiability of isometries.

First we have:

Proposition 2.1. Let ‖ · ‖1, ‖ · ‖2 be two Minkowski norms on Rn. Let
φ be a mapping of Rn into itself such that ‖φ(A) − φ(B)‖2 = ‖A − B‖1,
∀A,B ∈ Rn. Then φ is a diffeomorphism.

Proof. Consider Rn endowed with ‖ · ‖j , j = 1, 2 as two Finsler spaces, de-
noted by (M1, F1), (M2, F2). Then geodesics in Mj , j = 1, 2 are straight lines
(cf. [1]). And the distance function of Mj are dj(A,B) = ‖A−B‖j , j = 1, 2.
Consider φ as a mapping from the Finsler space (M1, F1) to (M2, F2).
Then φ preserves the distance function. Since in a Finsler space short
geodesics minimize distance between its start and end points (cf. [1]), we
can prove (similarly as in the Riemannian case) that φ transforms geodesics
to geodesics. First suppose φ(0) = 0. For A ∈ Rn, A 6= 0, the curve φ(tA),
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t ≥ 0 is a ray which coincides with the ray tφ(A) for t = 0 and t = 1.
Therefore they coincide as point sets. Thus φ(tA) = µ(t)φ(A) for some
nonnegative function µ(t). Since

‖φ(tA)− 0‖2 = ‖tA− 0‖1 = t‖A‖1

= ‖µ(t)φ(A)− 0‖2 = µ(t)‖φ(A)‖2 = µ(t)‖A‖1, t ≥ 0,

we have µ(t) = t. Thus φ(tA) = tφ(A), for t ≥ 0. Suppose A 6= B, a similar
argument as the above shows that there exists a nonnegative function λ(t)
such that φ(tA + (1− t)B) = λ(t)φ(A) + (1− λ(t))φ(B), t ≥ 0. And we can
similarly show that λ(t) = t. In particular, for t = 1

2 we have,

1
2
φ(A + B) = φ

(
1
2
(A + B)

)
=

1
2
φ(A) +

1
2
φ(B).

Thus φ(A+B) = φ(A)+φ(B). Taking A = −B in the above equality we have
φ(−A) = −φ(A). Therefore φ is a linear transformation. Since Ker(φ) =
{0}, it is a diffeomorphism. If A1 = φ(0) 6= 0, consider the composition
mapping φ1 = πA1 ◦ φ, where πA1(A) = A − A1 is the parallel translation,
which is a diffeomorphism. Since φ1(0) = 0 and ‖φ1(A)−φ(B)‖2 = ‖A−B‖1,
φ1 is a diffeomorphism. Hence φ is a diffeomorphism. �

Remark. The proposition is an interesting application of Finsler geometry
to Functional Analysis.

Now we can prove the main result of this paper.

Theorem 2.2. Let (M, F ) be a Finsler space and φ be a distance-preserving
mapping of M onto itself. Then φ is a diffeomorphism.

Proof. Let p ∈ M and put q = φ(p). Let r > 0, ε > 0 be so small that both
expp and expq are C1 diffeomorphisms on the tangent ball Bp(r+ε), Bq(r+ε)
of Tp(M) and Tq(M), respectively. For any nonzero X ∈ Tp(M), consider the
radial geodesic expp(tX), 0 ≤ t ≤ r

2F (p,X) . The image γ(t) = φ(expp(tX))
is a geodesic since φ is distance-preserving. Let X ′ denote the tangent
vector of γ at the point q. We have obtained a mapping X → X ′ of Tp(M)
into Tq(M). Denoting this mapping by φ′ we have φ′(λX) = λφ′(X), for
X ∈ Tp(M) and λ ≥ 0. Let A,B ∈ Tp(M) , A 6= B and t is so small that
both tA and tB lie in Bp(r). Let at = expp(tA), bt = expp(tB). Then by
Theorem 1.2 we have

lim
t→0+

F (p, tA− tB)
d(at, bt)

= 1.

On the other hand, by the definition of φ′ we have

expq(φ
′(tX)) = φ(exp tX),
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for any X and t small enough. Thus by Theorem 1.2 we also have

lim
t→0+

F (q, φ′(tA)− φ′(tB))
d(φ(at), φ(bt))

= 1.

Since d(φ(at), φ(bt)) = d(at, bt), we get

1 = lim
t→0+

F (p, tA− tB)
F (q, φ′(tA)− φ′(tB))

= lim
t→0+

tF (p, A−B)
tF (q, φ′(A)− φ′(B))

=
F (p, A−B)

F (q, φ′(A)− φ′(B))
.

Therefore F (q, φ′(A) − φ′(B)) = F (p, A − B). By Proposition 2.1, φ′ is a
diffeomorphism of Tp(M) onto Tq(M).

Although on B+
p (r) = exppBr(p) we have φ = expq ◦ φ′ ◦ (expp)−1, we

still cannot conclude that φ is smooth on B+
p (r), since in a Finsler space the

exponential mapping is only C1 at the zero section. That is, we can only
conclude that φ is smooth in Bp(r) − {p}. To finish the proof, we proceed
to take r so small so that every pair of points in B+

p (r) ∩ B−p (r) can be
joint by a unique minimizing geodesic. Select p1 ∈ B+

p ( r
2) ∩ B−p ( r

2), p1 6= p.
Consider the tangent ball Bp1(

r
2) of Tp1(M). The exponential mapping is

a C1 diffeomorphism from Bp1(
r
2) onto B+

p1
( r
2). The above argument shows

that φ is smooth in B+
p1

( r
2) − {p1}, which is a neighborhood of p. This

completes the proof. �

3. Group of isometries.

Theorem 2.2 justifies the following definition of isometry for a Finsler space.

Definition 3.1. Let (M,F ) be a Finsler space. A mapping φ of M onto
itself is called an isometry if φ is a diffeomorphism and for any x ∈ M,X ∈
Tx(M), F (φ(x), dφx(X)) = F (x,X).

In the following we denote the group of isometries of (M,F ) by I(M).
Let N be a connected, locally compact metric space and I(N) be the

group of isometries of N , for each point x of N , let Ix(N) denote the isotropy
subgroup of I(N) at x. Van Danzig and van der Waerden [7] proved that
I(N) is a locally compact topological transformation group on N with re-
spect to the compact-open topology and Ix(N) is compact.

Now on M we have a distance function d defined by the Finsler function
F . By Theorem 2.2, the group I(M) coincides with the group of isometries
I(M) of (M,d). Although generically d is not a distance (d is not symmetric
unless F is absolutely homogeneous), we still have:

Theorem 3.2. Let (M,F ) be a connected Finsler space. The compact-open
topology turns I(M) into a locally compact transformation group of M . Let
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x ∈ M and Ix(M) denote the subgroup of I(M) which leaves x fixed. Then
Ix(M) is compact.

Proof. A proof of this result for the Riemannian case was given in Helgason
[3] (cf. Helgason [3], pp. 201-204), which is valid in general cases after some
minor changes. Just note that on a Finsler manifold the topology generated
by the forward metric balls B+

p (r) = {x ∈ M |d(p, x) < r}, p ∈ M, r > 0 is
precisely the underlying manifold topology and this is true for the topology
generated by the backward metric balls B−p (r) = {x ∈ M |d(x, p) < r}, p ∈
M, r > 0 (cf. [1]). �

Bochner-Montgomery [2] proved that a locally compact group of differen-
tiable transformations of a manifold is a Lie transformation group. Therefore
we have the following theorem.

Theorem 3.3. Let (M,F ) be a Finsler space. Then the group of isometries
I(M) of M is a Lie transformation group of M . Let x ∈ M and Ix(M) be
the isotropy subgroup of I(M) at x. Then Ix(M) is compact.
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