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PHRAGMÈN–LINDELÖF THEOREM FOR MINIMAL
SURFACE EQUATIONS IN HIGHER DIMENSIONS

Chun-Chung Hsieh, Jenn-Fang Hwang, and Fei-Tsen Liang

Volume 207 No. 1 November 2002





PACIFIC JOURNAL OF MATHEMATICS
Vol. 207, No. 1, 2002
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Here we prove that if u satisfies the minimal surface equa-
tion in an unbounded domain which is properly contained in
a half space of Rn, with n ≥ 2, then the growth rate of u is
of the same order as that of the shape of Ω and the boundary
value of u.

1. Introduction.

Consider the minimal surface equation

div Tu = 0,

where

Tu =
5u√

1 + | 5 u|2
and 5 u = (ux1 , . . . , uxn).

In 1965, Nitsche [7] announced the following result: “Let Ωα ⊂ R2 be a
sector with angle 0 < α < π. If u satisfies the minimal surface equation with
vanishing boundary value in Ωα, then u ≡ 0”. Hwang extends this result in
[4], [5], [6] and proves that, in an unbounded domain Ω properly contained
in the half plane in R2, if u satisfies the minimal surface equation, then, the
growth property of u is determined completely by the shape of Ω and the
boundary value of u. In this respect, the Phragmèn-Lindelöf theorem for
the minimal surface equation is better than that for the Laplace equation.
(Indeed, if u satisfies the Laplace equation in an unbounded domain Ω, the
growth property of u cannot be determined completely by the shape of Ω
and the boundary data of u alone (cf. [10]).)

The purpose of this paper is to generalize the two-dimensional Phragmèn-
Lindelöf theorems in [4], [5] and [6], to higher dimensions. In §2, we review
the statements of the Phragmèn-Lindelöf theorem of [4], [5] and [6]. The
higher-dimensional version is similar in content, but proof is different. In
§3, based on an argument of [2], we established the suitable comparison
principle. In §4, we compute the mean curvature of our comparison function,
and use it to finish the proof of our main theorems in §5.
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2. Preliminary.

The main purpose of this paper is to generalize the two-dimensional Phrag-
mèn-Lindelöf theorem in [4], [5], [6] to higher dimensions. We may, first of
all, recall some results in these papers and consider functions

f : [0,∞) → [0,∞), f ∈ C2([0,∞)), f ′ ≡ df(y)
dy

> 0,

from which we define

p(f) = 1− ff ′′

(f ′)2
.

In particular, for f(y) = ym, m being a positive constant, we have

p(f) =
1
m

,

which is precisely the reciprocal of the order of f , while for f(y) = ey, we
have

p(f) = 0;
moreover, in case f grows faster than the exponential function, we can
assume p(f) ≥ −ε for some small positive constant ε, essentially (cf. [5,
Remark 2.7]). Accordingly, we may proceed to solve the ordinary differential
equation in [−1, 1]

(∗) (1− p(f))(h− th′)(1 + h′
2) + h′′(h2 + t2) = 0

with initial values

(∗∗) h(−1) = 0 and h′(−1) = tan
(
(1− p(f))

π

2

)
,

and then denote its solution, if exists, by hm if f(y) = ym (and hence
p(f) = 1

m), and by h∞ if f(y) = ey (and hence p(f) = 0). In general, (∗)
and (∗∗) cannot be solved explicitly; but, for some specific m, its solution
can be written out explicitly. For example, we have

h2 =
1− t2

2
,

and also
h∞ =

√
1− t2.

It is useful to know some interesting properties of hm, 0 < m ≤ ∞, in the
following:

Lemma 1 ([6]). For 1 < m, m′ ≤ ∞ and t ∈ (−1, 1), then we have

(i) hm(t) > hm′(t), whenever m > m′,

and

(ii) hm(t) < hm(t′), whenever |t| > |t′|.
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The Phragmèn-Lindelöf theorems in [5], [6] can now be formulated as
follows.

Theorem 2. Let Ω ⊆ {(x, y) ∈ R2| − aym < x < aym, y > 0} ⊆ R2 be
an unbounded domain, where a and m are positive constants, m ≥ 1. Let
u ∈ C2(Ω) ∩ C0(Ω) and suppose that{

div Tu ≥ 0 in Ω
u ≤ aymhm( x

aym ) on ∂Ω.

Then we have u ≤ aymhm( x
aym ) ≤ aymh∞( x

aym ) =
√

a2y2m − x2 in Ω.

Theorem 2*. Let Ω ⊆ {(x, y) ∈ R2| − aeby < x < aeby, y > 0} be an
unbounded domain where a, b are positive constants. Let u ∈ C2(Ω)∩C0(Ω)
and suppose that {

div Tu ≥ 0 in Ω
u ≤

√
a2e2by − x2 on ∂Ω.

Then we have u ≤
√

a2e2by − x2 in Ω.

Theorem 3. Let f ∈ C2([0,∞)), f > 0, f ′ > 0 in (0,∞) and p(f) ≥ p0,
where p0 is a negative constant, and let f1 ∈ C0([0,∞)) and f1 > 0 in
(0,∞). For a given unbounded open domain

Ω ⊂ {(x, y) ∈ R2 | − f1(y) < x < f1(y), y > 0},

and u ∈ C2(Ω) ∩ C0(Ω) with{
div Tu ≥ 0 in Ω
u ≤ a

√
f2 − x2 on ∂Ω,

where f2 ≥ (a2−1)(2−p0)
(a2−(1−p0))

f2
1 and a is a positive constant satisfying

a2 − 1 + p0 > 0.

Then, we have
u ≤ a

√
f2 − x2 in Ω.

Remark. In Theorem 3, since p0 < 0 and a > 0, we have

(a2 − 1)(2− p0)
(a2 − (1− p0))

=
(

a2 − 1
a2 − (1− p0)

)
(2− p0) > 2.

Thus, in case u ≤ 0 on ∂Ω, our estimates are not good enough since we use
worse boundary conditions, whereas the best estimates remain unknown.

These theorems will be generalized to higher dimensions in §5.
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3. A comparison principle.

To establish the higher-dimensional Phragmèn-Lindelöf theorem, we shall
need the following comparison principle.

Lemma 4. Let Ω be an unbounded domain in Rn, and let u, v ∈ C2(Ω) ∩
C0(Ω). Suppose that{

div Tu− div Tv ≥ C in Ω,

u ≤ v on ∂Ω,

where C is a positive constant. Then we have u ≤ v in Ω.

Proof. The idea of proof is analogous to that of [2].
Suppose that this lemma fails to hold. There then exists a positive con-

stant ε such that

Ω′ = {x ∈ Ω | u(x) > v(x) + ε}

is not empty; by Sard’s theorem, we may further assume that ∂Ω′ ∩ Ω is
smooth. For every R > 0, set

BR = {x ∈ Rn | |x| < R},
ΩR = BR ∩ Ω′,
ΓR = ∂BR ∩ ∂ΩR,

and

|ΓR| = the Hausdorff (n− 1)− dimensional measure of ΓR.

Also, let

g(R) =
∮

∂ΩR

tan−1(u− v − ε)(Tu− Tv) · ν(1)

=
∫

ΓR

tan−1(u− v − ε)(Tu− Tv) · ν

where ν is the unit outward normal of ∂ΩR.
Then we have

g(R) =
∫∫

ΩR

(5u−5v) · (Tu− Tv)
1 + (u− v − ε)2

(2)

+
∫∫

ΩR

tan−1(u− v − ε)(div Tu− div Tv).

Since the integrand of the right-hand side of (1) is nonnegative, Fubini’s
theorem tells us that g′(R) exists for almost all R > 0, and whenever it
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exists, we have, by (2),

g′(R) =
∫

ΓR

(5u−5v) · (Tu− Tv)
1 + (u− v − ε)2

(3)

+
∫

ΓR

tan−1(u− v − ε)(div Tu− div Tv)

≥ C

∫
ΓR

tan−1(u− v − ε), (by assumption)

≥ C

2

∫
ΓR

tan−1(u− v − ε) |Tu− Tv|,

(since |Tu| < 1 and |Tv| < 1)

≥ C

2
g.

Since g is an increasing function of R and g ≥ 0, it is easy to see that
Lemma 4 holds in the case that g ≡ 0. If, on the other hand, g 6≡ 0, there
would exist a positive constant R0 such that g(R) > 0 for all R ≥ R0, and
hence, for every R > R0, in virtue of (3)∫ R

R0

g′(r)
g(r)

dr ≥ C

2
(R−R0),

i.e.,

log g(r)
∣∣∣∣R
R0

≥ C

2
(R−R0),

and therefore,

g(R) ≥ g(R0) e
c
2
(R−R0).(4)

However, we have, by (1)

g(R) ≤
∫

ΓR

π

2
· 2 ≤ π|ΓR|;

since ΓR ⊂ ∂BR, this yields a positive constant C1 completely determined
by n such that

g(R) ≤ C1R
n−1,

which contradicts (4) and yields the truth of Lemma 4. �

Remark. The above proof works well and so the lemma is valid if v = +∞
on some parts of ∂Ω.
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4. An estimation of the growth of solutions.

Henceforth, we will denote Ω as an unbounded domain in Rn, n ≥ 2 , such
that, for some f ∈ C2 ([0,∞)), f > 0, f ′ > 0 and f ′′ > 0 in (0,∞), we have

Ω ⊂ {(x, y) ∈ R2 | − f(y) < x < f(y), y > o} × Rn−2 ⊂ Rn.

We shall extend the results in §2 to such a domain Ω.
First, for every positive constant y0, since f > 0, f ′ > 0 and f ′′ > 0 in

(0,∞), it is easy to see that there exists a positive constant δ1, depending on
y0, such that {(f(y), y) ∈ R2 | y > 0}∩{(x, y) ∈ R2 | y0−y+ δ1

2 x2 = 0} has
exactly one point. And also, {(f(y), y) ∈ R2 | y > 0}∩{(x, y) ∈ R2 | y0−
y + δ

2x2 = 0} has exactly two points, say (f(y1), y1) and (f(y2), y2) with
0 < y1 < y2, for all δ with 0 < δ < δ1. In general, we have y1 = y1(y0, δ),
y2 = y2(y0, δ) and also limδ→0 y1(y0, δ) = y0. From now on, we always
assume that the positive constant δ is less than the above δ1.

To apply Lemma 4 to estimate the speed of growth of solutions in Ω, we
may consider comparison functions of the following form

Fy0,δ =
A(f2(y)− x2)

1
2

y0 − y + δ
2x2

,

which is defined on

Ωy0,δ = Ω ∩
({

(x, y) ∈ R2
∣∣ y0 − y +

δ

2
x2 > 0, 0 < y < y1

}
× Rn−2

)
,

where δ, y0, and A are positive constants. We first proceed to calculate the
mean curvature of Fy0,δ. For convenience of computation, we may set

F = A · P
1
2 Q−1,

where P = f2(y)− x2 and Q = y0 − y + δ
2x2. We observe that

div TF =
(1 + F 2

x )Fyy − 2FxFyFxy + (1 + F 2
y )Fxx

(1 + F 2
x + F 2

y )
3
2

(5)

=
( 1

F 2 + F 2
x

F 2 )Fyy

F − 2Fx
F

Fy

F
Fxy

F + ( 1
F 2 + F 2

y

F 2 )Fxx
F

( 1
F 2 + (Fx

F )2 + (Fy

F )2)
3
2

.

Denoting

I =
F 2

x

F 2

Fyy

F
+

F 2
y

F 2

Fxx

F
− 2

Fx

F

Fy

F

Fxy

F

and

II =
Fxx

F 3
+

Fyy

F 3
,
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we note that the numerator in (5) is the sum of these two expressions and
we shall treat them seperately. For the first expression, we have

I =
F 2

x

F 2

(
∂y

(
Fy

F

)
+
(

Fy

F

)2
)

+
F 2

y

F 2

(
∂x

(
Fx

F

)
+
(

Fx

F

)2
)

− 2
Fx

F

Fy

F

[
∂x

(
Fy

F

)
+

FxFy

F 2

]
=

F 2
x

F 2

(
∂y

(
Fy

F

))
+

F 2
y

F 2

(
∂x

(
Fx

F

))
− 2

FxFy

F 2

(
∂x

(
Fy

F

))
= I* + I**

where

I* =
F 2

x

F 2

(
−1

2
P 2

y

P 2
+

Q2
y

Q2

)
+

F 2
y

F 2

(
−1

2
P 2

x

P 2
+

Q2
x

Q2

)
− 2

FxFy

F 2

(
−1

2
PxPy

P 2
+

QxQy

Q2

)
,

and

I** =
F 2

x

F 2

(
1
2

Pyy

P
− Qyy

Q

)
+

F 2
y

F 2

(
1
2

Pxx

P
− Qxx

Q

)
− 2

FxFy

F 2

(
1
2

Pxy

P
− Qxy

Q

)
.

By a direct computation,

I* =
−1
4

1
P 2Q2

(PyQx − PxQy)2,

while

I** =
(

1
2

Px

P
− Qx

Q

)2(1
2

Pyy

P
− Qyy

Q

)
+
(

1
2

Py

P
− Qy

Q

)2(1
2

Pxx

P
− Qxx

Q

)
− 2

(
1
2

Px

P
− Qx

Q

)(
1
2

Py

P
− Qy

Q

)(
1
2

Pxy

P
− Qxy

Q

)
.

Thus, in particular, we have

I* ≤ 0.(6)

As for I** and II, we recall that

P = f2(y)− x2 and Q = y0 − y +
δ

2
x2,
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and hence

Px = −2x, Py = 2f ′f, Qx = δx, Qy = −1;

moreover
Pxx = −2, Pxy = 0, Pyy = 2(f ′′f + f ′f ′)

and
Qxx = δ, Qxy = 0, Qyy = 0.

Thus, we have

I** =
1

P 3
[x2(f ′′f + f ′2)− f2f ′2]

+
(−2)
P 2Q

[
−δx2(f ′′f + f ′2) + f ′f +

δ

2
f2f ′2

]
+

1
PQ2

[δ2x2(f ′′f + f ′2)− 1− 2δff ′]− δQ−3,

and also

II =
Q2

A2P

(
∂x

(
Fx

F

)
+

F 2
x

F 2
+ ∂y

(
Fy

F

)
+

F 2
y

F 2

)

=
Q2

A2P

[
∂x

(
1
2

Px

P
− Qx

Q

)
+ ∂y

(
1
2

Py

P
− Qy

Q

)

+
(

1
2

Px

P
− Qx

Q

)2

+
(

1
2

Py

P
− Qy

Q

)2
]

=
Q2

A2

{
1

P 3
[f2(f ′′f − 1)− x2(ff ′′ + f ′2)]

+
1

P 2Q
(2ff ′ − δf2 + 3δx2) +

2
PQ2

(δ2x2 + 1)
}

.

Thus the numerator of div TF is

I + II = I* + I** + II(7)

=
1

P 3

[
x2(ff ′′ + f ′2)− f2f ′2 +

Q2

A2
((f2(ff ′′ − 1)− x2(ff ′′ + f ′2)))

]
+

1
P 2Q

[
2δx2(ff ′′ + (f ′)2)− 2ff ′ − δf2f ′2

+
Q2

A2
(−δf2 + 2ff ′ + 3δx2)

]
+

1
PQ2

[
δ2x2(f ′′f + (f ′)2)− 1− 2δff ′ + 2

Q2

A2
(δ2x2 + 1)

]
− δQ−3 − 1

4
P−2Q−2(PxQy −QxPy)2.
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We want to choose δ and A to make the third bracket of the right-hand side
of (7) negative. For this, substituting the expression for Q in the bracket
and rewriting it as

III = −1 +
(

2
A2

)(
y0 − y +

δx2

2

)2

(1 + δ2x2) + δ2x2(f ′′f + (f ′)2)− 2δff ′.

(8)

For any given λ, 0 < λ < 1
4 , if we take δ such that

0 < δ < inf
y∈(0,y1)

min

{
λy0

f2
,

λ

f
,

λ

f2
,

λ

f(f ′′f + (f ′)2)
1
2

}
(9)

and A = 4
√

2y0, then we have

III ≤ −1 +
1

4(2y0)2

(
y0 +

λy0

2

)2

(1 + λ2) + λ2 ≤ −1 +
1 + λ2

4
+ λ2 < 0.

As of the second bracket of the right-hand side of (7), to make it negative,
it clearly suffices to make the following expression negative, namely

IV =
(

Q2

A2

)(
ff ′ +

3
2
δx2

)
− ff ′ + δx2(ff ′′ + (f ′)2).(10)

For this, we observe that, as x2 < f2 in Ω and f > 0, f ′ > 0 and f ′′ > 0 in
(0,∞),

3
2
δx2 + ff ′ ≤ 3

2
δf2 + ff ′ = ff ′

(
1 +

3
2
δ

f2

ff ′

)
,

while

−ff ′ + δx2(ff ′′ + (f ′)2) ≤ −ff ′ + δf2(ff ′′ + (f ′)2)

= −ff ′
(

1− δ
f2(ff ′′ + (f ′)2

ff ′

)
and furthermore, if we require that

δ < inf
y∈(0,y1)

min
{

λff ′

f2(ff ′′ + (f ′)2)
,

λff ′

2f2

}
(9*)

it follows from (9) that

Q2

A2
≤ 1

4
.(11)

And also, we have

IV ≤ ff ′
(

Q2

A2
(1 + λ) + λ− 1

)
≤ ff ′

(
1
4
(1 + λ) + λ− 1

)
≤ −1

4
ff ′.

Thus, the condition that f > 0, f ′ > 0 in (0,∞) ensures us of the negativity
of (10). It remains to consider the first bracket of the right-hand side of (7).
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To make it negative, it suffices to make negative the following expression

V = x2(ff ′′ + (f ′)2)− f2f ′2 +
Q2

A2
f2(ff ′′ − 1),

or, in view of (11),

V ≤ x2(ff ′′ + (f ′)2)− f2f ′2 +
1
4
f2(ff ′′).(12)

Recall that for given function f as above, we define

p(f) = 1− ff ′′

(f ′)2
.

For §5, and from now on, we assume that −1 ≤ p(f) ≤ 1, following a remark
concerning p(f) for our interesting functions, [5, Remark 2.7]. And so, in
particular for f(y) = (y + z)m, p(f) = 1

m and for f(y) = aeby, p(f) = 0
where z, m > 1, a, and b are positive constants, and also it is easy to see
that for f(y) = eyα

, with α > 1, then p(f) −→ 0− as y −→ +∞.
Rewriting (12) in terms of p(f), and noticing that (3

4 + p
4) × ( 1

2−p) ≥ 1
6 ,

we have

V ≤ (2− p)(f ′)2
(

x2 −
3
4 + p

4

2− p
f2

)
≤ (2− p)(f ′)2

(
x2 − 1

6
f2

)
,(13)

and so if we assume furthermore that

Ω ⊆
{

(x, y) ∈ R2 | − 1√
6
f(y) < x <

1√
6
f(y), y > 0

}
× Rn−2 ⊆ Rn,(14)

then V ≤ 0 and get the following conclusion about the estimation of our

comparison function: If F =
√

f2(y)− x2
4
√

2y0

(y0 − y + δ
2x2)

with δ as in our

assumptions, (9), (9*), then div TF ≤ 0 in Ωy0,δ, where Ω is assumed as in
(14). Now we state what we achieved as follows:

Proposition 5. Let f1 : [0,∞) −→ [0,∞), and f1 ∈ C2([0,∞)) with f1 >
0, f1

′ > 0, f1
′′ > 0 on [0,∞), and −1 ≤ p(f1) ≤ 1. Suppose that Ω ⊆

{(x, y) ∈ R2 | − f1(y) < x < f1(y), y > 0} × Rn−2 ⊆ Rn and that u ∈
C2(Ω) ∩ C0(Ω) and for some constant β with 0 < β < 1 satisfying{

div Tu ≥ 0 in Ω
u ≤ 4

√
2β
√

6f2
1 (y)− x2 on ∂Ω.

Then u ≤ 4
√

2
√

6f1
2(y)− x2 in Ω.

Proof. Set f(y) =
√

6f1(y) and define F (x, y) = 4
√

2y0
(f2(y)− x2)

1
2

(y0 − y + δ
2x2)

as

above, where y0 > 0 and δ > 0, small as in (9) and (9*) and we also require
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that δ ≤ (2− 2β)y0

β(f(y1))2
. Then following the computation as above, in particular

that of (7), and also noticing that the first three brackets of the right-hand
side of (7) are negative in Ωy0,δ as shown above, it is easy to see that

div TF =
( 1

F 2 + F 2
y

F 2 )Fxx
F − 2Fx

F
Fy

F
Fxy

F + ( 1
F 2 + F 2

x
F 2 )Fyy

F

1
F 3 (1 + | 5 F |2)

3
2

and(
1

F 2
+

F 2
x

F 2

)
Fyy

F
−2

Fx

F

Fy

F

Fxy

F
+

(
1

F 2
+

F 2
y

F 2

)
Fxx

F
< −δ

(
y0 − y +

δ

2
x2

)
−3,

when (x, y) is close to {(x, y) ∈ R2 | y0 − y + δ
2x2 = 0}.

And so, noticing that P = f2(y)− x2, Q = y0 − y + δ
2x2 and A = 4

√
2y0,

when (x, y) is close to {(x, y) ∈ R2 | y0 − y + δ
2x2 = 0}, we have

div TF ≤ −δQ−3

(
1

F 2
+
∣∣∣∣5F

F

∣∣∣∣2
)

−3
2

≤ −δQ−3

(
Q2

A2P
+
∣∣∣∣125P

P
− 5Q

Q

∣∣∣∣2
)

−3
2

≤ −δ

(
Q4

A2P
+
∣∣∣∣12 Q

P
5 P −5Q

∣∣∣∣2
)

−3
2

≤ −δ

(
Q4

A2P
+

1
4

Q2

P 2
| 5 P |2 + | 5Q|2 − Q

P
5 P · 5Q

)
−3
2

≤ −δ

2
(1 + δ2x2)

−3
2 ,

since
−Q

P
5 P · 5Q ≥ 0 and | 5Q|2 = 1 + δ2x2.

But the bounded connected component of the closure of {(x, y) ∈ R2 | −
f1(y) < x < f1(y), y > 0}∩{(x, y) ∈ R2 | y0−y+ δ

2x2 > 0}, which is denoted
as Ω∗, is compact. And we have Ωy0,δ ⊆ Ω∗ × Rn−2, and so, there exists a
positive constant c, such that

div TF ≤ −c in Ωy0,δ,

F ≥ u on ∂Ωy0,δ ∩ {(x, y) ∈ R2 | y0 − y + δ
2x2 > 0} × Rn−2,

F = +∞ on ∂Ωy0,δ ∩ {(x, y) ∈ R2 | y0 − y + δ
2x2 = 0} × Rn−2.

Now, by Lemma 4, we have u ≤ F in Ωy0,δ, which is

u(x, y, z1, . . . , zn−2) ≤ 4
√

2y0
(6f2

1 (y)− x2)
1
2

(y0 − y + δ
2x2)

in Ωy0,δ.
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Now, let δ −→ 0 and then let y0 −→ +∞, we get the conclusion of the
proof. �

5. Phragmèn-Lindelöf theorem in higher dimensions.

First, let’s generalize Theorem 2 as follows:

Theorem 6. Let Ω ⊆ {(x, y) ∈ R2 | −aym < x < aym, y > 0}×Rn−2 ⊆ Rn

be an unbounded domain, where m ≥ 1 and a are positive constants. Let
u ∈ C2(Ω) ∩ C0(Ω) and suppose that{

div Tu ≥ 0 in Ω
u ≤ aymhm( x

aym ) on ∂Ω.

Then we have u ≤ aymhm( x
aym ) ≤ aymh∞( x

aym ) =
√

a2y2m − x2 in Ω.

Proof. For every given positive constant ε > 0, we now set fε(x, y) =
a(y + ε)m+ε, Fε(x, y, z1, z2, . . . , zn−2) = a(y + ε)m+εhm+ε( x

a(y+ε)m+ε ), where
(x, y, z1, z2, . . . , zn−2) ∈ Ω.

Since −aym < x < aym, y > 0, we have∣∣∣∣ x

a(y + ε)m+ε

∣∣∣∣ ≤ ym

(y + ε)m+ε
−→ 0 as y −→ +∞.

By Lemma 1, hm+ε( x
a(y+ε)m+ε ) −→ hm+ε(0) uniformly as y −→ +∞, and so

it is easy to see that there exists a large constant y3 such that Fε(x, y) ≥√
200a2y2m − x2 for y ≥ y3.
Next by [6, Theorem 2], setting fε(y) = a(y+ε)m+ε, t = x

fε(y) and recalling
that p(fε) = 1

m+ε , we have

div TFε

= (1 + | 5 Fε|2)−
3
2
(f ′ε)

2

fε

·
(
(1− p(fε))(hm+ε − th′m+ε)((h

′
m+ε)

2 + 1) + h′′m+ε(h
2
m+ε + t2) +

h′′m+ε

(f ′ε)2

)
.

Since hm+ε(t) is the solution of (∗) and (∗∗) with p(fε) = 1
m+ε , we have

div TFε = (1 + | 5 Fε|2)−
3
2
(f ′ε)

2

fε
·
h′′m+ε

(f ′ε)2

and so obviously that div TFε < 0 on Ω′ where Ω′ = Ω∩{(x, y, z1, . . . , zn−2)
∈ Rn|0 < y < y3}.

And so, there exists a positive constant C1 > 0 such that

div TFε ≤ −C1 on Ω′.
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But, noticing that

u ≤ aymhm

(
x

aym

)
≤
√

a2y2m − x2 ≤ 4
√

2β
√

6a2y2m − x2,

for some constant β < 1 on ∂Ω, by Proposition 5, we also have

u ≤ 4
√

2
√

6a2y2m − x2 ≤
√

200 · a2y2m − x2 in Ω \ Ω′.

By Lemma 4, we have
u ≤ Fε in Ω′.

In conclusion, we have
u ≤ Fε in Ω,

and let ε −→ 0, the proof is done. �

As a corollary of Theorem 6, we state a generalization of Nitsche’s theorem
[7] as follows.

Corollary. Let Ω = {(x, y) ∈ R2 | − ay < x < ay, y > 0} × Rn−2 be a
wedge domain, where a is a positive constant. Let u ∈ C2(Ω) ∩ C0(Ω) and
suppose that {

div Tu = 0 in Ω,

u = 0 on ∂Ω.

Then u ≡ 0 in Ω.

Proof. Apply Theorem 6 to functions u and −u, we have u ≤ 0 in Ω and
−u ≤ 0 in Ω, and so u ≡ 0 as claimed. �

Next, let’s generalize Theorem 2* as follows:

Theorem 6*. Let Ω ⊆ {(x, y) ∈ R2 | − aeby < x < aeby, y > 0} × Rn−2 ⊆
Rn, where a, b are positive constants. Let u ∈ C2(Ω) ∩ C0(Ω) and suppose
that {

div Tu ≥ 0 in Ω
u ≤

√
a2e2by − x2 on ∂Ω.

Then we have u ≤
√

a2e2by − x2 in Ω.

Proof. The proof is similar to that of Theorem 6.
For every ε > 0, we consider the following function

Fε(x, y, z1, z2, . . . , zn−2) = ae(b+ε)yh∞

( x

ae(b+ε)y

)
=
√

a2e2(b+ε)y − x2

with (x, y, z1, . . . , zn−2) ∈ Ω.
Since −aeby < x < aeby, y > 0, we have∣∣∣ x

ae(b+ε)y

∣∣∣ ≤ aeby

ae(b+ε)y
−→ 0 as y −→ +∞

and notice that Fε = ae(b+ε)y(1− x2

a2e2(b+ε)y )
1
2 .
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Hence, there exists a positive constant y3 > 0 such that

Fε ≥
√

200a2e2by − x2 for y ≥ y3.

Next, by [6, Theorem 2], and setting fε(y) = ae(b+ε)y, t = x
fε(y) and

noticing that p(fε) = 0, we have

div TFε = (1 + | 5 Fε|2)−
3
2
(f ′ε)

2

fε

·
(

(h∞ − th′∞)(h′∞
2 + 1) + h′′∞(h2

∞ + t2) +
h′′∞
f ′ε

2

)
= (1 + | 5 Fε|2)−

3
2
(f ′ε)

2

fε

h′′∞
(f ′ε)2

.

So, we have
div TFε < 0 on Ω′,

where
Ω′ = Ω ∩ {(x, y, z1, . . . , zn−2) ∈ Rn | 0 < y < y3},

and so there exists a positive constant C1 > 0 such that

div TFε ≤ −C1 in Ω′.

Finally, by Proposition 5, notice that

u ≤
√

a2e2by − x2 ≤ 4
√

2β
√

6a2e2by − x2,

for some constant β < 1 on ∂Ω, we also have

u ≤ 4
√

2
√

6a2e2by − x2 ≤ Fε in Ω \ Ω′.

So, by Lemma 4, we have

u ≤ Fε on Ω′,

and so obviously, we get
u ≤ Fε in Ω,

and let ε −→ 0, the proof is finished. �

Finally, let’s generalize Theorem 3 as follows:

Theorem 7. Let f1 ∈ C2([0,∞)) with f1 ≥ 0, f ′1 > 0, and f ′′1 ≥ 0 in (0,∞)
such that p(f1) ≥ p0, where p0 is a constant with −1 ≤ p0 ≤ 0. Suppose
that Ω ⊆ {(x, y) ∈ R2 | − f1(y) < x < f1(y), y > 0} × Rn−2 ⊆ Rn and
u ∈ C2(Ω) ∩ C0(Ω) satisfying{

div Tu ≥ 0 in Ω
u ≤ a

√
f2(y)− x2 on ∂Ω,

where f =
( (a2−1)(2−p0)

(a2−1+p0)

) 1
2 f1 and a is a positive constant with a2−1+p0 > 0.

Then we have u ≤ a
√

f2(y)− x2 in Ω.
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Proof. For any given ε > 0, we define fε(y) = eεyf(y+ ε) and Fε(x, y, z1, . . . ,

zn−2) = a
√

f2
ε (y)− x2, then there exists y3 > 0 such that

Fε ≥ a(e2εyf2(y)− x2)
1
2 ≥ (200 · a2f2(y)− x2)

1
2 for y > y3.

Computing the mean curvature of Fε and using the definition, p(fε) = 1 −
fεf ′′ε
(f ′ε)

2 , we have

div TFε = (1 + | 5 Fε|2)−
3
2 (f2

ε − x2)
−3
2

·
(
a(f ′ε)

2[(a2 − 1)(2− p(fε))x2 − f2
ε (a2 − 1 + p(fε))]− af2

ε

)
.

Obviously, we have

f2
ε (y) ≥ f2(y) ≥ (a2 − 1)(2− p0)

(a2 − 1 + p0)
f2
1 (y) ≥ (a2 − 1)(2− p(fε))

(a2 − 1 + p(fε))
f2
1 (y),

and so, we have

div TFε ≤ −a(1 + | 5 Fε|2)−
3
2 f2

ε < 0 in Ω,

and by compactness, there exists a positive constant C1 > 0 such that

div TFε ≤ −C1 in Ω1 = {(x, y, z1, z2, . . . , zn−2) ∈ Ω|y < y3}.
But by Proposition 5, notice that

u ≤ a
√

f2(y)− x2 ≤ 4
√

2β
√

6a2f2 − x2,

for some constant β < 1 on ∂Ω, we also have

u ≤
√

200a2f2(y)− x2 ≤ Fε in Ω \ Ω1.

By Lemma 4, we have
u ≤ Fε in Ω1.

In conclusion, we have u ≤ Fε in Ω, and then let ε −→∞.
We thus finish the proof. �
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