REMARK ON THE RATE OF DECAY OF SOLUTIONS TO
LINEARIZED COMPRESSIBLE NAVIER-STOKES
EQUATIONS

TAKAYUKI KOBAYASHI AND YOSHIHIRO SHIBATA

Volume 207 No. 1 November 2002



PACIFIC JOURNAL OF MATHEMATICS
Vol. 207, No. 1, 2002

REMARK ON THE RATE OF DECAY OF SOLUTIONS TO
LINEARIZED COMPRESSIBLE NAVIER-STOKES
EQUATIONS

TAKAYUKI KOBAYASHI AND Y OSHIHIRO SHIBATA

‘We consider the L,— L, estimates of solutions to the Cauchy
problem of linearized compressible Navier—Stokes equation.
Especially, we investigate the diffusion wave property of the
compressible Navier—Stokes flows, which was studied by
D. Hoff and K. Zumbrum and Tai-P. Liu and W. Wang.

1. Introduction.

In this paper, we consider the Cauchy problem of the following linearized
compressible Navier-Stokes equations:

(1.1) pt +ydive =0 in (0,00) x R™,
vy —alAv — BVdivo +4Vp =0 in (0,00) x R",
pli=0 = po,  vlt=0 = o in R,
where v = v(t,z) = T(vi(t,7),...,v.(t,)) a vector valued unknown func-

tion, p = p(t,x) is a scalar valued unknown function; ¢ is time variable;
we denote the spatial point of n-dimensional Euclidian Space R™ by z =
(l’l, . '7x7L) (n z 2)7

_ % v _ Av = ” —827}
=0 T o Rt
j=1 J

) " v, op ap
divo =3 2% _ (%0 Or).
v jzl&cj’ Ve (8331’ ’Oxn)’

po and vy are given initial data;  and - are positive constants and § a non-
negative constant. Concerning the decay property, asymptotically, the solu-
tion decomposed into sum of two parts under the influence of a hyperbolic
aspect and a parabolic aspect. One of which dominates in L, for 2 < p < oo,
the other 1 < p < 2. For p = 2, the time asymptotic behavior of solutions is
similar to the solution of pure diffusion problem. Namely, the decay at the
rate of the solution is similar to the solution of a linear, second order, strictly
parabolic system with L initial data. Moreover, the decay order of the term
that is given by the convolution of Green functions of diffusion equation and

199


http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2002.207-1

200 T. KOBAYASHI AND Y. SHIBATA

wave equation is better than the solution to pure diffusion system. On the
other hand, for p < 2, the asymptotically dominant term reflects the spread-
ing effect of the solution operator for the standard multi-dimensional wave
equation. As a result, the solution may grow without bound in L,, for p < 2.
This result was investigated by D. Hoff and K. Zumbrun [2, 3] in the case
of the Navier-Stokes system describing the compressible fluid flow, and Y.
Shibata [6] in the case of the linear viscoelastic equation. D. Hoff and K.
Zumbrun [2, 3] considered the linear effective artificial viscosity system as
the first approximation of the compressible Navier-Stokes equation in sev-
eral space dimension. The Green function of this system is written exactly
by the convolution of the Green function of diffusion equation and wave
equation. In view of this, they gave the pointwise estimate and L,, estimate
of the Green function in [2, 3], and L,, estimate for the solutions to the non-
linear problem in [2]. But, the Green function of the system (1.1) and the
linear viscoelastic equation is not written exactly. Tai-P. Liu and W. Wang
[4] gave the pointwise estimate for the solutions to the system (1.1) and the
nonlinear problem in odd multi-dimension case, and Y. Shibata [6] gave the
L, estimate for the solution to the linear viscoelastic equations by directly
using Fourier transform method. The main difference of the structure to
the solutions between (1.1) or effective artificial viscosity system and linear
viscoelastic equation is the Riesz kernel R;(x) = F~1 [¢;/|¢]] (x), where F~!
denotes the Fourier inverse transform. The Green matrix of the system (1.1)
and effective artificial viscosity system includes the Riesz kernel. Since the
convolution operator u — R;*u is not bounded from L; to Ly and from L,
to Lao, if we consider L1 or Lo, estimate, then these features will lead to
a great deal of cancellation in the convolution operator of the Green func-
tion. D. Hoff and K. Zumbrun [2] overcame this difficulty by applying the
weak version of the Paley-Wiener theorem to the general, symmetrizable,
hyperbolic-strictly parabolic systems. In this paper, we shall estimate di-
rectly using Fourier transform method in [6]. In particular, we shall detect
the cancellation in the Green function.

2. Main results.

First of all, we shall introduce the solution operator of (1.1). Applying the

Fourier transform with respect to © = (x1,...,2,), (1.1) is reduced to the
following ordinary differential equation with parameter £ = (£1,...,&,) €
R™:

@ (6.6) + i 0(t,€) =0,
(2.1) GL(8,€) + al€Po(t, &) + BE (& - (¢, €)) + in€p(t,€) =0,

p(0,€) = po(§), 9(0,£) = 10(§),
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where

a(t, &) = / e Tu(t, x)de, wj(€) = / ey () da.
By (2.1) we have

22) {dt2< 6+ (a+ BERL (1, ) +2Ie[24(2,€) = 0,
(0,€) = po(&), pe(0,8) = —ir€ - 1o(§)-

The characteristic equation corresponding to the (2.2) is

(2.3) N2+ (a+ B)JE[PA +221¢ = 0.
The roots Ay (§) of (2.3) are given by the formula
(2.4) Ae(€) = —A (I¢f? + VIEF=B7eP)

where A = (o + )/2,B = 2v/(a+ ). When || # 0, B, the solution of
(2.2) is given by the formula

(2.5)
o A0 A (MO M@ A @
Pt &) = USWOESNGE 0 (8)-

Since Ay (§) = A_(€) when || = B, as the solution of (2.2), when B/2 <
|€] < 2B, we use the following formula

1 (z + [€*)e* ~
e H9=5:4 o7 (ot Bl + 2 4P ®)

vy e?t R
) e

where T is a closed path containing Ay (§) and contained in {z € C|Rez <
—co} and ¢ is a positive number such that

2.7 max Rel < —2¢.
@1 2<j¢|<2B +0) 2 ’

Also, by (2.1) we have

D (£,€) + aleo(t, &) = f(t,9),
dt
28) {@(0) (9.

where
A 7£ dp
fe) = £ {500+ 2000}

Therefore, by (2.5) and (2.8), the solution of (2.6) given by the formula:
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when [¢] # 0, B,

29) 001, =) + [ el =9 (s £ ds

0

) MA@t _ A ()t
= ekl (6) — iye ( < )ﬁo(é)

A+ (&) = A-(9)
n Ap(eM O — X _(g)er-©F ool £(§-10(8))
A+(€) = A-(9) I
and when B/2 < || < 2B,
R 12y 1€ et -
i(t, &) = e g8 — = dz po(§)

2mi Jr 22+ (a + B)|€22 + ~2[€)?

1 (2 + [€])e” B —oc|§|2t> £(€-0(8))
" <2m' 7€ 21t B2 e '

Let ©0(&), par(§) and poo(€) be functions in C°°(R™) such that

1 gl B/, 1 gz 2B,
(2.10)  @o(§) = {0 €= B/Va. Poo(§) = {0 € < V2B,
em(§) =1 —po(§) — poo(§)-

Put
(211)  Eolt) = (Eop(t), Bou(t),

EOO(t) = (EOO,p(t)7E00,v(t))a

Eo,p(t)(po, vo)(x) = F " [po()p(t,€)] (=),

Eoo(t)(po, v0)(x) = F~ ' [eo(€)d(t, )] (),

Eoo,p(t)(p0,v0) () = F~ (o1 (€) + 900 (€))p(t, )] (),

Eeou(t)(po,v0) () = F (oM (€) + poo(€))0(t, €)] ()

Noting that pp(€) = 1 for B/v/2 < €] £ V2B and ¢ (€) = 0 for
|€] = 2B or [£| £ B/2, by (2.10) and (2.11) we see that (p(t,z),v(t,x)) =
Eo(t)(po,vo)(x) is a solution of (1.1). The main purpose of the paper is to
show the following two theorems.
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Theorem 2.1 (L; — Lo and L1 — Ly estimate of Ey(t)).
(1) For anyt > 0, we have

16702 Eo,p(£) (05 v0) | oo )

+J‘HC¥|

< Cran(1 40T ol + ol ] :

167 0 o, (£) (90, v0) | .o )

3n— 1+J+\a|> [

< Cpan(1 4 1) (M 100l ey + 1oL, o]

_ Q+j+\f¥|
+ G40 F gy oy,
Here and hereafter, we write
J_ ﬁ o Hlel
t ot T Qa0
a=(ag,...,an), o) = a1+ -+ + ap,

Ca,B,... means the constant depending on A, B, .. ..
(2) For anyt > 0, we have

107 8% Eo () (o, v0)|| Ly (mn)

_Jtle]
S Clan(l+ t)Q(n) 2 [||P0||L1(Rn) + ”UOHLl(R")] )
where
n—1 . .
(n) if n 2 3 and n is an odd number,
qn)=
% if n 2 2 and n is an even number.

Remark. The estimate (1) is better than [3, Theorem 1.2] when n = 2,
j=0and |a| =0.

Theorem 2.2 (L; — Ly and Lo, — Lo estimate of Ex(t)). Let p = 1 or
oco. For any t > 0, we have

10702 Enc,p(8) 0, 00) |1, e
- —(G—k
< ™ [T ol g + I
+ Chame™ [ OO ol aksiol
10] 05 Eoo,u(t) (0, v0)|| L, (mn)
< Chame™ [Cut™ 0™ llpo |zt s10 gy + 190y o1 oy

) P

1 .
+ Chame™ (1 +178) [Cet™0 ™ uollyaetiol gy + 1001 gy |-
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Here and hereafter, we put K+ = max(K,0) and

Wy([RY) =3 u € Ly®R") | lulwp@n = Y 185ullr, @) < oo
|or| Sk

Y. Shibata [6] gave the L, — L, type estimates for the solution to the
linear viscoelastic equation:

{vtt —Av—Av; =0 in [0,00) x R™,

(2.12) v(0) = vg, v:(0) = vy in R™.

The solution of (2.12) are representated by the Fourier transform as follows:
When [¢] # 0,2

. A (OOt — \_(£)er+EF M EE _ oA ()t
=T e MO e e )
where ,
_ 4 2
i) - VT

and when 1 < [¢] < 4,
N 1 (2 + "§|2)€Zt ~ 71 jl{ e 0
t S % d + d
/U( 75) 27TZ ,\/ 2:2 ‘§|2Z |€|2 ZUO(&) 27_[_7/ ~ 22 |§’22 ’§|2 ZU1(€)7

where v is a closed path containing A1 (£) and contained in {z € C|Rez <
—co} and ¢ is a positive number such that

ReA < —20¢.
R0 £ 72

The difference of the structure to the solutions between (1.1) and (2.12) is
the Riesz kernel R;(x) = F~1(¢;/]€])(x). The Green matrix of the solution
of (1.1) includes the Riesz kernel (cf. (2.9)). Since the convolution operator
u — Rj*u is bounded from L, to L, for 1 < p < oo, the following theorems
directly follow from [6, Theorems 2.1 and 2.2].
Theorem 2.3 (L, — L, estimate of Ey(t)).
(1) Let M be the positive number =2 1 and let 1 < p < q < o0, (p,q) #
(00,00),(1,1). Then, for any t € [0, M|, we have
10795 Eo(t)(po, v0) | Lyny = Crpagannt [llp0llL,@ny + lvollL, @] -
(2) Let 1 = p< 2= g < oo. Foranyt >0, we have

18702 Eo(t) (o, vo) | 1., ()

_(n(L1_1\, itlel
S Cnpgjall +1) (5G-2)+s )[HPOHLI,(RnH-Hvo||Lp(Rn)]-
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Remark.

(1) The estimate (1) in Theorem 2.1 is better than the estimate (2) in
Theorem 2.3 with (p,q) = (1, 00).

(2) By Theorem 2.1 and Theorem 2.2, the estimate (1) in Theorem 2.3
also holds when (p,q) = (1,1) or (oo, ).

Theorem 2.4 (L, — L, estimate of Ex(t)). Let 1 < p < co. For any t >
0, we have

18] 0% B (t) (0, v0) | 1., ()

—ct

_N
< o™ [ F ol it oy + 0l |

—ct |, - )
+ C"a,p’]\[e ¢ |:t 2 HUOHWIEQJ'HQI—N—U"'(R»,L) + ||,UOHWIE\aI—1)+ (]R"):| )
100 Eso,u(t)(p0, v0) |, ()
. —ct |, -
J,a,n,N€ [t 2 HpOHWZ()2]'+|a\*N*1)+(Rn) + ||/?0HWZSQ|1)+(RH)]

—ct |-
+ Cj7Oé,n,N€ ¢ |:t 2 H’UOHW1§2J+|D“7N)+(RW,) + H/UOHWIQ‘)‘Q)“’»(Rn)} :

3. Proof of Theorem 2.1 (1).

To prove Theorem 2.1 (1), we put

MO _ \_(£)eM ()t
(3.1) Lu(t,z) =F ! [)\Jr(f) A+ (8) — i—gg ¢O(€)] o
Lis(t,2) = —inF1 |t o = o] (@)
12(%, v A () —A-(§) 70 7

LQl(t, l’) = tng(t,x),
LQQ(LL,I') :Kl(t x)—I—Kg( ) —Kg(t,l‘),

Ki(t,z) =F ! _ eolert wo(¢ )] (x)I, I is unit matrix,

! e
Ky(t,x) = F* _A+(§) WO i E ) 5’2%@ (§)] (z),
Kaft,a) = 7 [ eSS )] o),

and then, from (2.5) and (2.9) it follows that

Li(t,-) Laa(t,-) Po
3.2 Ey(t = )
(3.2) o(t)(po,vo) (L21(t7 Y Loo(t,) ) * \wg
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where * denotes the spatial convolution. In view of the Young inequality, in
order to get Theorem 2.1 (1) it suffices to show that for ¢ > 0

(3n—1 +j+|06\)

(3.3) 18700 La1 (¢, )| 1. ®) S Cjant”

(3.4) 10§02 Lua(t, Y|y S Camt™ T 75,
(3.5) 18702 K1 (8, )| oo () < Camt™ 2 Hit ),
(3.6) 10702 Ko (8, ) 1) S Crant™ gy
(37) 10705 Ks(t, )| ) S Cant 5+

It is obvious that

ool F! [e‘“'f% <5ik §z§k> (f)} (z)

< Cipm / elEl Pl g
R’I’L

€17
< Cjpnt (3 +‘B‘+J)
which show (3.5) and (3.7). In view of (3.1), we put
[ A+ _ A (Ot

(3.8) Kyot,z)=F!

MO _ () ()

39 Kl =5 |25 2o w@swo(o] (@),
(MO \ (6 (O

(3.10)  Kyo(t,z) = F! A-(©) WA tgg 1/1(5)900(5)] (2),

where 1 = (w) € C®°(S" 1), S»1 = {¢ € R*||¢] = 1} and ¢(§) =
¥(€/)€]). By (2.3) and (2.4), we know that
(3.11) Ap(OA-(8) = A2B?IEP,

AL(€) +A-(8) = —24[¢P,

AL (6)? + 2402 (6) €] +71¢* = 0,
and then
(3 12) val(t,l‘) = atvao(t,ﬂf),
‘ K%Q(t, x) = —8tK¢’0(t, .T) + 2AAK¢70(15, x)

Therefore, in order to show (3.3), (3.4) and (3.6) it suffices to show the
following theorem:

Theorem 3.1. Letn = 2. For any t = 0, we have

Gk < Cjan(1 1) ()
I 0t Mrw@n) E Cian(l+1)
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To prove this theorem, first of all, we shall estimate Ky o(t,z) near the
light cone. Namely, we shall show that for + > max(1, (R/Rp)*) and || =
Ryt

2

. _(3n—=3, j+lo
(3.13) KoKy o(t,2)| < a1+ 1) (5 H5)

where R is the number appearing in Lemma 3.2, below and Ry is the fixed
number such that Ry < /4. To obtain (3.13), we shall use the following
lemma concerning the stationary phase method (cf. Vainberg [9, pp. 29-35]):

Lemma 3.2. Let g(w) € C®(S" 1Y), "L = {¢ € R*||¢| = 1}. Then,
there exist a R > 1 and a C; such that

/ eir(a}-w)g(w) ds,,
Sn—1

If we put [£| = r, we have
Ar(§) =—-A <r2 +iry/ B? — r2> = Ay (r).

Since we may assume that ¢o(§) = ¢o(|{]) = @o(r), by using the polar
coordinate we have

. 1\ N, (r e>‘+("")t A (r eA,(r)t alme
00y Ky o(t,x) = (27r> /0 +( ))\+(T) _)\_8 Plalen=1 50

[ ) p() .

where & = z/|z|. Let ¢ > 0 be a number determined later on. Let us
consider the case where |z|e 2 R, below. Since r|z| 2 €|z| = R when r = ¢,
by Lemma 3.2

[ el ) pw) ds..
Sn—1
Noting that ¢o(r) = 0 when r = B/+/2 (cf. (2.10)), we have

‘a{ 9K ot :13)’

oo
=C {/ET"HHO‘_Q dr + / e_‘4?2'57“”_%‘7“0"(7"|:76|)_RT_1 dr} )

0 €

n—1
<Cyr— 2, #zeS" ' r>R

n—1

S Co(rlz|)™ 2.

If we make the change of variable; rv/t = s in the last integration and if we
use the assumption: |x| = Rot, then we have

. . _(3n=3_ jtlof
‘8§8§K¢70(t,x)’ < Cjan {en+ﬂ+la1+t (24 )}.

Choose € > 0 in such a way that

. _(3n=3_ jt+lof
6n-l-j-i—\t)cl—lzt ( T T2 )
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When |z| = Rot and ¢t = max(1, (R/Rg)*), we see that

n—1, j+la|

= Ryt AT = Rot% Z R.

n— 4| .
‘.’L’|€ 2 Rot i t*<3 1 3+J P} )/(n+]+|a‘71)

Therefore, we have (3.13).
Now, we shall show that for ¢ = 1 and |z| = Ryt

(3.14) lafaﬁKw,o(ta 95)’ < Cjant

If we put

HO = VT -PB2 =1+ PolP), o) = 515 [ iy

then by Taylor’s formula we have

(15 GO i 1 <afsm7|£‘t> e e (1€Pg(le®)t)"
Ae(€) = A-(8) 2 &l ) r (gD

£=0
_ 2
+e W RN (2, [€)),

where
Ry (t, [¢])
- / (1—a)Y [emawlfggﬂf'%” (ivlePg(g) ™
2i7[¢| F(EDNY Jo
s , N+1
— emlel=inlePa€0 (_in e3g(lg2)) N | do.
In fact,
MO _ o~ APt FiVlEl (€N — o —AlEPt FinlElt+inlE*g(I€[)E
Put
k
__EinlePg(1€)2)te k _&h
h(9) = eHIEFIIERe B (g) = 22 6).
Since
1
B(1) = h(0) + H(0) + -+ - h™(0) + = [ (1 0)YROFD(g) dp,
N! Nt Jo
we have
e . I N
I = 1 1 (£in|elPg(1€P)t) + .. 1 (FirlElPg(lEP)e)
1
| z\ln/ (1 — )N =PI (Limy|e g (g)e)
+JO
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Since
(ivl€Pa(lelyr) ™ e — (inlelPg(le2)e) ™ et
= {or" (et — )} (1eg1ef) "
= 2i ()" sinyl¢]t) (1€%g(leP)e)”

noting that A\ () — A_(&) = —2iv|¢| f(|€]), we have (3.15).
We shall use the following lemma.

Lemma 3.3 (cf. Mizohata [5], Evans [1]). Put

sin |€|t -
. h<s>} (x).

Then, for suitable constants a, we have

wt,z)= > aat®! /| ~ 2% (0%h) (z +tz) dS

-3
0=|al=252

w(t,z) = F ! [

for odd n 2 3; and

2% (0gh) (z + tz)
w(t,z) = aato‘|+1/ < N
0§|§§:n22 lz|<1 \/m

for even n = 2.

Regarding (3.15), we put

—Alg|?

F€D (’§| g([¢] )) P(& )900(5)] (z),

at0) =27 (92 T) Gt )| ).

Go(t,x) = F 1 [

Since

F [af <Sin|z||f ‘t> B(g)} (2) = OLF {Sin‘zf’tﬁ(&)} (@),

by Lemma 3.3 we have
N
(3.16) Ky o(t, ) Z ' 95w(t, x)

+ 000F ! [P Ry (1, €] (@),

209
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where
(3.17) &) 0Pwy(t, x)
min(¢+k,|o|+1)

o e G L

-3 =
=0 la|$n52 m=0

/| | 2 (959907 ) (1, + 412) dS
1

|0|=L+k—m
for odd n = 3;
= 1 i . min(¢+k,|al+1) 04k
Z(}i) DS ( + )8m( pylal+
v k=0 la|<n=2 2 m=0
/ Praad (8%”“6857166?5) (t,x 4+ ~tz)
dz
16| =t+k—m * 1151 V1= 22
L for even n = 2.

The following proposition and lemma play an essential role to prove Theo-
rem 3.1.

Proposition 3.4 (Shibata-Shimizu [7]). Let o be a number > —n and put
a=N+o0—n where N =2 0 is an integer and 0 < o < 1. Let f(&) be a
function in C*°(R™ — {0}) such that

O11() € Li®Y, || £ NV;
QS gl g £, .

Then, we have

\f‘l[f@](x)\gca,n( max cw) 2|~ 20

[y|[SN+2
where Cq p, 15 a constant depending essentially only on n and a.

Lemma 3.5. Let a be a nonnegative number and ¥ (t,€) be a function such
that

b(t,) € CX[R" —{0}), "t=0,
(9|  Colelr Pl g 20, Ty, Ttz 0,
Put
glt.2) = F 7 [P (1 )| (),
where B > 0. Then, we have
(3.18) l9(t, )| = Capn x’—(a—s—n), z # 0,

9(t,2)| < Cagut™ "3, >0,
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Moreover,
_lof
lg(t, )L, @®n) = Capnt™ 2, a>0,t>0,

/ lg(t,z)|dz < Cgpoa(l+log(l+1), a=0,t>0.
|z| S At

Proof. By the formula of derivative of composed function (cf. Simader [8,
p. 202)):

ol
(3.19) 9¢h(g Zh(” > (8519(6)) (8?”9(6)) ,
a1+t =y
o[ 21
we have
, 7] )
R S i A B DI (Al S N 1
v=1 ar+-Fay=y
lovi| 21
Since
(3.20) O el | < CalgMId, €0,
(t|£|2)Me—ﬁ|§\2t < Cyrpe” 2|€\2t
we have

(3.21) lage—mé'%

vl
< C’yZ(/Bt)Ve_mgm Z ‘5’21’—(|Oé1|+~~+|a1,|)
v=1

ot tay=y
o |21

<C 27: Bl€%t)” —BIE\th Il

< cﬁ,wsr”'e—a'f'%, §#0,
and the Leibniz’s rule we have
(3.22) ‘ag (e—ﬁlf\%/)(t,g))( < Cppye 2160l e 20, Yy,
Therefore, by Proposition 3.4 we have (3.18).
By the assumptions, we have
B2 et S0 [ Mg ot [ ey dy
< Copnt™ 3"
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By (3.18) and (3.23), we have

_atn _
lgtt, Maeny < Copnt™ 3 Aot Capn | Jal @ da
lz|SVE lz|2Vt
é Ca,ﬁ,ntigy a > 07
and also
/ lg(t,x)| dx < C@ntg/ de = Cgpa, a=0,1t<1,
lz| At x| <At

/ lg(t, )| de < Capt™2 / dzx +Cs, / 2| "dx
ol SAt el VE Vig|e| LAt

< Cppa(l+logt), a=0,t>1
which completes the Proof of Lemma 3.5.
Concerning the estimate Gy(t, =), we have
(3.24)
B OO (1,2 4 712)| S Oy sl + yta]COTRIHIHIBIHI ),
In fact,
oot Gt o)

min(j—k,l) . —Alg)? )
:fll > (j_k>e (— ARy R i+

2. Um ) F(D

o (\6\29(\512)t)£w(E)wo(f)] ().

By (3.20), (3.21) and (3.22) we have

» min(j—k,¢) ]_k e*%‘ﬂ% A 2\ j—k—m(:\a+B+8
X () Ty ey

m=0

'02”(|£I29(!£|2)t)£¢(£)s00(£)>

|2(j—k)+\a|+lﬁ\+|5\—|li|.

S Cjka,B.06ul8

Therefore, by Lemma 3.5, we have (3.24).
First we consider the case when n is an odd = 3. When |z| = 1, |z| £ Ryt,
and Ry < 7/4, we have

[+ t2] 2 3t = Jal 2 (v — Ro)t 2 ot
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Therefore, applying (3.24) to (3.17), we have for |z| < Ry and ¢ = 1
(3.25)

(ag‘ BBt x)(

min(¢+k,|al+1)

20 3w e

<=3 m=0
S Cirasas / | (& 4 12|~ 2GR Hal B+ +0) g
=1

min(¢+k,|a|+1)

X)Xy () L e

—3 —
la] =75 m=0

Y Cinapaet” CUTRFREHO / ds
161=t+k—m /=1

< Cjﬁént_(j+"@|+€+n_l)-
Next, we consider the case when n is even = 2. By (3.17) we have

lafafwg(t,x)’

min(¢+k,|a|+1)

ig() S oja Y (€;k> W7|a|+1ta|+1_m

NEE m=0

A

dz.

Z C / ‘ (35468%/3%0[) (t,x + 'ytz)‘
' j7k7a75757£
|6|=€+k—m B 1—|z2

Put
| (0% 477G, ) (1 +9t2)
dz =1+ 11,
/lz<1 V11—
where
) <8g_k8?+ﬁ+5Gg) (t, =+ 'ytz)‘
I= / dz,
1<t V1—1z[2
(2 F0 770G, ) (1,4 t2)
II :/ dz.
121<

: VI-P
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When 1/2 < |z| £ 1, |z| £ Rot, t 2 1 and Ry < 7/4, we have

\x+’ytz]>7 H>(7 Ro)t>1t.

Then, by (3.24) we have
dz

1<zt /1 - 22
When |z] = 1/2, |z| < Rot, t =2 1 and Ry < /4, we have

3 3
|z + ytz| < %t—i—Rot <t VIZEPZ \2[

Therefore, putting p = x + ytz, by Lemma 3.5 we have

1= Cjkapset 2U- )+0‘|+|B+|6+n)/

ws s [ |@wen el
S Cjka,B.06n
g3 QUK HalHBHS)  when 2(5 — k) + |a| + 8] + |6] = 1,
(1 + logt) when 2(j — k) +[a + (B8] +[6] =0
and £ =0,
¢ when 2(j — k) + |a| +[8] + [0 = 0
and £ = 1.

Combining these estimations, we have for |x| £ Ryt and ¢ = 1

(3.26)

‘Qfagwg(t,w)‘

min(4+k,|al+1)

SR, T e () e

15falsm52 m=0

S Cirapiin {t—(2(j—k)+|al+\,5'|+|5|+n) 4 t—n—%(2(j—k)+lﬁl+l5|)}

j—1 , . min(¢+k,1)
J E"'k ‘CLa| 1-m
() X ()5

S Cinpoen {f(2<j—k>+|m+|6\+n> n tfnfé<2<j—k>+m|+|a|>}
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min(j+¢,1) "y ’a |
J «a 1 -m
e (1) e
-Cjpuan {t*(€+jfm+|5\+n) 4¢3 (- m+|6\)(1 + log(1 + 1) }

_(3n=3_ j+IBl\_n=1_1¢ 3n—3 ,6 1
§Cjﬂ7gyn{(1+log(1+t))t ()t —g (0 - }

Next, we shall estimate the remainder term. By (3.15) and (3.16), we
have

00LF [ M Ry (1.6)] (2)

J . i
:§:<2>f_1F—qu_AKPﬁamnﬁﬂ*RNaé)(@,

iRt

1 gk

1 .
—k kel diml13a(l€12
— 2 [a-eV G )yk 1 P g(€)e
e f, -0 2 (")

41
¢ —by ti
> Q;) o2 a2 (¢ (1€1*)e) V! do

lo=0

J—k 4

3(N+j—k)+2(1—01)—la  N+1—4
< Gy Y 3 IOttt
£1=042=0

Combining these estimations, we have

(3.27)

ofoiF [N Ry (1, 6)] (@)
izk EZ N+1- 62/ |§|3(N+j)+2(1—€1)—€2—k+|ﬁ|e—A|§|2tdg
<c Z Z 21: N B Gk ) (=)

J,8,N

k=0 ¢,=0/¢2=0

_ N+4j+[8]
SCjpnNtT 2.

||/\
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By (3.25), (3.26), (3.27) and (3.13), we have

(3.28) )a{aﬁ K M(t’x)‘ < Cj,@nt‘(gn‘*fs*”"“m)

t > max(1, (R/Rp)*).

To complete the Proof of Theorem 3.1, we have to estimate the case when
0 <t < max(1,(R/Rp)*). But, it is obvious that

00K ot )

1\" Ao (EV A+t _ N (£)ier- (Ot

A+(6) —
%
<0, /O 2 iHBln-2g,

< (.
- j7ﬁ’n'
Therefore, the Proof of Theorem 3.1 is completed.

4. Proof of Theorem 2.1 (2).

In this section, we shall show Theorem 2.1 (2). In view of (3.1), (3.2) and
Young inequality, it suffices to show that

; _jtlal
(4.1) 18705 Lij(#, ) |1y ) S Cham(L+ )72,
where ¢(n) = (n — 1)/4 for odd n = 3 and = n/4 for even n = 2. Since the
kernel of L11(t, ), L1a(t,x) = 'Loi(t, ) are the same as those of (2.12), (4.1)
directly follows from the results of [6, Theorem 2.1] when (7, j) = (1,1), (1,2)
and (2.1). Therefore, our task is to show (4.1) when (7,j) = (2,2). In view
of (3.1), we put

Lo(t,:ﬁ) = KQ(t, x) — Kg(t, .%')

_ [(M(ﬁ)e”@t - i(é)e“w B eam%) isk] @)

Then, we have
ng(t,$) = Kl(t7$) + LO(t’I)> K1<t,.’E) = ‘7:71 |:e*a\£|2t¢0(§)i| (J:)I

Noting that ¢o(¢) = 0 when |£] = B/v/2, we have

(4.2) 10/ 07 K1 (8, )| Ly(iny S Cjpn(L+8)777 2

In fact, putting
x(x) = FHpo(6)] (x) € SR™),

we have

1 lz—y|?
Kq(t = T 2a dy.
1(t, x) (drot)? /ne 2t x(y) dy
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By Young inequality, we see that
1K1t 2) |2y vy S Cny £ 0.
When j + [5] = 1, we have
j — —alé)? — . i —alg|?
DjosF ! [Pty (6)] = F () (—alePye o (6)] |

and
|27+1BI=Iul e £ 0.

22 (1) (=alePYe0(©))| < Cimlé
Therefore, by Lemma 3.5 we have

] _i_ 18l
10700 K (. 2) ||, me) S Cipmt 72, t>0.

When 0 < ¢t < 1, since

R0 [ 9] () = (0890l { s | E )

N (2;)2‘ /n e ((anY olx) (@ — v2atz) dz,

we have
|\aga§K1(t, Mei@ry = Cjpn, 0<t=1

Combining these estimations, we have (4.2).
Now, we shall show that

( )7j+|0<\

(4.3) 10702 Lo(t, ) 1y &ny < Cjpnt?™= "2, t21.
By (3.15), we have

A (e O —x_(¢)
A+ (€ ) A—(§)
A (O

N . —Al€?t 2
Z% <Sm7"f't> (P a€)e) + e Ryt Ifl)}

2 GRVELGE]
N sin e~ Al
-3l () S teratern

N . 2
l siny|&|¢ e~ Al

e AP Ry (1, J) )
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Since f(|]) = 1+ [¢[2g(|¢[2), we have

) (Sinv£|t> e~ APt
ANEEYET(E)

: : 2 2
e [ (smvl&lt) i (smmt) €12g(¢| >}_
‘ { ~l¢] T ) e

Combining these two estimations, we have

N
1
Lo(t,x) = Ly (t, ) + La(t, ) — My (t,z) + EM}(t, )

/=
N N 1
+Z—' txz Mzt$)+RN(t$)
= g = 1
where
Li(t,z) = F1 (&g (sin’z||§’t> _ 1> e‘A|§|2t£|2|£§<p (5)} (2),
T e “aler2,) ik
Lo(t,z) = F 1 _(e AJEFTE _ gmalel™y ) |2‘2 (5)] (z),
B [ in £\ e AlEPt
Mj(t,z) = F~ 1 _815 (S ’z‘m ) ‘ ,Yf(ﬂgf’ )fj&c@o(f)] (2),
1 o1 i 041 Sin’Y‘f‘t) e~ APt 2 VALY,
M) =7 | (B2 e (ePatien) L m(e)| o),
_ [ iny|€|t —Ae— APt
uin) =77 o ( ,’g“ﬁ’ ) e (|5|29<|5|2>t)fsjsksao@)] (@),
3 1| A Sin’Y’fﬁ) e~ g(1e?)
Ml o) =F [8t (8 S

(lePg(ee) Ej&kcpo(f)] (),

and

Ra(t.) =7 [0 (e R (16D Lkl ) | o)

First, we shall show that
(4.4) L1 (8 by ey < Cut®™, £ 2 1.
Put

golt.) = F [ Aﬁ'%fg%m(@] (a).
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Since
Li(t,x) + go(t, )

- () [

by Lemma 3.3 we have

(4.5)  Li(t,z) + go(t, x)

— 8, > ag(yt)t 24(0%g0)(t, & + ytz) dS
|z|=1

1
7| =

, [sinniel
_F [ ey o<t5>]<>

= Y aa(lal+ D)l / 2(0%0)(t, 2 + 7t2) dS

=1
|a|§n;3 |Z‘

+ Z o(1) |a\+1 Z / Lorts aa—&-é o)(t, a +~tz) dS

o] <58 15=1

when n is an odd 2 3. In view of Lemma 3.3, we see that

(4.6) CL()/ ds = 1.
|z]=1

In fact, putting
sin |€|t -

) h<s>} (@),

w(t,z) = F! [
by Lemma 3.3, we have
h(.%') = wt<07$)

= Y aa(l+ o)t 2%(0%h)(x + tz) dS

=1
Ia|§n;3 IZ‘

S aate S / (900 R) (o 4 £2) dS
=1

NEE 61=1

= (ao /|Z|:1 dS) h(z),

t=0

t=0
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which implies (4.6). Combining (4.5) and (4.6), we have
47 Litz)

= ap /|Z:1 {go(t,z + vtz) — go(t,x)} dS

+ Z ao (1 + |af) (7t |O‘/ )(t, x4+ ytz)dS
1=]a|s252
4 Z plet 32 / 0800 g0 (¢, 2 + ~t2) dS.

Similarly, we see that
(4.8) Li(t,z)
t tz) — t
:ao/ golt,z +1tz) — go(t,2)
|2|=1

V1=

Za(aggo)(t, T+ Vtz)

+ ao (1 + |al)(yt) dz
1§0§§:n22 Iz‘gl V 1 - |Z|2
+ Y aa(yt)et! Z/ 22T (990 go) (¢, @ + yt2) s
5151 V1I—]z?

o] <252 |6]=1
when 7 is an even = 2. Concerning the estimate go(¢,x), we have
j < -5 >
(4.9) 10/ 0z 90(t, )l L, (mn) = Camt ; Jtlaf 21
In fact, we have
0105 t,0) = 7 | AP AP (i Lt en(©)| 2)

and

€]§k
Tez ¥

Therefore, (4.9) follows from Lemma 3.5. Since

o ((—Am?)% e <£>)‘ < CypapleEHEI e 20,

1
d
golt, +t2) — golt,a) = / & golt, x +4120)) do
0

1
= / (Vag0)(t, z + vtz0)db - vtz
0
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by (4.9) we have

(4.10) ao/ {90(t,- +vtz) — go(t,-)} dS
|z|=1 L1 (R™)
1
< agrt / / / 120 1(Vago) (£, & + 7126)| dBdSd
n J|z|=1J0
< COpt3
when n is an odd = 3; and
go(t, - +tz) — go(t, )
(4.11) ao/ dz
|z|=1 V 1- ‘2‘2 L1(R™)

n Jiz1<1 1— V1-1zP

||/\
M\H

when n is an even = 2. Therefore, by (4.7), (4.9) and (4.10) we have

1
L1t Mpy ey S C S t2 4+ >

1|52 <252

<Ot T

when n is an odd = 3; and by (4.7), (4.8) and (4.11) we have

RS £+ 3 ¢

—2 —2
1S[alsn5= laj=m5=

HLl(ta ')HLl(R”) <Gy

B3 —N——

A

Cnt

when 7 is an even = 2, which implies (4.4).
Next, we shall show that

i+l
4

(412)  (|BJOCLA(t, |y @ny S Cjpnt?™

t21, 5462 1.

221
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By (4.7) we have

(4.13) & PLy(t,2)

—ao [ 90 {gn(t. -+ 92) ~ ol )} dS
|z|=1

min(k+1,|al)

+Z(') S i) Y Wyl

=0 1<]olS253 3 m=0

Z /l 1 2O (PP R g 0N (¢, & 4 tz) dS
|6|=k—m |2
min(k,|a|+1)

+Z<k> >ooa Y W(yt)latlm
k=0

0Sjjs2z2  m=0

/I 1z“+6(8§+ﬂ+56g_kgo)(t,x +7tz)dS
|6|l=k—m+1"1*

when n is an odd = 3; and by (4.8) we have

(4.14) ¥ PLy(t,x)
j _
—ao/ 0,0z {g0(t;x +712) — go(t, 2)}
ES!

V=22

i, min(krLjel) |
+Y (1) T wbsla) X Do
k=0 7 1gjal<n; m=0
/ za+6(8§‘+ﬂ+58tj*kgo)(t,x+7tz) @
5|=k—m |z =1 V31— ‘Z|2
i, min(k,|af+1)
la| + 1)! _
(1) X e B T e
k=0 0=|a <252 m=0 '

dz

/ G D ()
211

VAR El

|[6|=k—m~+1
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when n is an even n = 2. By (4.9) we have

(4.15)  lao 8102 {go(t, +~tz) — go(t,)} dS
|Z‘:1 L (Rn)
< ag /| {18020t + 1) agaey + 101020000 Macar } 0
J.ant (),
and
J o8 . _ .
(4.16) ao/ % {90t +7tz)2 90(t, )} dz
| |<1 V 11— |Z| L1(R™)
<o [ WAl i 1200 i,
N |2|=1 V1= |z]?
< Cj,@nt_ (j+@>.
Putting

n—2

”7*37 when n is an odd = 3,
p(n) =19 .2
2 b

when n is an even = 2,
by (4.9), (4.13), (4.14), (4.15) and (4.16), we have
10702 L (¢, )|l £ ()

§ Cjﬁ § - (j+7) + J Z min(k+1,|al) - (j—&-W)

(m)  m=0

O
=
A
Q

I<p
min(k,|a|+1)

+i 5 E_: (- (54 121leimoin)

which implies (4.12).
Now we shall estimate

010} Lalt,) = (= AYF | (87 = ) PGy Vot (o)

Since

1
e~ APt _ o=aléPt _ (o _ A)|e]2 / ¢ —0AIEP—(1-0)alelt g
0



224 T. KOBAYASHI AND Y. SHIBATA

we have

~Alg2t _ —ale? )9 S8k
o { (e 6Pt - cmelePe) i) (e

< Cpgqlé)?HIPIF2=Inly ¢ £ 0.

Therefore, by Lemma 3.5 we have

_ 181
(4.17) Hafﬁsz(t, e ®ry S Crpnt (73 ) t>0.
Next, we shall show that for ¢t > 1
1002 M (1, )|y ey < Cpnt?™ 55

JH|Bl et

(=1

(4.18) ; =5
0

)
Jj+18]+¢

Ha{ang’ t, )L, @) = Cjpemt? a(n)==3
To do this, we put

(Rm
101923} ey = Oyt 2
; i+18]+
18705 M2(t, |1y @y S Cjpant ™2
(M.

Y =

vA(ta) = "f'2t§§c'5';))sjwo<s>,

Vit 7) = e 3% vf(1| F€Pg (650 € o ),
Y3 (t,x) = e 2l - w(\a g(I€7)8) €5€re0(€),
ttm) = 1 SELL g iy g e

Then, we have

(M3 (t,2) = 71 [0 () e 2P0k (1, 6] (a),
w19) M}(t,a) = —F 1| B (s e3P 1, )] @),

M(t,2) = F~[of () e 2P )] (a),

\Mg(t, T) = F -8f Esmzft; 67%‘&%1#3(@5) (z).

Concerning the estimate 1} (t, £), we have

OLUE (8| < CuleP T,

Therefore, if we put

gt @) = F [0k )] @),

then, by Lemma 3.5 we have

- 18]
(4.20) 107085 (8, )L, ) < Crpuemt™ HTE)
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In view of (4.19) and (4.20), we consider the function:

Nilt.a) =7 of (1) 6100 | o),

where G(t,x) satisfies the following conditions:

. 181
(4.21) 100G, )y < Cypmt™ (),

In order to prove (4.18), it suffices to show that

J+18]+¢
2 .

(4.22) 10/ OENo(t, )|y zny S Cjpmt®™ ™
By (3.17), we have
PN, (t,x)

zj: ( ) Z Qg min(z%"“l) <€+ k) o (vt )Ia\+1

k=0 o En 3 m=0
/ P (ag+ﬂ+5a,{—’fc:) (t,x +tz) dS
|6|=t+k—m 7 121=1
when n is an odd 2 3; and
HOIN(t, x)
min(¢+k,|a|+1)

SO A G

n—2 =0
la| =73 m

dz

AR (aﬁ*ﬁ”ag'—ka) (t,z + 7tz)
/z|<1 V1=|z?
when n is an even = 2. Therefore, by (4.21) we have

10792 Ny(t, ')HL1 (R")

|6|=t+k—m

min(¢+k,|a|+1)

< C. ﬂznz Z Z t|a\*|ﬁ2\*5*j7j+7;l—k

k=0 la|<p(n)
< Cjpeat™™ 5,
which implies (4.22).

In order to estimate the remainder term Ry (¢, ), we consider the func-
tion:

R () = F4 [k, (1,6)] (@),
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where

r]j\tw(t,é)
—AlgI1? 1
:W/ (1 — 0)N =IElH0lela(E)t gg
2iv[€[ £ (1€]) Jo

(FEP g1 o(9),
and ¢ € C°(R"™ — {0}) satisfies the condition:
v < el e 2o

If (&) = % then we have

(4.23) R(t,z) = 0, {(R}’w(t, z) — Ry, (t, x)) tN“} .
First, we observe that

(424) | {(— AP £ ivigl (1 + 019 (1D (1)°r, (1 O ||
< —alP p<e<, ¢ £0.

In fact, by the formula of derivative of composed function (cf. (3.19)), we
have

(4.25)

8geii7|£\(1+9\5l29(|£\2)t)

5]
- Z(imt)feiivlﬂ(1+9\5|2g(|£\2)t)
/=1

Yo I+ 0IEPg(ER) ) - 08 {IE1L + BIEPa(E) } -

et |4+ |=]0]
ovi| 21

Since

02 (€11 + 0129 (EPN}] £ Canl' ™, ¢ € supp oo,

by (4.25) we have

9]

‘ageiivlé\(1+9\£I29(|£\2)t)’ < Cs > (e )€1, € € supp o
/=1
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Therefore, we have for £ € supp ¢o and & # 0
92 { (—Al¢f? & i€l + 01912V (6)r o 8,6) }|

lo—v|
1Bl—l| — A2 5
S Gy Y [gPNTEHIHPIEM IR N T (e g o
0Svss =1
lo—v]
A 2
< Oy Z |§,3N+2+J+Iﬁ\ 6] =5 1€1° Z (tle)*lel=.

0<vss —

Since |¢]7¢ < C5l¢/7191 (0 £ £ £ |8]) when & € suppgg and € # 0, by the
above inequality we have (4.24). Since

n

(4.26) et = Z

7=1

. €' : ¢,

Z!wlz

in view of (4.24) by n + 1-times integration by parts, we have
DO RY (¢, 7)
" (we) () [ Lo
(AL £ 11+ 0l 2g (1)) (€)1, ) } dedd
when N > n/3. Therefore, by (4.24) we have

o107y 0.9)] < Copaealal (0 [ N0 6P g

< Cy vl
On the other hand, by (4.24) with § = 0 we have
o005 0.5 < G [ e el 16 gg
R

_ 3N+2+j5+[B|+n
= Cjpnt 2 :

Combining these two estimations, we have
(4.27)

10707 R, (8, )| ey

3N+2+j+|B|+n 3N-tjtlal -
S CigNn / t- 2 d:U+/ T \ |7 da
|lz| =Vt lz|2vt

_ 3N+|a|+j+1l-n
= CjpNnl >, iz L
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By (4.23) and (4.27), we have

N-—n+tj+|6-1

; _ N—n+4j+[-1 n
(428)  [OOIRN(E Ny S Cipnt™ 20, E2Z1 N> 1

Combining (4.4), (4.12), (4.17), (4.18) and (4.28), we have (4.3). To com-
plete the Proof of Theorem 2.1 (2), we have to show that
(4.29) 10705 Lo(t, )|z, @) < Cams 0SS 1.
Regarding the relations:
AL (6) = —AIEP F ivlElF (€D,

we put
Lo(t,ﬂf) = Zfil [1/13(7575)] (l‘)v

where

_ A erene _ nlelsqen) &b
1.0 = 55y ( ) gz 0

e—IElf(IENt — ei’Y|§|f(|§\) &€k

Pn(t, €) = e~ AP <

P3(t, &) = <e’A|5‘2t - e’a‘ﬂ%) g‘ﬁ;@ (&)

First, we shall estimate F~! [¢1(t,€)] (). By the formula of derivative of
composed function (cf. (3.19)), we have

(4.30)

pBeHelf et

9]

= " (iyt) et D > I {11 (&N} - - 98 {IELF (€D -
=1 |a1\+|~;|r|>ale|:\5l

Since B
oL IE1F ()| < Canlel 1, lel £ 5 €0,
by (4.30) we have

(4.31)  |ogernlele] < CaZ|f|e Pl Gslgl TP jel = —, € #0.

\f

By (4.31) and Leibniz’ rule, we have

08 {ofvt. 0G0 )| < Cnalel T, 161 T 620,
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Since supp 1 (t,-) C {€ € R" | |¢] £ B/+/2}, by Proposition 3.4 with (a, N, o)
= (1,n,1) we have

/0 F L 1 (1:6)] (2)] < Cramlal ™1, Vo 0.

On the other hand, we have

‘81800-' (¢, 5)]()] cjan/|§l< €] < Cjam.

=V2
Therefore, combining these two estimations, we have

(4.32)
Hatjagf_l hbl(t’ﬁ)] ()HLl(R") g Cj,a,n {/ dx =+ / |x‘_(n+1) dl’}
lz|=1 |z|21
g Cj,a,n-

Next, we shall estimate F =1 [9(t, )] (x). By Taylor’s formula, we have

1
w@£%=—mﬂmﬂ€“K%AsmWﬂﬂﬂMDMWQ&

€] 0(&)-

Therefore, we have

8 {eyoluatt. O }| < G,

§# 0.

Employing the same argument as in F ! [)1(t, £)] (z), we have
(4.33) 16702 F = [W2(t, )] ()l zyeny < Ciane

Finally, we shall estimate F~! [¢3(,€)] (z). Since

1
s(t2) = (A =gt [ e 0000 dpg )
0
we have
92 { (i) 0l us(t, ) }| = CjaslePH.
Therefore, employing the same argument as in F ! [4h1(t,&)] (z), we have
(1.3) 10707 4s(6,6)] Ollzaer) € Cran

Combining (4.32), (4.33) and (4.34), we have (4.29), which completes the
proof.
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5. Proof of Theorem 2.2.

In this section, we shall prove Theorem 2.2. First, we consider the part where

€] 2 V2B, Since As.(6) = —A ([¢[2 + /[€] = BZEP) when [¢] 2 V2B, we

write:
(5.1) M) = —AlEP + 14 (), A(§) =—1—p(),
where
4 2 1 s
w6 =ea (ige) - 9= [ -89t -o)as

Note that g(B2%/|£]?) € C* when |¢| = 2. In view of (2.5) and (2.9), we put

[ A (€)@

N et N s SN i T
Li(tu(z) = F _A+(£)—Af(€)%°(5) (5)]( )

BeAx (&)t
Mep(t)u(e) = 7 M%@(@a(ol @, 181=1

R [ AL ¢ig - )
Ky oo(t)vo(z) = F EGEPNGIGEE Poo(§) o(f)] (),
K oo (t)vg(z) = F~1 e oléPt <5jk — 5,2%) 5000(5)1?0(5)] (z).

By [6, Theorem 4.2.1], we have for p =1 or oo

(5.2) [10/0% Ly (t)ulln, @) < Cikalt T ™Me ™ ull ani a1t g
Wy (R™)

]88 Mo p(0)ull, mn) S Cat ™™™l yorrior gy 18] =1,

10705 (-t = ") [, @) < Cjae™ ullygora

10705 M 5(t)ull 1, (ny < Cae™lul

T (Rny’

Wga‘(R")’ ’/8’ =1

Now we shall show that for p =1 or oo

(

(5.3)
187 05k 00 ()0l 1 () =

Cj,a,n
18] 02 k1 00 ()00l 1, (k) < Cam

1 .
) TR g |t g
P

1

1 .
1 t")t’“’k) —ct o
+t72 e” ol 2k+1a1

/

(R™)”
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Put
A Jer+ (8t (1 2yi—k ¢,
K—i‘,j,k(t?x) :f_l [ +(§) €(1+ ‘2’2—;|€ ) ﬁféespoo(g)] (':U)7
1 [ (cafeP) elelh(1 4 g2y
Ky jn(t,x) =F ! [ (1+ |€[2)7

€m§Z
: (5m - o0 )
(6250 (5)] (x)
for j £ k <0, and then

(5.4) HOTK 1 oo (Bvg = Ky j(t,) % 02 (1 — A)Fup;
(55) 8{8;"[(1700(75)1)0 = K17j7k(t, ) * 8?(1 — A)kvo.
By (5.1) we have for |¢| = /2B

[ A€M+ Y ke
% { T+ 1Py gz =)

§Cj,k,yt_(j_k)e_clt]f\""le_”'g'?t, Yo,

(5.6)

and also we have

, | (CalgPy el 4 g2y gng
% { CENERE e =)

(R gmert|e|Wlgmerlelt Y,

(5.7)

< (.
= Yjkv
Therefore, using (4.26) and the integration by parts n + 1 times, by (5.6)
we have
t_(j_k)e_clt 1 2,
(6:8)  |Legalto)) S e [ fg e g
j dkn T T €|>VIB
t_(j_k)e_clt
= j,k,nW7

and by (5.7) we have

t—(j—k’)e—clt
(5.9) |L1,j,k(tax)| = Cj,k,nw
On the other hand, by (5.6) we have
(5.10)  |Lyp(tsa)] < Cppnt= TR et / eerlelt e
l€12v2B

< gt UM R,
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and by (5.7) we have

(5.11) |11ty )] £ Cjpnt U H 727t
Therefore, by (5.8) and (5.10) we have

(5.12) L4 ke ()l 2y (re)

) n 1
é Cj,k,nti('jik)eiclt t 2 / dxr + / Tntl dx
2| SVE 2|2V ||

= Cikn (1 + t‘%> ==kt
and by (5.9) and (5.11) we have
(5.13) 11 k()o@ < Cison (1 + t’%> ==k g=ert,

By (5.12), (5.13) and the Young inequality, we have (5.3).
Next, we shall show that for p =1 or oo

(5.14) 0709 K oo(t)voll ,(am) < Cj,k,a,nti(jik)eicltHUOHW}kaa\(Rn)'
Put
L1 | A9 g
(_(t,z)=F1 22 oo x),
() [m&) 3@ e | @
and then
(5.15) K_ (t)vo(z) = L_(t,-) * vo.

Now, we shall prove that
(5.16) 1070 (t, )| £y zmy S Cye™.
By (5.1) we have for |[¢| > /2B

(5.17) |0/ {A(ﬁ)j“e“f)t Emé

NG EPW G

Therefore, using (4.26) and the integration by parts n — 1 times, by (5.17)
we have

oo(ﬁ)}' < Cjp(1 4 t)Ple=et|g| =181,

2|~ 0 < 2 S
|~ e 2 1,

‘a{e, (t,x)‘ < Cjpe {

which implies (5.16). By (5.16) and the Young inequality, we have (5.14).

In order to complete the Proof of Theorem 2.2, we have to estimate the
part where B/2 < |£| < 2B (cf. (2.10)). In view of (2.6) and (2.9), below, if
we put
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(5.18)

Naalts) = g [f o CHET o dev@pnte)]
oot

P (ot PR TR

Nou(t, @) = F4 e Pt (€)pu ()| (@),

where ¢ € C°(S"1) and ¢ = (&/|€]), then we have
FH om(€)(t,€)] (x) = Noy(t,-) * po + Niy(t, )  vo;
FH pm(©0(t,€)] (x) = Nig(t,-) % po + Nos(t,-) % vo + Nay (¢, ) + vo.

If we use (4.26) and (2.7), then we see easily that

Mis(tia) = 57 ing B (o)

NNy y(t,2)| £ Cjane zl™, YN =0, integer.

Therefore, applying the Young inequality to (5.18) we have
(5.19)

17 T () (5, 0) (1, )] |, @n) E Chape “ll(p0,v0) L, @®n), 1=p S oo
Combining (5.2), (5.3), (5.14) and (5.19), we have Theorem 2.2.
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