
Pacific
Journal of
Mathematics

ATTRACTORS FOR STRONGLY DAMPED WAVE
EQUATIONS WITH CRITICAL NONLINEARITIES

Alexandre N. Carvalho and Jan W. Cholewa

Volume 207 No. 2 December 2002



PACIFIC JOURNAL OF MATHEMATICS
Vol. 207, No. 2, 2002

ATTRACTORS FOR STRONGLY DAMPED WAVE
EQUATIONS WITH CRITICAL NONLINEARITIES

Alexandre N. Carvalho and Jan W. Cholewa

In this paper we obtain global well-posedness results for the
strongly damped wave equation utt + (−∆)θut = ∆u + f(u),
for θ ∈

[
1
2
, 1
]
, in H1

0(Ω)× L2(Ω) when Ω is a bounded smooth

domain and the map f grows like |u|
n+2
n−2 . If f = 0, then

this equation generates an analytic semigroup with generator
−A(θ). Special attention is devoted to the case when θ = 1
since in this case the generator −A(1) does not have com-
pact resolvent, contrary to the case θ ∈

[
1
2
, 1
)
. Under the

dissipativeness condition lim sup|s|→∞
f(s)

s
≤ 0 we prove the

existence of compact global attractors for this problem. In
the critical growth case we use Alekseev’s nonlinear variation
of constants formula to obtain that the semigroup is asymp-
totically smooth.

1. Introduction.

For θ ∈
[

1
2 , 1
]
, η > 0, we consider the global well-posedness and existence of

global attractors for a family of problems of the form
utt + η(−∆)θut + (−∆)u = f(u), t > 0, x ∈ Ω,
u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω,
u(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1)

where Ω is a bounded C2 smooth domain in Rn and n ≥ 3. We write further
A for −∆ with the Dirichlet boundary conditions. It is well-known that A
is a positive, self-adjoint operator with the domain D(A) = H2(Ω)∩H1

0 (Ω)
and −A generates an analytic semigroup on X = X0 = L2(Ω). We denote
by Xα the fractional power spaces associated to the operator A; that is
Xα = D(Aα) endowed with the graph norm.

The problems (1) will be viewed as ordinary differential equations in a
product space Y = Y 0 = X

1
2 ×X0:

d

dt

[
u
v

]
+A(θ)

[
u
v

]
= F

([
u
v

])
, t > 0,

[
u
v

]
t=0

=
[
u0

v0

]
.(2)
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Here A(θ) : D(A(θ)) ⊂ Y 0 → Y 0 and F are given by

(3) A(θ)

[
ϕ
ψ

]
=
[

−ψ
Aθ(A1−θϕ+ ηψ)

]
for

[
ϕ
ψ

]
∈ D(A(θ)), F

([
u
v

])
=
[

0
F (u)

]
,

where

D(A(θ)) = Y 1
(θ) =

{[
ϕ
ψ

]
∈ X

3
2
−θ ×X

1
2 : A1−θϕ+ ηψ ∈ Xθ

}
, θ ∈

[
1
2
, 1
](4)

and F is the Nemitskĭı map associated to f(u). Of course,

A(θ)

[
ϕ
ψ

]
=
[

−ψ
Aϕ+ ηAθψ

]
for

[
ϕ
ψ

]
∈ X1 ×Xθ,

X1 ×Xθ being a dense subset of D(A(θ)).
The linear problem associated to (2) in Y 0,

ü+ ηAθu̇+Au = 0, t > 0, u(0) = u0, u̇(0) = v0,(5)

is studied in [7, 8, 9], where the sectoriality of A(θ) is established and a
description of the fractional power spaces Y α

(θ), α ∈ [0, 1] is given.

We choose as a base space for (1) the product space Y 0 = X
1
2 ×X0. This

space seems to be the best possible to study the asymptotic behavior of (1)
since in it we may exhibit an energy functional to (1).

The cases θ = 1
2 and θ = 1 will deserve special attention. For θ = 1

2 ,
the form of the damping term A

1
2ut allows us to obtain a more complete

description of the fractional power spaces associated to A( 1
2)

. Using this,
we are able to describe the extrapolated fractional power scale generated
by (Y 0,A( 1

2)
) (see [5]) and obtain the convergence of bounded sets from

Y 0 to the attractor in the strong topology of H1+α(Ω)×Hα(Ω)-norm, α ∈[
n−2
n+2 , 1

)
. For θ = 1 we have that the nonlinearity becomes subcritical,

nevertheless, we loose compactness of the semigroup and of the nonlinearity
(so that subcritical is of no help). However, in this latter case we are still
able to ensure the existence of a compact global attractor with the aid of a
nonlinear variation of constants formula.

The crucial result of [5] that we will use here is that:

Theorem 1. If f satisfies

|f(u)− f(u′)| ≤ c|u− u′|(1 + |u|ρ−1 + |u′|ρ−1)(6)

with ρ ≤ n+2
n−2 , then (1) is locally well-posed in H1

0 (Ω)× L2(Ω).
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In the present paper our main concern is the asymptotic behavior of (1)
and a great deal of our effort will go into the following conjecture.

Conjecture. If in addition to (6) f satisfies the dissipativeness condition

lim sup
|u|→∞

f(u)
u

≤ 0,(7)

then the problem (1) with θ ∈
[

1
2 , 1
]

has a compact global attractor.

The paper is organized as follows. In Section 2 we briefly recall the results
of [5] concerning solvability of (1). Section 3 is devoted to a discussion of
the additional regularity of the solutions to (1). In Section 4 we prove the
global solvability and the existence of global attractors for (1), i.e.,

• in Subsection 4.1 we study the existence of a compact global attractor
for the case θ =

[
1
2 , 1
)
, ρ < n+2

n−2 and f satisfying (6), (7),
• in Subsection 4.2 we treat the subcritical case ρ < n+2

n−2 for θ = 1,
• in Subsection 4.3 we deal with the critical case ρ = n+2

n−2 for θ = 1.

We remark that for θ = 1 the resolvent of A(θ) is not compact. However, we
are able to show that the semigroup {T (t)} corresponding to (1) is asymp-
totically smooth decomposing {T (t)} on a sum of the exponentially decaying
semigroup and a family of compact maps (see [11]). In the subcritical case
this may be accomplished based on compactness of the nonlinear term. In
the critical case the latter argument cannot be used and to overcome this
difficulty we employ the nonlinear variation of constants formula as in [3].

2. Local solvability of (1) in Y 0.

We start with the results of [5] on local well-posedness and regularity for
(2) with initial conditions in Y 0 and nonlinearities growing critically. Recall
that (see [5, Propositions 1, 4]):

Proposition 1. A(θ), θ ∈
[

1
2 , 1
]
, is a sectorial, positive operator in Y 0.

The semigroup of contractions {e−A(θ)t} is analytic in Y α
(θ), α ∈ [0, 1). It is

also compact for t > 0 except the case θ = 1. Furthermore,

Y α
(θ) =

[
Y 0, Y 1

(θ)

]
α

=



X
1
2
+α(1−θ) ×Xθα, α ∈

[
0, 1

2

]
,{[

ϕ

ψ

]
∈ X

1
2
+α(1−θ) ×Xθ− 1

2
+α(1−θ) :

A1−θϕ+ ηψ ∈ Xθα

}
, α ∈

[
1
2 , 1
]
.

(8)
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Following [1], we denote by Y(θ)−1
, θ ∈

[
1
2 , 1
]
, the extrapolated space of Y 0

generated by A(θ) which is the completion of the normed space (Y 0, ‖A−1
(θ) ·

‖Y 0). It was shown in [5, Proposition 5] that:
• A(θ)−1

(A(θ)−1
being the closure of A(θ) in Y(θ)−1

) is sectorial and pos-
itive operator in Y(θ)−1

with D(A(θ)−1
) = Y 1

(θ)−1
= Y 0,

• imaginary powers of A(θ)−1
are bounded,

• A(θ)−1
has compact resolvent except for θ = 1.

When dealing with fractional powers it is important to know the embed-
dings that relate the spaces in the fractional power scale and the known
spaces. Result below comes from [5, §2.2, §2.3] and will be needed to obtain
regularity and asymptotic compactness of the semigroup generated by (2).

Lemma 1. Let [(Xα, Aα), α ∈ R] (Aα being the realization of A in Xα) be
generated by (L2(Ω), (−∆D)). Then:

(i) For α(1− θ) < 1
4 and n = 3 or n > 3,

Y 1+α
(θ)−1

⊂ H1+2α(1−θ)(Ω)×H2θα(Ω) ⊂ Lq1(Ω)× Lq2(Ω),(9)

provided that 1 ≤ q1 ≤ 2n
n−2−4α(1−θ) , 1 ≤ q2 ≤ 2n

n−4αθ , α ∈
[
0, 1

2

]
, θ ∈[

1
2 , 1
]
,

(ii) for n = 3 and α = θ = 1
2 the embedding (9) holds for 1 ≤ q1 ≤ ∞,

1 ≤ q2 ≤ 3,
(iii) for n ≥ 3 we have Y 1+α

( 1
2)−1

⊂ H1+α(Ω) × Hα(Ω) for any α ∈ [0, 1];

furthermore,

{
Y α

(θ)−1
⊃ X

1
2
−(1−α)(1−θ) ×X− 1

2
+α(1−θ) ⊃ X

1
2
−(1−α)(1−θ) × Lq(Ω),

if q ≥ 2n
n+2−4α(1−θ) , α ∈

[
0, 1

2

]
, θ ∈

[
1
2 , 1
]
, n ≥ 3,

(10)

whereas Y α
( 1

2)−1

= X
α
2 (Ω)×X

α−1
2 (Ω) for any α ∈ [0, 1], n ≥ 3.

Following [5] we shall next study (1) as a sectorial problem (11) in Y(θ)−1
,

θ ∈
[

1
2 , 1
]
,

d

dt

[
u
v

]
+A(θ)−1

[
u
v

]
= F

([
u
v

])
, t > 0,

[
u
v

]
t=0

=
[
u0

v0

]
.(11)

Our concern will be the ε-regular solutions to (11) originating at the elements
of Y 1

(θ)−1
= Y 0 (see Definition 2).

We first recall that if P is a sectorial, positive operator acting in a Banach
space Z = Z0 and ε is a nonnegative number, then:

Definition 1. G :D(G)→Z is ε-regular relatively to (Z1, Z0) (equivalently,
G is of class F(ε, ρ, γ(ε), C)) if and only if there are constants ρ > 1, γ(ε) ≥
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0, C > 0 such that ρε ≤ γ(ε) < 1, G takes Z1+ε into Zγ(ε), and the following
estimate holds:

‖G(z1)−G(z2)‖Zγ(ε)(12)

≤ C‖z1 − z2‖Z1+ε

(
‖z1‖ρ−1

Z1+ε + ‖z2‖ρ−1
Z1+ε + 1

)
, z1, z2 ∈ Z1+ε.

The following result of [5, Corollary 2] plays an important role in the
regularity of the solutions of (1) and we will refer to it later in the paper.

Theorem 2. Assume that f satisfies (6) with 1 < ρ ≤ n+2
n−2 and let F be the

map defined in (3). Then, F is an ε-regular map relatively to
(
Y 1

(θ)−1
, Y(θ)−1

)
for each ε ∈

[
0, 1

2ρ

]
with γ(ε) = ρε, that is,∥∥∥∥F ([uv

])
−F

([
u′

v′

])∥∥∥∥
Y

γ(ε)
(θ)−1

(13)

≤ c

∥∥∥∥[uv
]
−
[
u′

v′

]∥∥∥∥
Y 1+ε
(θ)−1

1 +
∥∥∥∥[uv

]∥∥∥∥ρ−1

Y 1+ε
(θ)−1

+
∥∥∥∥[u′v′

]∥∥∥∥ρ−1

Y 1+ε
(θ)−1

 ,

[
u
v

]
,

[
u′

v′

]
∈ Y 1+ε

(θ)−1
,

for ε ∈
[
0, 1

2ρ

]
, γ(ε) = ερ. Moreover, if θ = 1

2 , then (13) holds with γ(ε) =

ρε for each ε ∈
[
0, 1

ρ

)
.

Consider now an abstract problem:
·
z +Pz = G(z), t > 0, z(0) = z0(14)

(P , G as above) and take ε ≥ 0, τ > 0, z0 ∈ Z1. Recall that:

Definition 2. A function z = z(·, z0) : [0, τ ] → Z1 is an ε-regular solution
to the problem (14) if and only if z ∈ C([0, τ ], Z1) ∩ C((0, τ ], Z1+ε), and

z(t) = e−Ptz0 +
∫ t

0
e−P (t−s)G(z(s))ds for t ∈ [0, τ ].

The existence of the ε-regular solution to (11) under the assumptions (6)
has been recently discussed in [5] based on the original results reported in
[2], [4]. We thus have (see [2, Corollary 1], [5, Theorem 3]):

Theorem 3. Consider (11) as an abstract counterpart of (1) in Y(θ)−1
,

θ ∈
[

1
2 , 1
]
, choose

[
u0

v0

]
∈ Y 0 and denote by BY 0

([
u0

v0

]
, r

)
a ball in Y 0

centered at
[
u0

v0

]
with radius r > 0. Suppose further that F is an ε-regular
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map relatively to
(
Y 1

(θ)−1
, Y(θ)−1

)
and ε > 0. Then, there are r > 0 and

τ0 > 0 such that for each
[
u0

v0

]
∈ BY 0

([
u0

v0

]
, r

)
there exists a unique ε-

regular solution
[
u
v

]
(·, u0, v0) to (11). In addition,

(i) tζ
∥∥∥∥[uv

]
(t, u0, v0)

∥∥∥∥
Y 1+ζ
(θ)−1

→ 0 as t→ 0+, 0 < ζ < γ(ε),

(ii) tζ
∥∥∥∥[uv

]
(t, u1, v1)−

[
u
v

]
(t, u2, v2)

∥∥∥∥
Y 1+ζ
(θ)−1

≤ C ′(ζ0)
∥∥∥∥[u1

v1

]
−
[
u2

v2

]∥∥∥∥
Y 0

whenever t ∈ [0, τ0], 0 ≤ ζ ≤ ζ0 < γ(ε),
[
u1

v1

]
,

[
u2

v2

]
∈ BY 0

([
u0

v0

]
, r

)
,

(iii)
[
u
v

]
(·, u0, v0) ∈ C

(
(0, τ0], Y

1+γ(ε)
(θ)−1

)
∩ C1

(
(0, τ0], Y

1+ζ
(θ)−1

)
for 0 ≤ ζ <

γ(ε); in particular,
[
u
v

]
(·, u0, v0) satisfies both relations in (2).

Remark 1. Based on Theorem 2 one may substitute in the above Condi-
tions (i)-(iii) numbers ε, γ(ε) such that{

γ(ε) = 1
2 if θ ∈

(
1
2 , 1
]
,

γ(ε) < 1 and γ(ε) arbitrarily close to 1 if θ = 1
2 .

(15)

We also point out that crucial in this discussion Condition (13) holds when-
ever ρ, ε, γ(ε) fulfill the restrictions

1 < ρ ≤ n+ 2− 4γ(ε)(1− θ)
n− 2− 4ε(1− θ)

, 0 ≤ ε ≤ 1
2ρ
, ρε ≤ γ(ε) ≤ 1

2
,

(see [5, Lemma 3] for detailed calculations). For the case ρ < n+2
n−2 this allows

us to require of the numbers ε and γ(ε) in (15) to satisfy additionally the
inequality γ(ε) > ερ; for example we may then choose


ε >(n−2

n+2)2, γ(ε) = εn+2
n−2 and ε sufficiently close to

(
n−2
n+2

)2
, if θ = 1

2 ,

max
{

0, ρ(n−2)−(n+2)+2(1−θ)
4(1−θ)ρ

}
< ε < 1

2ρ , γ(ε) = 1
2 , if 1

2< θ< 1,

γ(ε) = 1
2 , 0 < ε < 1

2ρ , if θ = 1.

(16)

Consequently, in a subcritical case a number r in Theorem 3 can be chosen
arbitrarily large so that the time of existence can be chosen uniform on
bounded subsets of Y 1

(θ)−1
(see [2, Corollary 1]).
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3. Smoothing action of ε-regular solutions.

Our aim here is to show that the ε-regular solutions resulting from Theo-
rem 3 are in fact smoother solutions. Namely, they may be viewed as the
solutions to (2) within the approach of [12]. We shall assume that

(17) f satisfies (6) with ρ ≤ n+ 2
n− 2

, θ ∈
[
1
2
,
n+ 6
2n+ 4

)
and

α ∈
[

n− 2
2(1− θ)(n+ 2)

, 1
)

.

Lemma 2. Suppose that (17) holds. Then the map F defined in (3) takes
Y α

(θ) into Y 0 and is Lipschitz continuous on bounded subsets of Y α
(θ).

Proof. The proof follows by standard calculations based on the Hölder in-
equality and Sobolev embedding (see the description of Y α

(θ) spaces given in
(8)). �

The above lemma and the general results of [12] imply then solvabil-
ity of (2) and consequently smoothness of the ε-regular solutions stated in
Theorem 4 below.

Lemma 3. Under the assumptions of Lemma 2 for each
[
u0

v0

]
∈ Y α

(θ) there

exists a unique Y α
(θ)-solution to (2) defined on a maximal interval of ex-

istence [0, τu0,v0). That is, there exists a unique function
[
u
v

]
(·, u0, v0) ∈

C
(
[0, τu0,v0), Y

α
(θ)

)
such that:

(i)
[
u
v

]
(t, u0, v0) ∈ C

(
(0, τu0,v0), Y

1
(θ)

)
,

(ii)
[
u
v

]
(·, u0, v0) ∈ C1

(
(0, τu0,v0), Y

β
(θ)

)
, β ∈ [0, 1),

(iii) both relations in (2) are satisfied.

Theorem 4. If, in addition to (17), we assume that

either n ≥ 3 and θ =
1
2

or 3 ≤ n ≤ 5 and θ ∈
(

1
2
,

4
n+ 2

)
,(18)

then the ε-regular solutions from Theorem 3 fulfill Conditions (i)-(iii) of
Lemma 3.

Proof. Choose ε > 0 in Theorem 2 such thatγ(ε) ∈
(

n−2
n+2 , 1

)
if θ = 1

2 , n ≥ 3,

γ(ε) = 1
2 >

n−2
2(1−θ)(n+2) if θ ∈

(
1
2 ,

4
n+2

)
, 3 ≤ n ≤ 5,
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and let
[
u
v

]
(·, u0, v0) be ε-regular solution obtained in Theorem 3 (see Re-

mark 1). Since Y 1+γ(ε)
(θ)−1

= Y
γ(ε)
(θ) ⊂ Y

n−2
2(1−θ)(n+2)

(θ) we find from Theorem 3(iii)
that [

u
v

]
(s, u0, v0) ∈ Y

n−2
2(1−θ)(n+2)

(θ) for each s ∈ (0, τ0).

According to Lemma 3 there exists Y
n−2

2(1−θ)(n+2)

(θ) -solution
[
ũ
ṽ

]
(·, u(s, u0, v0),

v(s, u0, v0)) to (1). This proves that[
u
v

]
(t+ s, u0, v0) =

[
ũ
ṽ

]
(t, u(s, u0, v0), v(s, u0, v0)), t ∈ [0, τu0,v0),

and consequently,[
u
v

]
(t, u0, v0) ∈ Y 1

(θ), t ∈ (s, τu0,v0),[
u
v

]
(·, u0, v0) ∈ C1

(
(s, τu0,v0), Y

β
(θ)

)
, β ∈ [0, 1).

Since s > 0 could be arbitrarily small, the proof is complete. �

4. Global solvability of (2) and a global attractor.

4.1. Subcritical case: θ ∈
[

1
2 , 1
)
. In this subsection we consider the exis-

tence of a compact global attractor for (2) when the growth of f is subcrit-
ical; that is, (6) holds with ρ < n+2

n−2 . We first restrict our attention to the

cases mentioned in (18) when either θ = 1
2 and n ≥ 3 or θ ∈

(
1
2 ,

4
n+2

)
and

3 ≤ n ≤ 5.

Lemma 4. If (18) holds and f satisfies (6) with ρ < n+2
n−2 , then for any

bounded set B ⊂ Y 0 there are a time τB > 0 and the numbers ε > 0,

γ(ε) > ρε as in (16) such that the ε-regular solutions
[
u
v

]
(·, u0, v0) from The-

orem 3 originating at
[
u0

v0

]
∈ B exist and the set

{[
u
v

]
(t, u0, v0) :

[
u0

v0

]
∈ B

}
is bounded in Y ζ0

(θ) for arbitrary ζ0 ∈ [0, γ(ε)) and each t ∈ (0, τB). In par-

ticular, the set
{[
u
v

]
(t, u0, v0) :

[
u0

v0

]
∈ B

}
is precompact in Y

n−2
2(1−θ)(n+2)

(θ) for

each t ∈ (0, τB).

Proof. The proof is a direct consequence of Remark 1, Theorem 3 (ii), and
Theorem 4. �
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In the considerations below, devoted to the existence of the global attrac-
tor to (2) in a subcritical case, we shall follow the general abstract scheme
developed in [10, 6]. For convenience we recall this scheme in the proposition
below (see [10, Section 4.2]).

Proposition 2. Consider the Cauchy problem (14) where P : D(P ) → Z is
a sectorial, positive operator having compact resolvent, and G : Zα → Z is
Lipschitz continuous on bounded subsets of Zα for some α ∈ [0, 1). Denote
by z(·, z0) a Zα-solution of (14) defined on a maximal interval of existence
[0, τz0). Then, the following two conditions are equivalent:

(i) Relation S(t)z0 = z(t, z0), t ≥ 0, defines on Zα a compact C0-semi-
group {S(t)} of global Zα-solutions to (14) which has a compact global
attractor in Zα.

(ii) There are given:
• A Banach space Y, with D(P ) ⊂ Y,
• a locally bounded function C : R+ → R+,
• a nondecreasing function g : R+ −→ R+,
• a number γ ∈ [0, 1),

such that, for each z0 ∈ Zα, both

‖z(t, z0)‖Y ≤ C(‖z0‖Zα), t ∈ (0, τz0),(19)

and

‖G(z(t, z0))‖Z ≤ g(‖z(t, z0)‖Y)(1 + ‖z(t, z0)‖γ
Zα), t ∈ (0, τz0),(20)

hold, and the estimate (19) is asymptotically independent of z0 ∈ Zα.

Based on the abstract scheme of Proposition 2 (ii) we shall prove the
following theorem:

Theorem 5. Let (18) holds, f satisfies (6) with ρ ∈
(
1, n+4(1−θ)

n−2

)
and the

dissipative Condition (7). Then, for the numbers n, θ admissible in (18)
and α ∈

[
n−2

2(1−θ)(n+2) , 1
)
:

(i) There exists a compact C0-semigroup {T(θ),α(t)} of global Y α
(θ)-solutions

to (2) which possesses a compact global attractor A(θ),α in Y α
(θ),

(ii) T(θ),α(t)
[
u0

v0

]
= T(θ), n−2

2(1−θ)(n+2)
(t)
[
u0

v0

]
, for

[
u0

v0

]
∈ Y α

(θ) and t ≥ 0;

furthermore A(θ),α = A(θ), n−2
2(1−θ)(n+2)

=: A(θ),

(iii) T(θ),0(t) : Y 0 → Y α
(θ), t > 0, where T(θ),0(t)

[
u0

v0

]
=
[
u
v

]
(t, u0, v0) and[

u
v

]
(·, u0, v0) is an ε-regular solution from Theorem 3, are well-defined

maps being the extensions of T(θ),α(t), t > 0, to Y 0,
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(iv) A(θ) attracts bounded subsets of Y 0 under {T(θ),α(t)} in Y α
(θ)-norm.

Proof. The Proof of (i) occurs in four steps.

Step 1 (Y 0-estimate and the Lyapunov function). Take
[
u0

v0

]
∈ Y α

(θ) and

consider the corresponding Y α
(θ)-solution

[
u
v

]
(t, u0, v0) of (2) resulting from

Lemma 3. Multiply the equation for v entering (2) by v = u̇ in L2(Ω)
and use the properties of the negative Laplacian with Dirichlet boundary
conditions to get

d

dt

(
1
2
‖v‖2

L2(Ω) +
1
2
‖A

1
2u‖2

L2(Ω) −
∫

Ω

∫ u

0
f(s)dsdx

)
= −η‖A

θ
2 v‖2

L2(Ω) ≤ 0.

This ensures in particular that∥∥∥∥[uv
]

(t, u0, v0)
∥∥∥∥

Y 0

≤

√
c+ c′L0

([
u0

v0

])
≤ C

(∥∥∥∥[u0

v0

]∥∥∥∥
Y 0

)
,(21)

where c, c′ do not depend on η,

L0

([
w1

w2

])
=

1
2
‖w2‖2

L2(Ω) +
1
2
‖A

1
2w1‖2

L2(Ω)(22)

−
∫

Ω

∫ w1

0
f(s) ds dx,

[
w1

w2

]
∈ Y 0,

and C : R+ → R+ is a locally bounded function independent of η.

Step 2 (subordination of the nonlinearity to a power of A(θ)). Since 1 < ρ <
n+4(1−θ)

n−2 , then based on the Nirenberg-Gagliardo type inequality we obtain
that

‖f(u(t, u0, v0))‖L2(Ω)(23)

≤ g
(
‖u(t, u0, v0)‖H1(Ω)

) (
1 + ‖u(t, u0, v0)‖γ

H1+2α1(1−θ)(Ω)

)
,

t ∈ (0, τu0,v0), with certain γ ∈ [0, 1), α1 ∈ [0, 1) and some nondecreasing
function g : R+ → R+ (see [10, Lemma 5.2.1]). Next, based on (23), we get
the relation∥∥∥∥F ([uv

]
(t, u0, v0)

)∥∥∥∥
Y 0

= ‖f(u(t, u0, v0))‖L2(Ω)(24)

≤ g

(∥∥∥∥[uv
]

(t, u0, v0)
∥∥∥∥

Y 0

)1 +
∥∥∥∥[uv

]
(t, u0, v0)

∥∥∥∥γ

Y
α1
(θ)

 .
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Step 3 (global solvability and compactness). Conditions (21) and (24) plus
the compactness of the resolvent of A(θ) ensure that to (2) corresponds a
compact C0-semigroup {T(θ),α(t)} of global Y α

(θ)-solutions having bounded
orbits of bounded sets. For the proof of the existence of a global attrac-
tor for {T(θ),α(t)} in Y α

(θ) it now suffices to show that the estimate (21) is

asymptotically independent of
[
u0

v0

]
∈ Y α

(θ).

Step 4 (point dissipativeness of {T(θ),α(t)} - the role of the Lyapunov func-
tion). Functional L0 defined in (22) is a Lyapunov function for {T(θ),α(t)}
in Y α

(θ). Therefore, ω-limit sets of points from Y α
(θ) lie within the set E of all

stationary solutions to (1). Our concern now is to prove that E is bounded
in Y 0.

Let
[
ũ
ṽ

]
∈ E . Then ṽ = 0, whereas ũ is an H2(Ω)-solution of the elliptic

problem {
−∆ũ = f(ũ), x ∈ Ω,
ũ = 0 on ∂Ω.

(25)

With the use of (7) it is easy to show that if ũ solves (25), then ‖ũ‖H1(Ω) ≤ c′′

where c′′ = c′′(Ω, f) > 0 is independent of ũ. Consequently, we have∥∥∥∥[ũṽ
]∥∥∥∥

Y 0

≤ c′′′,

[
ũ
ṽ

]
∈ E .(26)

Since each ω-limit set ω
([
u0

v0

])
, lies in E , is compact and attracts

[
u0

v0

]
∈

Y α
(θ) under {T(θ),α(t)} in Y α

(θ)-norm, Condition (26) ensures in particular that

lim sup
t→+∞

∥∥∥∥[uv
]

(t, u0, v0)
∥∥∥∥

Y 0

≤ c′′′,

[
u0

v0

]
∈ Y α

(θ).(27)

Therefore, the estimate (21) is asymptotically independent of initial data
from Y α

(θ) which completes the Proof of Assertion (i).
Part (ii) is a consequence of the smoothing action of {T(θ),α(t)}. Part (iii)

follows from Theorem 4. Finally, Part (iv) results from Lemma 4. Theorem 5
is thus proved. �

In the above considerations we assumed (18) and required that ρ in The-
orem 5 is less than n+4(1−θ)

n−2 . These enabled the solutions to reach the space
Y 1

(θ) and provided better control over the asymptotics.
Through the remaining part of this subsection let us assume merely that

(6) holds with ρ ∈
(
1, n+2

n−2

)
. If this is the case one may choose ε > 0
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arbitrarily small and satisfying ρ < n+2
n−2+4ε(1−θ) . This implies the inequality

ρ < n+2−4ερ(1−θ)
n−2 and justifies that we take

ρε < γ(ε) <
n+ 2− ρ(n− 2)

4(1− θ)
.(28)

Now, choosing ε, γ(ε) according to (28) and defining q = 2n
n+2−4γ(ε)(1−θ) we

obtain the estimate

‖u‖ρ
Lρq(Ω) ≤ const. ‖u‖ρ

H1(Ω)

and, consequently, we justify validity of the subordination condition∥∥∥∥F ([uv
]

(t, u0, v0)
)∥∥∥∥

Y
γ(ε)
(θ)−1

≤ g

(∥∥∥∥[uv
]

(t, u0, v0)
∥∥∥∥

Y 0

)
with an increasing function g(s) = const.′(1 + sρ), s ≥ 0. Since the gap
between γ(ε) and 1 + ε is less then 1, Lipschitz Condition (13) allows to
obtain local Y ε

(θ)-solutions for (11) and apply the scheme of Proposition 2

with Z0 = Y
γ(ε)
(θ)−1

and Zα := Y 1+ε
(θ)−1

= Y ε
(θ). Using similar arguments as in

Steps 1-4 of Theorem 5 we thus obtain the following result.

Theorem 6. If f satisfies (6) with ρ ∈
(
1, n+2

n−2

)
and the dissipativeness

Condition (7) holds, then there exists ε > 0 such that Conditions (i), (iii)
and (iv) of Theorem 5 hold with α = ε.

4.2. Subcritical case: θ = 1. In this section we restrict our attention to
the case θ = 1 studied previously by many authors (see [15], [13], [11],
[16]).

Remark 2. In the recent paper [16] the dimension of the global attractor
was estimated. One can find however in this paper rather very strange
errors. First, the author takes X1 ×X1 as the domain of A(1). However, if
the base space is Y 0, this operator is not closed with such a domain. This is
the case, when one needs to choose Y 1

(1) as the domain of A(1) following the
description given in [9]. In this case it is thus rather unknown if the solution
possesses the regularity stated in [16, Lemma 1 (ii)] for initial data from Y 0.
Next in the proof of [16, Theorem 2] the author says that the semigroup
{e−A(1)t} is compact. But this cannot be true because the resolvent of A(1)

is not compact. The latter may be easily seen if we look at the embeddings

of Y α
(1) spaces. Of course it is impossible for Y

1
2

(1) = X
1
2 ×X

1
2 to be compactly

embedded in Y 0 = X
1
2 ×X0.

Throughout the present subsection we shall consider functions f satisfying
subcritical growth; that is (6) with ρ < n+2

n−2 . In this particular case F
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takes Y 1
(1)−1

into Y
1
2

(1)−1
and is Lipschitz continuous in bounded sets (see [5,

Lemma 3]). This says that the map F is subcritical and Theorem 3 can be
rewritten in the following form.

Theorem 7. For any initial data
[
u0

v0

]
lying in a bounded subset B of Y 1

(1)−1

there exists a number τ = τ(B) and a unique 0-regular solution [0, τ ] 3 t 7→[
u
v

]
(t, u0, v0) ∈ Y 1

(1)−1
to (11) which depends continuously on the initial data

and such that[
u
v

]
(·, u0, v0) ∈ C

(
(0, τ ], Y

3
2

(1)−1

)
∩ C1

(
(0, τ ], Y

3
2

−

(1)−1

)
.

Proof. The theorem above is a consequence of the results reported in [12].
�

We remark further that local solutions from Theorem 7 are bounded in
the norm of Y 0 uniformly on bounded sets. As in the Proof of Theorem 5
one may show the estimate (29) below.

Lemma 5. Let
[
u
v

]
(·, u0, v0) be a solution obtained in Theorem 7. If f

satisfies (6) with ρ < n+2
n−2 and the dissipativeness Condition (7), then∥∥∥∥[uv
]

(t, u0, v0)
∥∥∥∥

Y 0

≤ c

([
u0

v0

])
,(29)

where c : R+ → R+ is a locally bounded function.

Our next step here is to prove that:

Lemma 6. Under the assumptions of Lemma 5 0-regular solutions from
Theorem 7 exist globally in time and the problem (11) defines a C0-semi-
group {T(1),0(t)} on Y 0 which has bounded orbits of bounded sets and is
asymptotically smooth.

Proof. The existence of a C0-semigroup with bounded orbits of bounded sets
follows from Lemma 5. To prove that {T(1),0(t)} is asymptotically smooth
we use the variation of constants formula

T(1),0(t)
[
u0

v0

]
= e

−A(1)−1
t
[
u0

v0

]
+
∫ t

0
e
−A(1)−1

(t−s)F
(
T(1),0(s)

[
u0

v0

])
ds.

Recall that e−A(1)−1
t decays exponentially and that in the subcritical case

f takes bounded subsets of X
1
2 into bounded subsets of X− 1

2
+δ, for some

δ > 0. From this we have that F is a compact map from Y 1
(1)−1

= Y 0 into
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Y
1
2

(1)−1
= Y(1)− 1

2

. Since e−A(1)−1
t is a bounded linear operator from Y

1
2

(1)−1
to

Y 1
(1)−1

we have that the operator

U(t)
[
u0

v0

]
=
∫ t

0
e
−A(1)−1

(t−s)F
(
T(1),0(s)

[
u0

v0

])
ds

as a map from Y 0 into Y 0 is compact. It follows from the results in [11]
that T(1),0(t) is asymptotically smooth as a sum of an exponentially decaying
semigroup with a compact family of maps. This completes the proof. �

As an immediate consequence of these lemmas and of Step 4 in Theorem 5
we have the following result.

Theorem 8. Under the assumptions of Lemma 5, {T(1),0(t)} has a compact
global attractor A(1),0 in Y 0.

The set A(1),0 is bounded in X
1
2 ×X

1
2 = Y

3
2

(1)−1
(see [10, Lemma 3.2.1]).

Furthermore, noting that {T(1),0(t)} is a dissipative C0-semigroup in Y 1
(1)−1

having bounded orbits of bounded sets, with simple computations based on
the variation of constants formula one can easily see that {T(1),α(t)} is a point
dissipative C0-semigroup in Y 1+α

(1)−1
with bounded orbits of bounded sets, for

each α ∈
[
0, 1

2

)
(see [10, Corollary 4.3.2]). The semigroups {T(1),α(t)} are

also asymptotically smooth which follows as in Lemma 6. This proves that:

Theorem 9. Under the assumptions of Lemma 5, the problem (11) defines
a C0-semigroup {T(1),α(t)} on Y 1+α

(1)−1
which possesses a compact global attrac-

tor A(1),α for each α ∈
[
0, 1

2

)
. Furthermore, A(1),0 is bounded in X

1
2 ×X

1
2

and A(1),α = A(1),0 for α ∈
[
0, 1

2

)
.

4.3. Attractors in the critical growth case: θ = 1. In this subsection
we shall consider the case when f satisfies (6) with the critical exponent
ρ = n+2

n−2 .

4.3.1. The case of strong dissipation. We begin from the simpler case
when the semigroup {T (t)} corresponding to (11) is exponentially decaying
and the attractor is a one point set {(0, 0)}.

Proposition 3. Under the strong dissipative condition

sf(s) ≤ 0, s ∈ R,(30)

Equation (11) defines a C0-semigroup on Y 0 which has a compact global
attractor A(1),0 = {(0, 0)}.

Proof. Note that both Theorem 7 and Lemma 5 remain true under the
assumptions of the present subsection. Therefore, there exists corresponding
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to (11) semigroup {T(1),0(t)} in Y 0 of global 0-regular solutions with bounded
orbits of bounded sets. Based on (30) we shall next prove that

(31)
∥∥∥∥T(1),0(t)

[
u0

v0

]∥∥∥∥2

Y 0

≤ h(r)e−Meδ(r)t,[
u0

v0

]
∈ Br = BY 0

([
0
0

]
, r

)
, t ≥ 0, r > 0,

where h(r) is described in (38) and Meδ(r) is described in (34) and (36). In
particular, {(0, 0)} is a unique equilibrium which attracts bounded subsets
of Y 0.

Following [3] we introduce a functional

Lδ

([
w1

w2

])
= L0

([
w1

w2

])
+ δ

∫
Ω
w1w2dx, δ ≥ 0,

[
w1

w2

]
∈ Y 0,(32)

where L0 is a standard Lyapunov functional to (1) given in (22). We remark
that as a consequence of (30) the integral

∫
Ω

∫ w1

0 f(s)dsdx is nonpositive.

Therefore, for δ sufficiently small the quantity
∥∥∥∥[w1

w2

]∥∥∥∥2

Y 0

is bounded by

8Lδ

([
w1

w2

])
(see (37) below).

Estimating in a standard way we have

d

dt
Lδ

(
T(1),0(t)

[
u0

v0

])
= −η‖A

1
2 v(t, u0, v0)‖2

L2(Ω) + δ‖v(t, u0, v0)‖2
L2(Ω)

+ δ

∫
Ω
u(t, u0, v0)

(
Au(t, u0, v0) + ηAv(t, u0, v0) + f(u(t, u0, v0))

)
dx

≤ −η
2
‖A

1
2 v(t, u0, v0)‖2

L2(Ω) + δ‖v(t, u0, v0)‖2
L2(Ω)

− δ

(
1− δη

2

)
‖A

1
2u(t, u0, v0)‖2

L2(Ω).

Applying next inequality ‖v‖L2(Ω) ≤ c 1
2
‖A

1
2 v‖L2(Ω) we obtain for each δ ∈(

0,min

{
η

3c21
2

, 1
η

})
the estimate

d

dt
Lδ

(
T(1),0(t)

[
u0

v0

])
≤ −δ

2
‖v(t, u0, v0)‖2

L2(Ω) −
δ

2
‖A

1
2u(t, u0, v0)‖2

L2(Ω).

(33)
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Since (30) implies in particular that f(0) = 0, Condition (6) ensures that

∃ec≥1

∣∣∣∣∫
Ω

∫ w1

0
f(s) ds dx

∣∣∣∣
≤ c̃

(
1 + ‖A

1
2w1‖

4
n−2

L2(Ω)

)
‖A

1
2w1‖2

L2(Ω), w1 ∈ H1
0 (Ω).

Defining

Mr = sup
{
‖A

1
2u(t, u0, v0)‖

4
n−2

L2(Ω)
;
[
u0

v0

]
∈ Br, t ≥ 0

}
,(34)

Mδ(r) =
δ

8c̃(1 +M
4

n−2
r )

, where c̃ ≥ 1 and δ ∈

0,min

 η

3c21
2

,
1
η


 ,

we may increase the right-hand side of (33) to get

d

dt
Lδ

(
T(1),0(t)

[
u0

v0

])(35)

≤ −Mδ(r)Lδ

(
T(1),0(t)

[
u0

v0

])
−Mδ(r)

∫
Ω

∫ u(t,u0,v0)

0
f(s)dsdx

+ δMδ(r)
∫

Ω
u(t, u0, v0)v(t, u0, v0)dx−

δ

4
‖v(t, u0, v0)‖2

L2(Ω)

− δ

4
‖A

1
2u(t, u0, v0)‖2

L2(Ω)

≤ −Mδ(r)Lδ

(
T(1),0(t)

[
u0

v0

])
+ δ

c212Mδ(r)

2
− 1

8

 ‖A
1
2u(t, u0, v0)‖2

L2(Ω)

+ δ

(
Mδ(r)

2
− 1

4

)
‖v(t, u0, v0)‖2

L2(Ω),

δ ∈

0,min

 η

3c21
2

,
1
η


 ,

[
u0

v0

]
∈ Br, t ≥ 0.

Let us next choose δ = δ̃ so small that both

(36) δ̃

c212Meδ(r)
2

− 1
8

 ‖A
1
2u(t, u0, v0)‖2

L2(Ω)

+ δ̃

(
Meδ(r)

2
− δ̃

4

)
‖v(t, u0, v0)‖2

L2(Ω) ≤ 0
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and

1
8

∥∥∥∥T(1),0(t)
[
u0

v0

]∥∥∥∥2

Y 0

≤ Leδ
(
T(1),0(t)

[
u0

v0

])
(37)

are satisfied. For such value of δ inequality (35) reads:

d

dt
Leδ
(
T(1),0(t)

[
u0

v0

])
≤ −Meδ(r)Leδ

(
T(1),0(t)

[
u0

v0

])
,

[
u0

v0

]
∈ Br, t ≥ 0

and we obtain the estimate∥∥∥∥T(1),0(t)
[
u0

v0

]∥∥∥∥2

Y 0

≤ 8Leδ
(
T(1),0(t)

[
u0

v0

])
≤ h(r)e−Meδ(r)t,

[
u0

v0

]
∈ Br, t ≥ 0

where

h(r) = 8 sup
{
Leδ
([
u0

v0

])
;
[
u0

v0

]
∈ Br

}
.(38)

The proof is complete. �

4.3.2. Nonlinear variation of constants formula. Our next concern
is to prove for a pair of problems (39), (40) given below the Alekseev’s
nonlinear variation of constants formula (42) (see [3, Theorem 2.2]). In
these considerations we shall need the following assumptions:
(H0) P is a sectorial, positive operator in a Banach space Z = Z0 with

the domain Z1 and for some α ∈ [0, 1) functions G1 : Zα → Z0,
G2 : Zα → Zα are such that G1 has continuous Frechét derivative and
G2 is Lipschitz continuous on bounded sets.

(H1) There exists a Banach space Y = Y0 densely embedded in Zα such
that P|Y0

(P|Y0
being a realization of P in Y 0) is sectorial and positive

in Y0 with the domain Y1 and G1, G2 are Lipschitz continuous on
bounded sets as the maps from Y0 into Y0.

For ξ ∈ Zα let z = z(t, ξ) be a solution (as in [12, Chapter 3]) to

ż + Pz = G1(z), t > 0, z(0) = ξ.(39)

Similarly, let z̃ = z̃(t, ξ) be a solution to
.

z̃ +P z̃ = G1(z̃) +G2(z̃), t > 0, z̃(0) = ξ.(40)

Lemma 7. Suppose that the requirements of (H0) and (H1) are satisfied.
Then, the following conditions hold:

The function (0,+∞)× Zα 3 (t, ω) → z(t, ω) ∈ Zα(41)
has continuous Frechét derivative,

z̃(t, ξ) = z(t, ξ) +
∫ t

0

∂z

∂ω
(t− s, z̃(s, ξ))G2(z̃(s, ξ))ds, t > 0.(42)
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Proof. Condition (41) is a consequence of [12, Corollary 3.4.6]. Next, since
z(t, ω) in (41) is a C1-function, using the chain rule we obtain

d

ds

[
z(t− s, z̃(s, ξ))

]
= − .

z (t− s, z̃(s, ξ)) +
∂z

∂ω
(t− s, z̃(s, ξ))

.

z̃ (s, ξ).(43)

For ξ ∈ Y0, assumptions of (H1) guarantee that z̃(s, ξ) ∈ Y1 and
.
z (0, z̃(s, ξ))

exists in Y0-norm. Since Y0 ⊂ Zα, the derivative
.
z (0, z̃(s, ξ)) exists in Zα-

norm and we have:

ż(t− s, z̃(s, ξ)) = lim
h→0+

z(t− s+ h, z̃(s, ξ))− z(t− s, z̃(s, ξ))
h

(44)

= lim
h→0+

z(t− s, z(h, z̃(s, ξ)))− z(t− s, z(0, z̃(s, ξ)))
h

=
∂z

∂ω
(t− s, z̃(s, ξ))ż(0, z̃(s, ξ)).

Connecting (43), (44), and (40) we get

d

ds

[
z(t− s, z̃(s, ξ))

]
=
∂z

∂ω
(t− s, z̃(s, ξ))

(
Pz(0, z̃(s, ξ))−G1(z(0, z̃(s, ξ)))

(45)

− P z̃(s, ξ) +G1(z̃(s, ξ)) +G2(z̃(s, ξ))
)

=
∂z

∂ω
(t− s, z̃(s, ξ))G2(z̃(s, ξ)).

Integrating both sides of (45) we show that (42) holds for ξ ∈ Y0.
Now choose ξ0 ∈ Zα and consider a sequence {ξn} ∈ Y0 convergent to ξ0

in Zα. We know that

z̃(t, ξn) = z(t, ξn) +
∫ t

0

∂z

∂ω
(t− s, z̃(s, ξn))G2(z̃(s, ξn))ds, t > 0, n ∈ N,

(46)

where z(·, ξn) and z̃(·, ξn) tend in Zα to z(·, ξ0) and z̃(·, ξ0) respectively.
Since convergence of z(·, ξn) and z̃(·, ξn) is uniform with respect to t varying
in compact subintervals of [0,+∞) (see [12, Theorem 3.4.1]), passing to the
limit in (46) we obtain (42) for ξ ∈ Zα. The proof is complete. �

Remark 3. Lemma 7 remains true if instead of (H0) and (H1) we assume
that (H ′

0) and (H1) hold.

(H ′
0) P is a sectorial, positive operator in a Banach space Z = Z0 with the

domain Z1, α ≥ β ≥ 0 satisfy α− β ∈ [0, 1) and functions G1 : Zα →
Zβ , G2 : Zα → Zα are such that G1 has continuous Frechét derivative
and G2 is Lipschitz continuous on bounded sets.

Proof. Indeed, since P|
Zβ

(
P|

Zβ
being the realization of P in W 0 := Zβ

)
is a sectorial, positive operator with D

(
P|

Zβ

)
= Zβ+1 =: W 1 (see [10,



ATTRACTORS FOR STRONGLY DAMPED WAVE EQUATIONS 305

Proposition 1.3.8]) and, for α′ = α − β, Wα′ = (Zβ)α−β = Zα, (see [1, p.
260]) we repeat the arguments of Lemma 7 with P|

Zβ
, W 0 and Wα instead

of P , Z0, Zα. �

The next lemma shows validity of the Alekseev’s formula for a pair of
sectorial problems (see (47), (48) below) connected to the strongly damped
wave Equation (1).

Lemma 8. Let n = 3, 4, 5, 6. Suppose that:
• f = f1 + f2, fi : R → R, i = 1, 2,
• f1 satisfies (6) with ρ = n+2

n−2 , f1 has second order derivative, |f ′′1 (s)| ≤
c(1 + |s|

n+2
n−2

−2), and, in addition, sf1(s) ≤ 0 for s ∈ R,
• f2 satisfies (6) with ρ ≤ n

n−2 and, moreover, lim sup|s|→∞
f2(s)

s ≤ 0.
Then:

(i) Assumptions of (H ′
0) hold with P = A(1)−1

, Z0 = Y(1)−1
, α = 1, β = 1

2 ,
and

G1

([
w1

w2

])
=
[

0
F1(w1)

]
, G2

([
w1

w2

])
=
[

0
F2(w1)

]
,

where F1, F2 are Nemitskĭı maps corresponding to f1 and f2 respec-
tively.

(ii) Assumptions of (H1) hold with α = 1, Y0 = X1×X0, Y1 = X1×X1,
and P|Y0

= A(1)|
X1×X0

.

(iii) Alekseev’s formula (42) holds with ξ :=
[
u0

v0

]
, z̃ := T (·)

[
u0

v0

]
denoting

the solution to
d

dt

[
u
v

]
+A(1)−1

[
u
v

]
=
[

0
F1(u)

]
+
[

0
F2(u)

]
, t > 0,

[
u
v

]
t=0

=
[
u0

v0

]
,(47)

and z := S

(
·,
[
u0

v0

])
denoting the solution to

d

dt

[
u
v

]
+A(1)−1

[
u
v

]
=
[

0
F1(u)

]
, t > 0,

[
u
v

]
t=0

=
[
u0

v0

]
.(48)

(iv) S
(
t,

[
u0

v0

])
exponentially decays to 0, uniformly for

[
u0

v0

]
varying in

bounded subsets of Y 0.

Proof. The Proof of (i) is standard. For the validity of (ii) the crucial prop-
erty is thatA(1)|X1×X0

defines a sectorial operator (see [15, Proposition 2.2]).

Condition (iii) follows from Lemma 7. Finally, the convergence in (iv) is a
consequence of Proposition 3. �
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4.3.3. Existence theorem. With the use of Alekseev’s formula we may
finally obtain the existence of a compact global attractor for the semigroup
{T (t)} corresponding to (1) in the critical growth case.

Theorem 10. Under the assumptions of Lemma 8 and the additional as-
sumption that f2 is continuously differentiable function with |f ′2| ≤ c, the
problem (47) defines in Y 0 a C0-semigroup {T (t)} of 0-regular solutions
which possesses a compact global attractor in Y 0.

Proof. The assertions of Theorem 7 and Lemma 5 remain valid under the as-
sumptions of the present theorem. The existence of a C0-semigroup {T (t)}
in Y 0 with bounded orbits of bounded sets is thus straightforward. If we
proved that {T (t)} is asymptotically smooth, then the existence of a Lya-
punov functional L0 (see (22)) and the boundedness of the set of stationary
solutions would guarantee that {T (t)} is point dissipative. Consequently,
{T (t)} would possess a compact global attractor in Y 0.

To prove that {T (t)} is asymptotically smooth we apply Lemma 8 (iii)
decomposing {T (t)} so that

T (t)
[
u0

v0

]
= S

(
t,

[
u0

v0

])
+ U(t)

[
u0

v0

]
,

[
u0

v0

]
∈ Y 0, t ≥ 0,

where S
(
·,
[
u0

v0

])
is a solution to (48) and

U(t)
[
u0

v0

]
=
∫ t

0

∂S

∂ω

(
t− s, T (s)

[
u0

u0

])
G2

(
T (s)

[
u0

v0

])
ds.

By Lemma 8 (iv) to justify asymptotic smoothness of {T (t)} we only need
to prove that U(t) : Y 0 → Y 0 is a compact map for each t > 0 (see [11,
Lemma 3.2.3]).

As a consequence of the growth restriction for f2, F2 takes bounded
subsets of X

1
2 into bounded subsets of Xδ for any δ ∈

(
0, 1

4

)
(see [3,

Lemma 5.2]). This suggests that it might be possible to take advantage
of the smoothing properties of analytic semigroups and study the equation

for ∂S
∂ω

(
t− s, T (s)

[
u0

u0

])
G2

(
T (s)

[
u0

v0

])
in another space which would be

slightly smoother than the original base space Y 0.
For this purpose fix certain δ0 ∈

(
0, 1

4

)
and set E0 = E = X

1
2
+δ0 ×Xδ0 .

Then A(1) = A(1)|
E0

is sectorial on E0 (see [13, Theorem 1.1]) and we

verify (similarly as in [5, Proposition 1 and Lemma 1]) that A(1) = A(1)|
E0

considered on a base space E0 with the domain E1 =
{[

φ
ψ

]
∈ X

1
2
+δ0 ×

X
1
2
+δ0 : φ+ηψ ∈ X1+δ0

}
is maximal accretive with zero in the resolvent set.
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Generally speaking, it may be observed that a number of facts previously
proved for A(1) defined on Y 0 with the aid of A : X1 → X, may be reproved
for A(1) = A(1)|

E0
, that is for A(1) redefined on E0 with the aid of A|

Xδ0
:

X1+δ0 → Xδ0 instead of A : X1 → X (see (3));

A(1)|
E0

[
ϕ
ψ

]
=
[

−ψ
A|

Xδ0
(ϕ+ ηψ)

]
= A(1)

[
ϕ
ψ

]
for

[
ϕ
ψ

]
∈ E1.

For example, since A|
Xδ0

is selfadjoint and positive definite on E0, we
may use the general results of [9] to get the characterization

Eα = D((A|
Xδ0

)
1
2 )×D((A|

Xδ0
)α) = [Xδ0 , X1+δ0 ] 1

2
× [Xδ0 , X1+δ0 ]α

= X
1
2
+δ0 ×Xα+δ0 , α ∈

[
0,

1
2

]
.

In particular E
1
2 is thus a product space X

1
2
+δ0 ×X

1
2
+δ0 , so that repeating

part of the proof of [5, Lemma 1] we get the inclusion

E
1
2
−1 = E− 1

2
⊃ X

1
2
+δ0 ×X− 1

2
+δ0 .

By our assumptions, F1 : X
1
2 → X− 1

2 and consequently alsoG1 : Y 1
(1)−1

→

Y
1
2

(1)−1
are Frechét differentiable functions and

S = S(·, V0) =
[
w
ẇ

]
,

where V0 ∈
{
T (s)

[
u0

v0

]
: s > 0,

∥∥∥∥[u0

v0

]∥∥∥∥
Y 0

≤ r

}
=: Σr,

fulfills the relations

dS

dt
(t, V0) +A(1)−1

S(t, V0) = G1(S(t, V0)), t > 0, S(0, V0) = V0.

Consequently, from [12, Theorem 3.4.4] we know that V = ∂S
∂ω (·, V0)G2(V0)

is a mild solution in Y 1
(1)−1

of the equation

dW
dt

+A(1)−1
W = G′1(S(t, V0))W, t > 0,(49)

where

W =
[
χ
χ̇

]
, G′1(S(t, V0))W=

[
0

f ′1(w(t))χ

]
=: H(t,W) and W(0) = G2(V0).
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Equation (49) has a uniqueness property since H : R+ × Y 0 → Y
1
2

(1)−1
is

Hölder continuous with respect to the first argument and Lipschitz contin-
uous with respect to the second argument uniformly on bounded subsets of
R+ × E0.

If we justified that the equation

dW
dt

+ (A(1)|
E0

)−1W = G′1(S(t, V0))W, t > 0, W(0) = G2(V0),(50)

has a unique solution in E0, it would have to coincide with V and we could
study V as the solution to (50). If we could additionally estimate the solution
to (50) in E0, we would be able finally to justify compactness of U(t) : Y 0 →
Y 0 using the fact that bounded subsets of E0 are precompact in Y 0.

For the solvability of (50) with the initial data in E0 it suffices to justify

that H : R+ × E0 → E
1
2
−1 is Hölder continuous with respect to the first

argument and Lipschitz continuous with respect to the second argument
uniformly on bounded subsets of R+ × E0. We remark, omitting detailed
calculations, that the Hölder continuity follows from the fact that (since V0

belongs to Y
1
2

(1)) S(·, V0) : R+ → Y 0 is Hölder continuous on bounded sets as
well as from the existence of f ′′ with the prescribed growth. The Lipschitz
continuity is a result of the growth restriction for f ′.

We next find the estimate

‖f ′1(w(t))χ‖
X− 1

2+δ0
≤ h

(
‖w(t)‖

X
1
2

)(
1 + ‖χ‖

X
1
2+δ0

)
, χ ∈ X

1
2
+δ0 , t ≥ 0,

(here h : R+ → R+ is a nondecreasing function) which shows that V is the
global solution in E0 to the problem (50), where the growth of nonlinear
term H(t,W) is sublinear, i.e.,

‖H(t,W)‖
E

1
2
−1

≤ h(‖S(t, V0)‖Y 0)(1 + ‖W(t)‖E0), t > 0.(51)

Since G2(V0) ∈ E0 and since ‖G2(V0)‖E0 ≤ C(‖V0‖Y 0) for some contin-
uous function C(·) and since both {T (t)} (which controls V0) and {S(t)}
(which enters the crucial estimate (51)) have orbits of bounded subsets of
Y 0 bounded in the norm of Y 0, after standard calculations based on the
integral counterpart of (50) we obtain that

‖W(t)‖E0 ≤ const.(r, τ), t ∈ [0, τ ], V0 ∈ Σr, τ ≥ 0, r > 0.(52)

What was said above makes clear that we may substitute W = V into the
left-hand side of (52). Compactness of U(t) follows thus from (52) and
from compactness of the embedding E0 ⊂ Y 0. The Proof of Theorem 10 is
complete. �
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cas e de Computação, Universidade de São Paulo, Brazil. He would like to
acknowledge the great hospitality of the people from this Institution.

References

[1] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, 1995,
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