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Following Parreau’s work in 1951-52, we give a unified defi-
nition of parabolic Riemann surfaces, with or without bound-
ary. A surface is parabolic under the unified definition implies
that it is either relative parabolic or parabolic under the clas-
sical definitions.

Then we study the conformal structures of noncompact,
proper, branched minimal surfaces in R3 and prove several
criteria of such surfaces (with or without boundary) being
parabolic. Using these criteria we then prove two graph the-
orems, they are noncompact versions of the classical graph
theorem of Radó, generalized in various directions.

1. Introduction.

In this paper we will prove that certain complete branched minimal surfaces
are actually minimal graphs. For the convenience of readers, we first describe
surfaces.

A parametrized surface in R3 is a C1 mapping X : M → R3, where
M is a 2-dimensional manifold and X = (X1, X2, X3). The topology of the
surface is the topology of M . Let (u, v) be a local coordinate of M , and

Xu =
∂X

∂u
=

(
∂X1

∂u
,
∂X2

∂u
,
∂X3

∂u

)
,

etc., then p ∈ M is a regular point of the surface if and only if

(Xu ∧Xv)(p) 6= (0, 0, 0),(1)

where ∧ is the external product in R3. Otherwise p is a singular point of
the surface. If every point of M is a regular point, X : M → R3 is called a
regular surface, or an immersion. If X is an immersion and also a one-
to-one map, then X is called an embedding and X(M) is an embedded
surface. The inverse mapping theorem guarantees that any surface is locally
an embedding at a regular point.

Following [12], we say that a surface X : M → R3 is complete if and only
if any path α ⊂ M that leaves every compact subset of M , then X(α) ⊂ R3

has infinite length. Note that it is possible that ∂M 6= ∅.
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The spherical map (unit normal map) at a regular point of a surface
X : M → R3 is given by

N(p) =
Xu ∧Xv

|Xu ∧Xv|
(p) ∈ S2.(2)

A surface X : M → R3 is minimal if and only if X is a conformal har-
monic mapping. Let 4M be the Laplace operator on M and z = u + iv
be a local complex coordinate of the Riemann surface M , i.e., (u, v) is an
isothermal coordinate, then X is harmonic if and only if for j = 1, 2, 3,

4M Xj ≡ 0, or equivalently
∂2Xj

∂u2
+

∂2Xj

∂v2
≡ 0.(3)

If we write in vector form, then X is harmonic if and only if

4M X ≡ (0, 0, 0), or equivalently Xuu + Xvv ≡ (0, 0, 0).(4)

Using U • V and |U | =
√

U • U to denote the inner product and the norm
in R3, X is conformal if and only if

|Xu|2 ≡ |Xv|2, Xu •Xv ≡ 0.(5)

Thus p ∈ M is a singular point if and only if |Xu|2(p) = |Xv|2(p) = 0.
It is well-known that a minimal surface may have at most isolated sin-

gular points, also called branch points in minimal surface theory. A nice
property of minimal surface is that the spherical map N of a minimal sur-
face can be analytically extended to branch points. A minimal surface with
singular points is called a branched minimal surface. For more details,
please see [18].

Our Riemann surface M may have boundary, i.e., ∂M 6= ∅. Denote IntM
the interior of M , we will alway assume that M = IntM ∪ ∂M .

Let X : M → R3 be a branched minimal surface. At any regular point
p ∈ IntM , X(M) can be locally expressed as a minimal graph generated
by a function u : Ω ⊂ R2 → R satisfying the minimal surface equation

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0. (x, y) ∈ Ω.(6)

But globally a complete minimal surface being a minimal graph is a very
restricted hypothesis. For example, if u is defined in the whole R2, then
u must be an affine function and the surface is a plane, this is the famous
Bernstein theorem [2].

For compact minimal surfaces, a famous graph theorem is Radó’s theorem,
[20]. It states that if X : D → R3 is a compact minimal disk and X(∂D) can
be one-to-one orthogonally projected onto a planar convex Jordan curve δ,
then X(D) is a minimal graph over the convex planar domain bounded by
δ.

In [13], Meeks generalized Radó’s theorem to any compact minimal sur-
face, regardless the topology, and replaced the assumption of one-to-one
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orthogonal projection by monotone central or orthogonal projection. More-
over, the surface may have branch points.

In this paper we prove two noncompact versions of Radó’s graph theorem.
To state our results, we need another general terminology. Let f : M → N

be continuous and M and N be Hausdorff. We say that f is proper if
and only if for any compact set C ⊂ N , f−1(C) is also compact. Thus
X : M → R3 is proper implies that as a surface, X : M → R3 is complete.

Theorem 1.1. Let δ be a C2 noncompact, non-flat, complete convex curve
in R2 and Ω be the convex domain bounded by δ. Let M be a simply connected
Riemann surface with C1,α boundary and X : M → R3 be a branched proper
minimal surface such that X(M) ⊂ Ω×R and X on ∂M is a diffeomorphsim
onto a C1,α graph over δ = ∂Ω, then X(M) is a minimal graph over Ω.

Remark 1.1. Nitsche has proved that the Dirichlet problem with contin-
uous boundary value f : δ = ∂Ω → R is solvable, see [16]. Collin [3] has
shown that there may exist more than one solution with the same bound-
ary value. Thus Theorem 1.1 can be stated as that all simply connected
solutions to the Plateau problem with boundary Γ = X(∂M) and contained
in Ω × R are graphs. An interesting problem is to determine how many
solutions are there.

Theorem 1.1 is a generalization of Radó’s theorem in that the projection
is no longer compact. Another possible generalization of Radó’s theorem is
that although the surface is noncompact, the projection of the boundary is
compact. The most famous example of such unbounded minimal surfaces
is the Jenkins-Serrin minimal graph, it is a minimal graph defined on a
domain Ω bounded by a convex 2n-gon (maybe reduced, that is, Q is a k-
gon, 3 ≤ k ≤ 2n), with alternative boundary segments Aj , Bj , 1 ≤ j ≤ n,
such that u(x, y) → ∞ when (x, y) approachs Aj and u(x, y) → −∞ when
(x, y) approachs Bj . When n = 2 and Ω is a square, the Jenkins-Serrin
graph is Scherk’s surface, see pages 124, 151, and 156 of Volume 1 of [5] for
the pictures of Scherk’s surface. It is Finn who first studied the Dirichlet
problem with infinite boundary value in a line segment of the boundary, see
[7].

Jenkins and Serrin proved in [10] that such a minimal graph exists if and
only if

n∑
j=1

|Aj | =
n∑

j=1

|Bj |,(7)

where |Aj | is the length of Aj , etc.
Looking at the surface, we see that a Jenkins-Serrin graph is an embedded

simply connected minimal surface bounded by 2n straight lines. We will
prove that the Jenkins-Serrin minimal graphs are essentially the only such
minimal surfaces, even under much relaxed hypotheses.
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We need more notations. Let P : R3 → R2 be the perpendicular projec-
tion. Let Q ⊂ R2 be a convex k-gon, k ≥ 3. Let qj , 1 ≤ j ≤ n, n ≥ k, be
boundary points of Q including all the vertices, labeled by counterclockwise
orientation. Let lj,j+1 be the consecutive boundary line segments of Q, con-
necting qj and qj+1, 1 ≤ j ≤ n, here we denote qn+1 = q1. Let Lj be the
straight lines passing through qj and be perpendicular to R2, 1 ≤ j ≤ n.

Theorem 1.2. Let X : M → R3 be a proper, branched, simply connected
minimal surface such that Ω := P ◦X(IntM) ⊂ R2 is a domain bounded by
a convex k-gon Q, k ≥ 3.

If X maps ∂M one-to-one onto the parallel lines ∪n
j=1Lj, then X(IntM)

is a Jenkins-Serrin minimal graph over Ω. Hence such a proper branched
minimal surface exists if and only if n = 2m ≥ 4 and

m∑
j=1

|l2j−1,2j | =
m∑

j=1

|l2j,2j+1|.(8)

In particular, X is a minimal embedding. Furthermore, let D ⊂ C be the
unit disk, then conformally

M = D− ∪n
j=1{eiθj}, 0 = θ1 < θ2 < · · · < θn < 2π.

Remark 1.2. In [12], Theorem II.2, it is proved that the Scherk’s surface
is the only complete minimal surface whose interior is a graph over a par-
allelogram and is bounded by four parallel straight lines over the veritices
of the parallelogram. The conditions in Theorem 1.2 are much weaker than
the conditions in [12].

The proofs of the above graph theorems are based on the concept of
parabolic Riemann surface. The concept is very important in the study of
minimal surfaces.

Let S be a connected noncompact Riemann surface. If ∂S = ∅, then S is
parabolic if and only if on S there are no nonconstant negative subharmonic
functions, see page 204 of [1] and page 164 of [6]. Otherwise, S is hyperbolic.
Parreau gave an equivalent definition of parabolic surfaces, see page 117 of
[19].

If ∂S 6= ∅, S is relative parabolic if and only if there are no nonnegative
bounded harmonic functions vanishing on ∂S, see page 212 of [1]. Note that
if ∂S is regular (i.e., there exists a local barrier at each point of ∂S) for
solving Dirichlet problem by Perron’s method, see for example, page 139 of
[1] or page 25 of [8], then we can replace harmonic by subharmonic in the
definition of relative parabolic. Parreau took this definition, see page 118 of
[19].

Regardless ∂M = ∅ or ∂M 6= ∅, in this paper we will follow Parreau to use
a unified definition of a noncompact Riemann surface M being parabolic.
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Definition 1.1. A noncompact Riemann surface M is parabolic if and only
if there are no nonconstant nonnegative bounded subharmonic functions
vanishing on ∂M . Otherwise M is hyperbolic.

Remark 1.3. Note that when ∂M = ∅, the last hypothesis is void.
This unified definition is equivalent to the classical definitions in cases of

∂M = ∅ or M has regular boundary as mentioned above. In general, if ∂M 6=
∅, M is parabolic under our definition must be relative parabolic under
the classical definition; while M is relative parabolic under the classical
definition may not be parabolic under our definition.

On a relative parabolic or parabolic Riemann surface under the classical
definitions, bounded subharmonic functions satisfy the maximum principle,
see for example, pages 204 and 214 of [1] and pages 164-5 of [6]. Under the
unified definition of parabolic surfaces, the above maximum principle still
holds.

Since a minimal surface has harmonic coordinate functions and holomor-
phic Gauss map, if we know that the surface is parabolic, then we can get
some inferences from the boundary behaviour of the surface.

For example, if u satisfies the minimal surface equation over R2, M =
{(x1, x2, x3) ∈ R3 : x3 = u(x1, x2)}, then both tan−1 ux1 and tan−1 ux2

are bounded harmonic functions on M . If we know that M is parabolic, as
proved by Nitsche in [14] and [15], also see §5 of [18], then ux1 and ux2 must
be constant functions, therefore, M must be a plane. This is an alternative
proof of the Bernstein Theorem.

Many authors have studied criteria of a minimal surface to be parabolic,
and then use the parabolicity to obtain related results. For example, Collin
and Krust in [4] used parabolicity to prove that if u satisfies the minimal
surface equation in a strip, and has affine boundary value, then the graph of
u must be a piece of a helicoid. Rodŕıguez and Rosenberg also established
criteria of parabolic surfaces in [21], [22], and [23].

We will establish some criteria of proper minimal surfaces to be parabolic
in the next section. These criteria are simple and interesting in their own
right. We will also give a simple proof of the Collin-Krust theorem. In the
end of Section 2, we make a conjecture. Sections 3 and 4 are contributed to
the proofs of Theorems 1.1 and 1.2. In Section 5 we discuss briefly the higher
dimensional generalizations of parabolicity and criteria proved in Section 2.

2. Criteria of parabolicity.

Lemma 2.1. Let ~n ∈ S2 and X : M → R3 be an noncompact branched
minimal surface. If X • ~n is a proper function, then M is parabolic.

Proof. Select a coordinate system such that ~n = (0, 0, 1) and X = (X1, X2,
X3). Then X3 is proper.
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Suppose that w is a nonnegative bounded subharmonic function vanishing
on ∂M . If w is not a constant function, then we may assume that supM w =
1.

Let C0 = X−1
3 (0). Since X3 is proper, C0 is compact. Take m =

maxp∈C0 w(p) if C0 6= ∅, or m = 0. Since C0 is compact, by the max-
imum principle for subharmonic functions on compact manifold we have
0 ≤ m < 1.

For any a ∈ R, let Ma = X−1
3 ((−∞, a]), Ma = X−1

3 ([a,∞)), and Md
c =

Mc ∩Md, −∞ < c < d < ∞. Since X3 is proper, Md
c is compact.

For any a > 1, consider the superharmonic function

ua(p) = a−1X3(p)− w(p) + m, p ∈ M.

We claim that ua ≥ 0 on M0. In fact, ua(p) ≥ 0 for p ∈ Ma. On the compact
set Ma

0 , since ua ≥ 0 on ∂Ma
0 , by the minimum principle for superharmonic

functions on compact manifold, ua ≥ 0 on Ma
0 . Therefore, ua ≥ 0 on M0.

Since a > 1 was arbitrary, letting a → ∞, we see that w ≤ m on M0.
Similarly, w ≤ m on M0. Therefore, w ≤ m < 1 on M , a contradiction
to the fact that supM w = 1. This contradiction proves that w must be a
constant. �

Let Pt = {(x1, x2, x3) ∈ R3 : x3 = t}, t ∈ R. For t > 0, let C(t) =
{(x1, x2, x3) ∈ R3 : x2

1 + x2
2 ≤ t2}.

Lemma 2.1 has two immediate corollaries.

Corollary 2.1. Let X : M → R3 be an noncompact, proper, branched min-
imal surface such that X(M) ⊂ Ω×R, where Ω is a bounded planar domain.
Then M is parabolic.

Proof. Let ~n be the normal direction of Ω, we may assume that ~n = (0, 0, 1)
and Ω ⊂ P0. We need only prove that X3 is proper. Let C ⊂ P0 be
compact and Ω ⊂ C. Let I ⊂ R be compact then X−1

3 (I) ⊂ X−1(C × I) is
compact. �

Corollary 2.2. Let X : M → R3 be an noncompact, proper, branched min-
imal surface. If for every t ∈ R, X(M)∩Pt is compact, then M is parabolic.

Proof. We only need prove that X3 is proper. In fact, let d(t) be the di-
ameter of M ∩ Pt, then d(t) is a continuous function of t. Let I ⊂ R
be a compact interval, then for some D > 0, d(t) ≤ D for t ∈ I. Thus
X−1

3 (I) ⊂ X−1(C(2D) × I). Since X is proper, X−1(C(2D) × I) is com-
pact. Therefore, X−1

3 (I) is compact. �

Remark 2.1. The proper condition is necessary, since there are non-proper
minimal surfaces contained in a slab S = {(x1, x2, x3) : 0 < x3 < 1} such
that X(M) ∩ Pt is compact. See [11] and [24].
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The next corollary is obvious.

Corollary 2.3. Let X : M → R3 be an noncompact, proper branched min-
imal annulus. If for every t ∈ R, X(M) ∩ Pt is a Jordan curve, then con-
formally M = C− {0}.

Theorem 2.1. Let X : M → R3 be a connected, noncompact, proper
branched minimal surface, if there are two different planes P and Q, P∩Q 6=
∅, such that (P ∪Q) ∩X(M) is compact, then M is parabolic.

Proof. Select coordinates (x1, x2, x3) of R3, such that P = {x1 = 0}, Q =
{x2 = 0}. Such a coordinate system is not necessarily orthonormal. Under
this coordinate system, X = (X1, X2, X3) and each component is harmonic.

Let w be a nonnegative bounded subharmonic function vanishing on ∂M .
If w is not constant, we may assume that supM w = 1. Since X is proper
and X(M) ∩ (P ∪ Q) is compact, X−1(P ∪ Q) = X−1[X(M) ∩ (P ∪ Q)] is
compact. If (P ∪ Q) ∩X(M) = ∅, let m = 0. If (P ∪ Q) ∩X(M) 6= ∅, let
m = maxX−1(P∪Q) w. By the maximum principle for subharmonic functions
on compact manifold, in both cases we have 0 ≤ m < 1.

For any a > 1, b > 1, define a superharmonic function

ua,b(p) = a−1X1(p) + b−1X2(p)− w(p) + m, p ∈ M.

We claim that ua,b ≥ 0 on X−1([0,∞)×[0,∞)×R). In fact, on X−1(([a,∞)×
[0,∞)×R)∪([0,∞)×[b,∞)×R)), ua,b ≥ 0. On Da,b = X−1([0, a]×[0, b]×R),
ua,b is a bounded superharmonic function and ua,b ≥ 0 on ∂Da,b. By Corol-
lary 2.1, Da,b is either compact or parabolic. Thus by the minimum princi-
ple for bounded superharmonic functions on compact or parabolic surfaces,
ua,b ≥ 0 on Da,b.

Letting a, b →∞, we see that w ≤ m on X−1([0,∞)× [0,∞)×R). Simi-
larly, we can prove that w ≤ m on X−1((−∞, 0]×[0,∞)×R), X−1((−∞, 0]×
(−∞, 0]× R), and X−1([0,∞)× (−∞, 0]× R).

Therefore, w ≤ m < 1 on M , a contradiction to supM w = 1. So w must
be a constant. �

Collin and Krust in [4] used the parabolic property of M to prove that if
Ω = {(x1, x2) ∈ R2 : 0 < x1 < 1} and u : Ω → R has affine boundary values
and satisfies the minimal surface equation, then the graph of u is a piece
of a helicoid. Their proof of parabolicity is quite involved. We now give a
simple proof of the Collin-Krust theorem, a different proof based on PDE
method can be found in [9]. First an easy corollary of Theorem 2.1.

Corollary 2.4. Let Ω = {(x1, x2) ∈ R2 : 0 < x1 < 1} be a strip and
X : M → R3 be a minimal surface that is a graph over Ω, then M is
parabolic.
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Proof. Since X is a homeomorphism of M to a closed subset of R3, clearly X
is proper. Take P as any plane parallel to the x1x3-plane and Q = {x1 = 2},
then (P ∪Q) ∩X(M) is compact. �

Theorem 2.2 (Collin-Krust [4]). Let Ω = {(x1, x2) ∈ R2 : 0 < x1 < 1} be
a strip and u ∈ C2(Ω) ∩ C0(Ω) satisfies the minimal surface equation in Ω
and u has affine boundary values, then the minimal graph generated by u is
a piece of a helicoid.

Proof. Let M := {(x1, x2, u(x1, x2)); (x1, x2) ∈ Ω} ⊂ R3 be the simply
connected minimal graph generated by u. Corollary 2.4 shows that M is a
parabolic Riemann surface.

By assumption, ux2 is constant on each boundary component of M , that
is there are constants C1 and C2 such that tan−1 ux2(0, x2) ≡ C1 and
tan−1 ux2(1, x2) ≡ C2.

Let 4M be the Laplace operator on M , in the (x1, x2) coordinate 4Mφ =
0 if and only if

(1 + u2
x2

)φx1x1 − 2ux1ux2φx1x2 + (1 + u2
x1

)φx2x2 = 0.

It is not hard to calculate that 4M tan−1 ux2 = 0, Bernstein first observed
this in [2]. Note that 4Mx1 = 0. Since tan−1 ux2 and (C2 − C1)x1 + C1

are both bounded and have the same boundary value, by the maximum
principle for bounded harmonic functions on parabolic surfaces, we have

tan−1 ux2(x1, x2) = (C2 − C1)x1 + C1, (x1, x2) ∈ Ω.

The above formula shows that each curve (c, x2, u(c, x2)) ⊂ M is a straight
line, 0 ≤ c ≤ 1. Therefore, M is a ruled minimal surface. It is well-known
that the only ruled minimal surface is a helicoid, see for example, pages
17-18 of [18]. �

We will prove one more criterion of parabolic surfaces. First we define
that a domain Ω to be a proper domain if under an orthogonal coordinate
(x1, x2),

Ω = {(x1, x2) ⊂ R2 : f1(x2) < x1 < f2(x2), 0 < x2 < ∞},(9)

where f1 and f2 are continuous functions defined on [0,∞) such that f1(t) <
f2(t) for any t ∈ (0,∞).

Theorem 2.3. Let Ω be a proper domain and X : M → R3 be a noncom-
pact, proper branched minimal surface such that X(M) ⊂ Ω×R, then M is
parabolic.

Proof. Let w be a nonnegative bounded subharmonic function vanishing on
∂M . Without loss of generality, we may assume that 0 ≤ w ≤ 1. Define
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Ht = {x2 ≤ t} for any t ∈ R. Let Mt := X−1(Ht). For t > 0, define a
superharmonic function

ut(p) = t−1X2(p)− w(p), p ∈ M.

Since X2(p) ≥ 0, ut ≥ 0 on the boundary of Mt. Since Ω is proper, ut is
bounded on Mt. By Corollary 2.1, Mt is parabolic hence by the maximum
principle for bounded harmonic functions on parabolic surfaces, ut ≥ 0 on
Mt. For p ∈ M − Mt, X2(p) > t, hence ut(p) > 0. We have proved that
ut ≥ 0 on M . Since t > 0 was arbitrary, letting t → ∞, we have w(p) ≤ 0
for any p ∈ M , thus w ≡ 0. Since w was an arbitrary nonnegative bounded
subharmonic function vanishing on ∂M , M is parabolic. �

Theorem 2.3 has an immediate corollary. First we define a sector domain
Ωα ⊂ R2 to be the convex domain bounded by two rays issued from the
same point with angle 0 < α < π. Therefore, Ωα is a proper domain.

Corollary 2.5. Let X : M → R3 be a noncompact, proper branched min-
imal surface such that X(M) ⊂ Ωα × R, 0 < α < π, then M is parabolic.

Finally, we would like to make a conjecture:

Conjecture 2.1. Let X : M → R3 be a proper branched minimal surface
of finite genus, then M is parabolic.

3. Proof of Theorem 1.1.

For 0 < α < π, let Ωα be the sector domain defined by

Ωα =
{

(x1, x2) ∈ R2 : x2 > 0; |x1| < x2 tan
α

2

}
.(10)

Then since δ is non-flat, without loss of generality we may assume that Ω ⊂
Ωα. Hence by Corollary 2.5 M is parabolic. Since M is simply connected and
with a connected boundary of measure greater than zero, we may assume
that conformally M = D− {1}.

Let τ : S2 − {(0, 0, 1)} → C be the stereographic project and g := τ ◦N
be the Gauss map of X : M → R3. It is well-known that X : M → R3 is
minimal if and only if g is meromorphic. Define

I±α :=
{

eiθ ∈ S1 ⊂ C :
α

2
< ±θ < π − α

2

}
, Iα = I+

α ∪ I−α .

We claim that there is an open arc β ⊂ Iα such that g(M) ∩ β = ∅. To
prove this claim, we need a lemma.

Lemma 3.1. Let u : D − {1} → R be a continuous function such that u
is harmonic in D, u > C for some constant C, and limz→1, z∈∂D u(z) = ∞.
Then limz→1 u(z) = ∞.
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Proof. Let v = u−C+1 and w = 1/v, then 0 < w < 1 and w is subharmonic
in D. Clearly limz→1, z∈∂D w(z) = 0, so we can define w(1) = 0 such that w
is continuous on ∂D. There is an harmonic function h such that h = w on
∂D. Then w ≤ h in D, thus

0 ≤ lim
z→1

w(z) ≤ lim
z→1

h(z) = 0,

hence we have limz→1 u(z) = ∞. �

If p ∈ D such that g(p) ∈ Iα, then the tangent plane P of X(M) at X(p)
is vertical and P ∩ ∂Ω has exactly two points. Since X(∂M) is a graph over
δ, we see that P ∩X(∂M) has exactly two points. Consider the harmonic
function

u(z) = (X(z)−X(p)) •N(p),
and the variety VP = X−1(P ) ⊂ M . Clearly u ≡ 0 on VP . Since X(∂M) is
a graph over δ, we see that VP ∩ ∂D has exactly two points. Since X(∂M)
is a graph over ∂Ω, limz→1,z∈∂M u(z) = ±∞ depending on g(p) ∈ I+

α or
g(p) ∈ I−α . By Lemma 3.1, limz→1 u(z) = ±∞. In particular, u is proper.
Hence VP is compact. It is well-known that there are at least four curves
in VP intersecting at p ∈ VP , see, for example, [18]. Since P ∩X(∂M) has
exactly two points and D is simply connected, by the Euler characteristic we
know that VP ∪ ∂D divides D into at least 4 domains. Furthermore, there
is at least one domain D ⊂ D such that ∂D ⊂ VP . This domain is a nodal
domain of u, on which u is either positive or negative. Since VP is compact,
the closure of any nodal domain must be compact. Then by the maximum
principle, u ≡ 0 and X(M) is contained in P . This contradiction proves
that g(p) 6∈ Iα for p ∈ D.

To complete the proof of the claim, we need another lemma.

Lemma 3.2. Let Ω be a C1 domain and X : M → R be a C1 (up to the
boundary) branched minimal surface such that X(M) ⊂ Ω × R and X on
∂M is a diffeomorphism onto a C1 graph over ∂Ω, then the spherical map
N satisfies N3 ≥ 0 or N3 ≤ 0 on ∂M .

Proof. Let µ and ν be the tangent and inward normal unit vectors at a point
q ∈ ∂Ω, such that (µ, ν) has positive orientation. Let p ∈ ∂M such that
P ◦ X(p) = q and (µ̃, ν̃) be the tangent and inward normal vectors of ∂M
in TpM , with the same orientation as (µ, ν). Take (u, v) to be a coordinate
such that µ̃X = Xu(p), ν̃X = Xv(p). Since X is a diffeomorphism on ∂M
to a C1 graph over ∂Ω, there is a c1 6= 0 such that

P(Xu(p)) = c1µ(q).(11)

Since P ◦X(M) ⊂ Ω, there are c2 ∈ R and c3 ≥ 0 such that

P(Xv(p)) = c2µ(q) + c3ν(q).(12)
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Assume that X on ∂M preserves orientation, then c1 > 0. If p is not a
branch point, then by (2), (11) and (12),

N3(p) =
det(Xu(p), Xv(p))
|Xu(p) ∧Xv(p)|

=
c1c3 det(µ(p), ν(p))
|Xu(p) ∧Xv(p)|

≥ 0.

Since branch points are isolated and N is continuous on ∂M , we have N3 ≥ 0
on ∂M .

If P ◦X on ∂M reverses orientation, then c1 < 0 and N3 ≤ 0 on ∂M . �

By the hypotheses of Theorem 1.1 and boundary regularity (see for ex-
ample, §459 of [17] or Chapter 7 of Volume 2 of [5]), X is C1,α on M .
Therefore, N is continuous on M .

Since our δ is a C2 convex curve, the inward normal ν of δ satisfying that

τ ◦ ν : ∂Ω → S1

is monotone so τ ◦ ν covers I+
α at most once. Moreover, since δ ⊂ Ωα is

noncompact complete, τ ◦ ν(δ) ∩ I−α = ∅.
For z ∈ ∂M , |g(z)| = 1 means that N3(z) = 0 and N(z) = ±ν(X(z)).

If there is an open arc γ ⊂ I+
α such that γ ⊂ g(∂M), then −γ ⊂ I−α and

(−γ) ∩ g(∂M) = ∅. Hence there is an nonempty open arc β ⊂ Iα such that
g(∂M) ∩ β = ∅.

Without loss of generality we assume that N3 ≥ 0 on ∂M , then |g| ≥ 1
on ∂M . We claim that |g| > 1 in IntM .

If M ′ = g−1(D) 6= ∅, then since X(M ′) ⊂ Ωα × R is a proper branched
minimal surface, by Corollary 2.5 the closure of M ′ in M is either compact
or parabolic. Since |g| ≥ 1 on ∂M and M is connected, ∂M ′ 6= ∅ and |g| = 1
on ∂M ′. Since g(M) ∩ β = ∅, the following Lemma 3.3 shows that g is a
constant function on M ′. This is a contradiction to the fact that X(M) is
non-flat. This contradiction proves that |g| > 1 in IntM .

Lemma 3.3. Let M be a compact or parabolic Riemann surface and h :
M → C be holomorphic and continuous up to the boundary. If h(M) ⊂ D
and h(∂M) ⊂ ∂D − Γ, where Γ ⊂ ∂D is an nonempty open arc, such that
∂D− Γ has more than one point, then h is a constant.

Proof. Let F : D → (0, 1) × (0, a) be a conformal transformation for some
a > 0, such that F is continuous on D and F (∂D− Γ) = [0, 1]× {0}. Then
u + iv = F ◦h is a holomorphic function such that v vanishes on ∂M . Since
v is a bounded harmonic function vanishing on ∂M and M is compact or
parabolic, v must be a constant. Thus h also has to be a constant. �

Finally let X = (X1, X2, X3). Since X(∂M) is a graph over ∂ Ω,
limz→1, z∈∂D X2 →∞. By Lemma 3.1, limz→1 X2 →∞, hence X2 is proper.
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We claim that X does not have interior branch points. In fact, if p is an
interior branch point, then

DXj(p) = (0, 0), j = 1, 2, 3.(13)

Let P ′
t := {(x1, x2, x3) ∈ R3 : x2 = t}. Then since P ′

X2(p) intersects ∂Ω
in exactly two points and X(∂M) is a graph over ∂Ω, S = X−1(P ′

X2(p))
intersects ∂M in exactly two points. By (13), the compact variety S has at
least four curves meeting at p. Since M is simply connected, there are at
least one domain D such that D is compact and ∂D ⊂ S. By the maximum
principle, X2 ≡ X2(p) and X(M) is a part of a plane, a contradiction.

Now we claim that if lP ′
t

:= P ′
t ∩ Ω 6= ∅, then X(M) ∩ P ′

t is a graph over
lP ′

t
.
Since |g| > 1 in D, P ′

t is transversal to X(M). Since X does not have
branch points, VP ′

t
= X−1(P ′

t) = X−1
2 (t) is a compact manifold with bound-

ary. Since VP ′
t
∩ ∂D has exactly two points, VP ′

t
is a closed interval. If

X(IntM) ∩ P ′
t is not a graph over lP ′

t
, then there will be a point q ∈

X(IntM) ∩ P ′
t such that (0, 0, 1) is a tangent vector of X(M) ∩ P ′

t at q,
thus N3(q) = 0, a contradiction to the fact that |g| > 1 in IntM .

The proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2.

We first introduce a more general type of minimal surfaces.
Let Tn = ∪n

j=1Lj be the union of n parallel straight lines in R3. We may
assume that Tn is perpendicular to the x1x2-plane P0. We are interested in
proper branched minimal surfaces bounded by Tn, i.e., a proper branched
minimal mapping X : M → R3 such that X(∂M) = Tn. We say that
the surface is confined if P ◦ X(M) is bounded in P0, where P is the
perpendicular projection on P0.

Lemma 4.1. Suppose that M is simply connected and X : M → R3 is a
proper branched minimal surface such that X : ∂M → Tn is one-to-one and
onto. If X is confined, then conformally,

M = D− {p1, . . . , pn}, pj = eiθj , 0 = θ1 < θ2 < · · · < θn < 2π.(14)

Furthermore, X3 is proper and approachs ±∞ alternatively at pi. In partic-
ular, n = 2m is an even number.

Proof. Corollary 2.1 and its proof ensure that X3 is proper and M is para-
bolic. Since M is simply connected and ∂M has n components, it must be
that M = D− {p1, . . . , pn}, |pj | = 1, 1 ≤ j ≤ n.

Since X3 is proper, it must be that limz→pj X3(z) = ∞ or limz→pj X3(z) =
−∞, 1 ≤ j ≤ n. Otherwise, there would be {zm}∞m=1 ⊂ M such that
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limm→∞ zm = pj and |X3|(zm) ≤ N , then X3([−N,N ]) is not compact in
M .

We may assume that pj = eiθj such that θ1 = 0 < θ2 · · · < θn < 2π. To
be convenient, we denote pn+1 = p1 and θn+1 = 2π. Define

αj = {eiθ : θj < θ < θj+1}, 1 ≤ j ≤ n.(15)

Next we claim that X3 approachs ±∞ alternatively on pj . Otherwise, X3

would approach ∞ at both pj and pj+1, and X3 has a minimum in αj ,
therefore X maps αj in a ray. This is a contradiction to the fact that
X : ∂M → Tn is one-to-one and onto. �

We will study only simply connected, proper, branched, confined minimal
surfaces X : M → R3 such that X : ∂M → Tn is one-to-one and onto. We
will call such a surface Tn-surface. For simplicity, by (14) and (15), we may
assume that

M = D− {1, eiθ2 , . . . , eiθn} = D ∪ (∪n
j=1αj), IntM = D, ∂M = ∪n

j=1αj .

(16)

A Tn-surface, of course, depends on the boundary Tn. Denote by Pi,j the
planes passing through Li and Lj and Bi,j the band in Pi,j bounded by
Li ∪ Lj . Let {qj} = Lj ∩ P0 and li,j be the line segments P0 ∩ Bi,j , i.e., it
is the segment connecting qi and qj . Let qi,j be the middle point of li,j and
~ni,j be a unit vector normal to Pi,j . We will denote Ln+1 = L1, and denote
for 1 ≤ j ≤ n, Pj,j+1, Bj,j+1, lj,j+1, qj,j+1, and ~nj,j+1, accordingly.

Furthermore we fix our notation such that X(αj) = Lj , 1 ≤ j ≤ n.
By Lemma 4.1, without loss of generality, we will alway assume that for
1 ≤ j ≤ m,

lim
z→p2j−1

X3(z) = +∞, lim
z→p2j

X3(z) = −∞.(17)

Let Dj be small disks centred at pj such that Dj ∩Dk = ∅, 1 ≤ j, k ≤ n,
and

Dj ∩ ∂D ⊂ αj ∪ αj+1 ∪ {pj}.

Lemma 4.2. Let X : M → R3 be a Tn-surface, then

lim
z→pj

[(X1(z), X2(z))− qj,j+1] • ~nj,j+1 = 0, 1 ≤ j ≤ n.(18)

Moreover, fj := [(X1(z), X2(z))−qj,j+1]•~nj,j+1 can be harmonically extended
to Dj. In particular, Dfj is bounded in Dj ∩M .

Proof. fj is harmonic in D and fj ≡ 0 on αj ∪ αj+1. Hence Mj = Dj ∩M
is parabolic and fj is a bounded harmonic function on Mj . Then fj can be
extended across αj ∪αj+1 to be a bounded harmonic function on Dj −{pj}
and we can define f̃j(pj) = 0 and (18) is true. �

Theorem 4.1. The only T2-surface is the band B1,2.
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Proof. Let X : M → R3 be a T2 surface. We may assume that P1,2 is parallel
to the x2x3-plane. Then by Lemma 4.2 X1 is a bounded harmonic function
such that X1 ≡ 0 on ∂M . By Corollary 2.1, M is parabolic. Hence X1 ≡ 0
on M . �

From now on, we assume that n = 2m ≥ 4.
Each Tn decides polygons (maybe more than one) such that qj are the

vertices or boundary points. When such a polygon is convex, then it is the
unique polygon with qj as vertices or boundary points, we call it Q(Tn). We
will denote the interior of Q(Tn) as Ω(Tn). It may happen that Q(Tn) is a
convex k-gon with 3 ≤ k ≤ n, but {qj}n

j=1 contains all the vertices.

Lemma 4.3. Let X : M → R3 be a Tn-surface. If Q(Tn) is a convex n-gon
then P ◦X(IntM) ⊂ Ω(Tn).

Proof. Since M is parabolic, this is a special case of the maximum principle
for bounded harmonic functions. �

Lemma 4.4. Let X : M → R3 be a Tn-surface. If Q(Tn) is a convex n-gon
and Ω(Tn) = P ◦X(IntM), then

∂Q(Tn) = ∪n
j=1lj,j+1.

Proof. If some lj,j+1 is a diagonal of Q(Tn), then there will be a segment l
of ∂Q(Tn) such that l 6= lj,j+1 for any 1 ≤ j ≤ n. Let Intl be the interior
of l. Since Ω(Tn) = P ◦ X(IntM), there are points zk ∈ D = IntM such
that (X1, X2)(zk) → q ∈ Intl as k → ∞. Since D is compact, passing to
a subsequence if necessary, we may assume that zk → z0 ∈ D as k → ∞.
By Lemma 4.3 and the maximum principle for bounded harmonic functions
on parabolic Riemann surfaces, z0 ∈ ∂D. But by Lemma 4.2, (X1, X2)(zk)
approachs one of the lj,j+1s, which is disjoint to Intl, a contradiction. This
contradiction proves this lemma. �

Remark 4.1. Rotate a Jenkins-Serrin graph (over a convex 2m-gon) around
any of the boundary lines will give us a properly embedded minimal sur-
faces bounded by 2(2m − 1) parallel lines. But the projection on R2 does
not satisfy the condition in Lemma 4.4.

Recall that the spherical map (unit normal map) of a regular surface
X : M → R3 is given by

N(p) =
Xu ∧Xv

|Xu ∧Xv|
(p) ∈ S2, p ∈ M, (u, v) are local coordinates.

In case of branched minimal surfaces, N is also well-defined in branch points,
therefore, at each point of a branched minimal surface the tangent plane is
well-defined.
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Lemma 4.5. Let X : M → R3 be a Tn-surface. If Q(Tn) is a convex n-gon
and Ω(Tn) = P ◦X(IntM), then the spherical map N maps D = IntM into
either the lower or upper hemisphere of S2.

Proof. We only need prove that for any z ∈ D = IntM , the tangent plane
TX(z) is not perpendicular to the x1x2 plane. Consider the analytic variety
X−1(TX(z)) and its closure S in D. Since Q(Tn) is convex and X : ∂M → Tn

is one-to-one and onto, a component of S ∩ ∂D is either a single point in
{p1, . . . , pn} or some αj , the latter case happens when TX(z) ⊃ Lj .

It is well-known that there are at least four curves in S intersecting at
z ∈ S, see, for example, [18]. Therefore, S ∩ ∂D must have at least four
components, otherwise S will bound a domain D ⊂ D such that ∂D ⊂ S
and X(∂D) ⊂ TX(z). By Corollary 2.1, the closure of D in M is parabolic.
By the maximum principle, X(D) ⊂ TX(z). Hence X(M) is flat, we have
a contradiction. This contradiction proves that S ∩ D has at least four
components.

By Lemma 4.4 ∂Q(Tn) = ∪n
j=1lj,j+1. By the maximum principle for

bounded harmonic functions on parabolic surfaces, TX(z) cannot contain
any lj,j+1. Moreover, since Q(Tn) is a convex n-gon, TX(z) intersects exactly
two lj,j+1, i.e., S ∩ ∂D can have at most two components, a contradiction.
This contradiction proves this lemma. �

Theorem 4.2. Let X : M → R3 be a Tn-surface. If Q(Tn) is a convex
k-gon, 3 ≤ k ≤ n, and Ω(Tn) = P ◦X(IntM), then X(IntM) is a Jenkins-
Serrin minimal graph over Ω(Tn). In particular, X : M → R3 is an embed-
ding.

Proof. Let P be any vertical plane such that P ∩Ω(Tn) 6= ∅. We claim that
X−1(P )∩IntM consist of one-dimensional manifolds. In fact, by Lemma 4.5,
X(M) is transversal to P except at branch points, thus X−1(P ) ∩ IntM is
an analytic variety. A similar argument as in the proof of Theorem 1.1
shows that X does not have interior branch points. Hence we know that
X−1(P ) ∩ IntM consist of one-dimensional manifolds.

We claim that X−1(P ) ∩ IntM is connected. In fact, a similar argument
as in the proof of Lemma 4.5 shows that the closure of X−1(P ) in D has
exactly two components in ∂D. Denote this closure by S. If X−1(P )∩ IntM
has more than one components, then since M is simply connected, there
would be a domain D ⊂ D such that ∂D ⊂ S. Therefore, X(D) ⊂ P , we
have a contradiction.

Next we prove that X(IntM) ∩ P must be a graph over lP = P ∩ Ω(Tn).
Since X−1(P ) ∩ IntM is a connected one-dimensional manifold, we only
need prove that the tangent vector of X(IntM)∩P is never vertical. In fact
if V = (0, 0,±1) is tangent to X(IntM) ∩ P at X(z), then N3(z) = 0, a
contradiction to Lemma 4.5. �
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Theorem 4.3. Suppose Q(Tn) is a convex k-gon, 3 ≤ k ≤ n, n = 2m ≥ 4.
Then there exists a unique Tn-surface such that Ω(Tn) = P ◦ X(IntM) if
and only if

m∑
j=1

|l2j−1,2j | =
m∑

j=1

|l2j,2j+1|.(19)

Proof. By Theorem 4.2 any such a Tn surface will be a Jenkins-Serrin min-
imal graph generated by u : Ω(Tn) → R such that u(x1, x2) → ∞ when
(x1, x2) approachs l2j−1,2j and u(x1, x2) → −∞ when (x1, x2) approachs
l2j,2j+1.

By [10], for each Tn there is at most one Jenkins-Serrin minimal graph
and Equation (19) is the necessary and sufficient condition for the existence
of such a minimal graph. �

The combination of Theorem 4.2 and 4.3 is Theorem 1.2. The proof of
Theorem 1.2 is now complete.

5. Parabolicity in higher dimensions.

Let (M, g) be a Riemann manifold. We can define (M, g) to be parabolic
by using the same definition as used for the Riemann surfaces, regardless
∂M 6= ∅ or ∂M = ∅.

Let δ be the Euclidean metric in Rn. Recall that X : M → Rn is an
m ≤ n dimensional minimal submanifold if and only if under the induced
Riemann metric g = X∗(δ), X is harmonic.

Then Lemma 2.1, Corollaries 2.1 and 2.2, Theorems 2.1 and 2.3 have
corresponding generalizations in higher dimensions.

For example, Lemma 2.1 can be stated as follows.

Lemma 5.1. Let Sn−1 be the n−1 sphere in Rn, n ≥ 3, and ~n ∈ Sn−1. Let
X : M → Rn be an noncompact minimal submanifold. If X • ~n is a proper
function, then (M,X∗(δ)) is parabolic.

Theorem 2.1 can be stated as follows.
We say that a system of planes {Pj}k

j=1 is linear independent if the cor-
responding normals of {Pj}k

j=1 are linear independent.

Theorem 5.1. If X : M → Rn is an noncompact proper minimal subman-
ifold such that there is a linear independent system of planes {Pj}n−1

j=1 such
that X(M)∩ Pj is compact for 1 ≤ j ≤ n− 1, then (M,X∗(δ)) is parabolic.

Remark 5.1. Conjecture 2.1 is not true for higher dimensional minimal
surfaces in Rn. For example, let B1 be the open unit ball in R3, then
R3−B1 ⊂ R4 is a proper minimal embedding, but R3−B1 is not parabolic.
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