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Let R be the quotient of a local domain (Q, n) by a proper
ideal minimally generated by f1, . . . , fc. Assume Q/ n is al-
gebraically closed, and let M and N be finitely generated R-
modules. We show there is an algebraic set in c-dimensional
affine space, called the support set of the pair (M, N), which
describes those hypersurfaces h ∈ (f1, . . . , fc) − n(f1, . . . , fc)
over which there are infinitely many nonzero Exti

Q/(h)(M, N).
This generalizes to arbitrary quotients of regular local rings
the notion of support variety for modules over complete in-
tersections.

1. Introduction.

Let Q be a local ring with maximal ideal n and residue field k. Since we
will be talking about algebraic sets in affine space over k, we assume that
k is algebraically closed.1 Suppose f := f1, . . . , fc are elements of Q which
minimally generate their ideal (f). Throughout this note we assume (f) is
a proper ideal and write R for the quotient ring Q/(f). We let M and N
denote finitely generated R-modules.

When f is a Q-regular sequence it is known [5] that Ext∗R(M,N) pos-
sesses a structure of graded module over the polynomial ring R[x1, . . . , xc],
and this graded module is finitely generated over R[x1, . . . , xc] precisely
when Exti

Q(M,N) = 0 for i � 0. Set E := Ext∗R(M,N) ⊗R k and R :=
R[x1, . . . , xc] ⊗R k. In [2] Avramov and Buchweitz define the support vari-
ety V(Q,f ;M,N) of a pair of modules (M,N) as the zero set in kc of the
annihilator of E in R, that is

V(Q,f ;M,N) := {(α1, . . . , αc) ∈ kc|φ(α1, . . . , αc) = 0

for all φ ∈ AnnR E} ∪ {0}.

(The predecessor of support variety, called cohomological variety, is defined
by Avramov in [1].) We write V(Q,f ;M) for V(Q,f ;M,k). Note that since
E is graded, its annihilator is a homogeneous ideal, and so V(Q,f ;M,N) is
a cone.

1This assumption is not really necessary, but we make it in favor of a simpler exposition.
See the remark at the end of this section.
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Support varieties offer a very useful description of the homological inter-
relations between resolutions of the associated modules. (See, for example,
Theorem AB below.) It seems worthwhile to investigate possible generaliza-
tions of support varieties to pairs of modules over quotient rings not defined
modulo a regular sequence.

In Theorem 2.5 of [2], Avramov and Buchweitz show that when Exti
Q(M,

N) = 0 for i� 0, the nonzero points of V(Q,f ;M,N) correspond to those
hypersurfaces h ∈ (f) − n(f) such that there are infinitely many nonzero
Exti

Q/(h)(M,N). Regarding this as the definition, one may naively extend
the notion of support variety to arbitrary quotient rings as follows.

Defintion 1.1. Let R := Q/(f) be an arbitrary quotient of Q. Define the
cohomological support set V(Q,f ;M,N) of the pair (M,N) as

{α ∈ kc| there exists a ∈ Qc with Exti
Qa

(M,N) 6= 0

for infinitely many i} ∪ {0},
where a := (a1, . . . , ac) ∈ Qc is a preimage of α := (α1, . . . , αc) ∈ kc and
Qa is the hypersurface Q/(a1f1 + · · ·+ acfc).

There are two important questions regarding this definition:
(1) Are the nonzero elements α ∈ V(Q,f ;M,N) determined indepen-

dently of the choice of preimage a ∈ Qc?
(2) Is V(Q,f ;M,N) closed in kc?

Theorem 2.5 of [2] shows that both answers are “yes” in the case where f
is a Q-regular sequence and Exti

Q(M,N) = 0 for i � 0. The main point
of this note (Theorem 2.1) is that both answers are also “yes” when Q is
a domain and (f) is an arbitrary (proper) ideal of Q. Since, in general,
Ext∗R(M,N) ⊗R k may not have a well-defined structure of graded mod-
ule over the polynomial ring k[x1, . . . , xc], our proof is necessarily totally
different from that of [2].

Another concern at this point is whether there exist nontrivial exam-
ples of cohomological support sets when (f) ⊆ n2, that is, examples where
V(Q,f ;M,N) 6= kc. Such nontrivial examples are well-known in the case
where f is a Q-regular sequence. (See, for example, 6.3, 6.5 and 7.6 of [1].)
Part of Sections 3 and 4 are devoted to exhibiting nontrivial examples with
f ∈ n2 not a regular sequence on Q.

When Q is a regular local ring and f a Q-regular sequence contained in n2

then R is called a complete intersection of codimension c. For complete in-
tersections the support set V(Q,f ;M,N) renders precise information about
the homological behavior over R of the pair (M,N). A good illustration of
this is the following remarkable result of Avramov and Buchweitz.

Theorem AB ([2]). Let M and N be finitely generated R-modules over
the complete intersection R. Then the following are equivalent:
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(1) Extn
R(M,N) = 0 for n� 0.

(2) Extn
R(N,M) = 0 for n� 0.

(3) TorR
n (M,N) = 0 for n� 0.

(4) V(Q,f ;M) ∩V(Q,f ;N) = {0}.

(The implication (3) =⇒ (4) was first proven in [7].)
Of course, it is impossible to extend even the equivalence (1) ⇐⇒ (3) to

non-Gorenstein rings, and so a homological counterpart to V(Q,f ;M,N) is
not superfluous:

Defintion 1.2. Let R := Q/(f) be an arbitrary quotient of Q. Define the
homological support set U(Q,f ;M,N) of the pair (M,N) as

{α ∈ kc| there exists a ∈ Qc with TorQa

i (M,N) 6= 0

for infinitely many i} ∪ {0},
where a := (a1, . . . , ac) ∈ Qc is a preimage of α := (α1, . . . , αc) ∈ kc and
Qa is the hypersurface Q/(a1f1 + · · ·+ acfc).

Questions (1) and (2), for homological support sets, will also be answered
in the affirmative provided Q is a domain (by Theorem 2.2) in the next
section.

In Section 3 we give properties of the support sets and discuss which
implications from Theorem AB can possibly be extended to more general
quotients of regular local rings using our generalization of V(Q,f ;M).

Section 4 consists of Macaulay 2 code which uses Theorem 2.2 (or The-
orem 2.1) to compute the homological (or cohomological) support set of a
pair of modules. We also include several examples.

Remark. The assumption made at the beginnning of this note, that the
residue field k of Q is algebraically closed, is not really restrictive. For
there is always a faithfully flat extension Q ⊆ Q̃ of local rings such that
n Q̃ is the maximal ideal of Q̃ and the residue field k̃ of Q̃ is an algebraic
closure of k. (See App., Théorème 1, Corollaire of [3].) Hence the general
definition of support set can be given by V(Q,f ;M,N) := V(Q̃,f ; M̃, Ñ),
where M̃ := M ⊗Q Q̃ and Ñ := N ⊗Q Q̃. This definition is compatible with
the definition given in [2] of support variety for rings Q modulo a regular
sequence with non-algebraically closed residue field. (See Lemma 2.2 of [2].)

2. Support sets.

The main results of this section are Theorems 2.1 and 2.2, which show that
the support sets V(Q,f ,M,N) and U(Q,f ,M,N) are closed in kc and that
their nonzero elements α are determined independently of the choice of
preimage a, provided Q is a domain.

Before stating the theorems we set some notation.
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Let S denote the generic hypersurface Q[X1, . . . , Xc]/(X1f1 + · · ·+Xcfc),
where X := X1, . . . , Xc are indeterminates. By abuse of notation we will
write Xi for the image of Xi in S. For a1, . . . , ac ∈ Q we have S/(X1 −
a1, . . . , Xc−ac) ' Qa as rings, and M [X]/(X1−a1, . . . , Xc−ac)M [X] 'M
as S-modules. Set

Ii := AnnS/ n S

(
Exti

S(M [X], N [X])⊗S S/ nS
)
,

and
Ji := AnnS/ n S

(
TorS

i (M [X], N [X])⊗S S/ nS
)
.

Note that S/ nS is isomorphic to the polynomial ring k[x1, . . . , xc] and that
Ii and Ji are homogeneous for all i. For an ideal I ⊆ k[x1, . . . , xc] we let
Z(I) denote the algebraic set in kc defined by I.

Theorem 2.1. Suppose R :=Q/(f) is a quotient of a local domain (Q, n, k).
(1) If Exti

Q(M,N) 6= 0 for infinitely many i, then

V(Q,f ;M,N) = kc.

(2) If Exti
Q(M,N) = 0 for all i ≥ v ∈ N, then for any integer n satisfying

n ≥ v − 1,

V(Q,f ;M,N) = Z(In ∩ In+1) ∪ {0}.
Moreover, if a := (a1, . . . , ac) and b := (b1, . . . , bc) in Qc are both preimages
of α 6= 0 in kc, then Exti

Qa
(M,N) 6= 0 for infinitely many i if and only if

Exti
Qb

(M,N) 6= 0 for infinitely many i.

The analogous homological version of 2.1 is given by:

Theorem 2.2. Suppose R :=Q/(f) is a quotient of a local domain (Q, n, k).

(1) If TorQ
i (M,N) 6= 0 for infinitely many i, then

U(Q,f ;M,N) = kc.

(2) If TorQ
i (M,N) = 0 for all i ≥ v ∈ N, then for any integer n satisfying

n ≥ v − 1,

U(Q,f ;M,N) = Z(Jn ∩ Jn+1) ∪ {0}.
Moreover, if a := (a1, . . . , ac) and b := (b1, . . . , bc) in Qc are both preimages
of α 6= 0 in kc, then TorQa

i (M,N) 6= 0 for infinitely many i if and only if
TorQb

i (M,N) 6= 0 for infinitely many i.

Remark. In the case where Q is a regular local ring and (f) is a Q-regular
sequence, the ideals AnnR E and In ∩ In+1 both define the support set (or
support variety, as it is referred to in [2]), so they have the same radical.
However, they may not be the same ideal. Either one may be non-radical.
It is not clear how their respective scheme structures differ; nor is it clear
whether In ∩ In+1 = In′ ∩ In′+1 for n 6= n′.
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Before proving the theorems, we make a few observations. We assume Q
is a domain.

It is easy to see that X1 − a1, . . . , Xc − ac is a regular sequence on M [X]
(and N [X]). We claim moreover that it is a regular sequence on S provided
a = (a1, . . . , ac) is nonzero in kc. Indeed, assume a 6= 0. Note that

S/(X1 − a1, . . . , Xi − ai)

' Q[Xi+1, . . . , Xc]/(a1f1 + · · ·+ aifi +Xi+1fi+1 + · · ·+Xcfc)

for i = 1, . . . , c − 1. Fix i, 0 ≤ i ≤ c − 1, and suppose that for some
g, h ∈ Q[Xi+1, . . . , Xc],

(∗) g(Xi+1 − ai+1) = h(a1f1 + · · ·+ aifi +Xi+1fi+1 + · · ·+Xcfc)

in Q[Xi+1, . . . , Xc]. Since Xi+1 − ai+1 is prime in Q[Xi+1, . . . , Xc], either
Xi+1 − ai+1 divides h or Xi+1 − ai+1 divides a1f1 + · · ·+ aifi +Xi+1fi+1 +
· · ·+Xcfc. If it divided the latter, then g1(Xi+1−ai+1) = a1f1 + · · ·+aifi +
Xi+1fi+1 + · · · + Xcfc for some g1 ∈ Q[Xi+1, . . . , Xc]. But this equation
clearly fails to hold for 0 ≤ i ≤ c − 2, and in the i = c − 1 case, equating
coefficients shows that g1 = fc, which yields −acfc = a1f1 + · · ·+ ac−1fc−1.
However, since f1, . . . , fc is a minimal generating set for (f1, . . . , fc), this can
only happen if ai ∈ n for all i, which contradicts a 6= 0. Hence Xi+1 − ai+1

must divide h. By cancelling off the Xi+1 − ai+1 factors in (∗) we are left
with

g = h1(a1f1 + · · ·+ aifi +Xi+1fi+1 + · · ·+Xcfc)

for some h1 ∈ Q[Xi+1, . . . , Xc], which is what we needed to show in order
to establish the claim.

We have the following basic isomorphisms of Ext and Tor modules (see,
for example, p. 140 of [9]).

2.3. . Let B := A/(a) be rings with a a nonzerodivisor on A. Suppose that
X and Y are A-modules where a is X-regular and aY = 0. Then for all i

Exti
A(X,Y ) ' Exti

B(X/aX, Y )

and

TorA
i (X,Y ) ' TorB

i (X/aX, Y ).

As a last preparation we recall the change of rings long exact sequences
of Ext (11.65 of [10]) and Tor (11.64 of [10]).
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2.4. . Let B = A/(a) with a a nonzerodivisor on A. Suppose that X and
Y are B-modules. Then there is a long exact sequence of Ext

...
...

...

Ext2B(X,Y ) ←−−− Ext3A(X,Y ) ←−−− Ext3B(X,Y ) ←−−−

Ext1B(X,Y ) ←−−− Ext2A(X,Y ) ←−−− Ext2B(X,Y ) ←−−−

Ext0B(X,Y ) ←−−− Ext1A(X,Y ) ←−−− Ext1B(X,Y ) ←−−− 0

and a long exact sequence of Tor
...

...
...

TorB
2 (X,Y ) −−−→ TorA

3 (X,Y ) −−−→ TorB
3 (X,Y ) −−−→

TorB
1 (X,Y ) −−−→ TorA

2 (X,Y ) −−−→ TorB
2 (X,Y ) −−−→

TorB
0 (X,Y ) −−−→ TorA

1 (X,Y ) −−−→ TorB
1 (X,Y ) −−−→ 0.

Proof of Theorem 2.1.
(1) If Exti

Q(M,N) 6= 0 for infinitely many i, then 2.4 with A = Q and
B = Qa shows that Exti

Qa
(M,N) 6= 0 for infinitely many i and for all Qa,

which means V(Q,f ;M,N) = kc.
(2) Suppose that α := (α1, . . . , αc) ∈ kc is a nonzero element in Z(In ∩

In+1). Then the maximal ideal p = (x1 − α1, . . . , xc − αc) ∈ Spec(S/ nS)
is such that p ⊇ In ∩ In+1. Hence p ⊇ In or p ⊇ In+1. Without loss of
generality, assume that p ⊇ In. Let a := (a1, . . . , ac) ∈ Qc be any preimage
of α. Then the maximal ideal P := (X1 − a1, . . . , Xc − ac) + nS ∈ Spec(S)
is a preimage of p, and by Nakayama’s Lemma, Extn

S(M [X], N [X])P 6= 0.
For i = 0, . . . , c − 1 set Ni := N [X]/(X1 − a1, . . . , Xi − ai)N [X] (with

N0 := N [X]). We have short exact sequences

0→ (Ni)P
Xi+1−ai+1−−−−−−−→ (Ni)P → (Ni+1)P → 0,

which give rise to exact sequences
(2.1.1)

Extn
S(M [X], Ni)P

Xi+1−ai+1−−−−−−−→ Extn
S(M [X], Ni)P → Extn

S(M [X], Ni+1)P .

We first want to show that Extn
S(M [X], N)P 6= 0. It suffices to prove

that if Extn
S(M [X], Ni)P 6= 0 then Extn

S(M [X], Ni+1)P 6= 0 (0 ≤ i ≤
c − 1). (The fact that Extn

S(M [X], N [X])P 6= 0 begins the induction.) If
Extn

S(M [X], Ni)P 6= 0, then by Nakayama’s lemma, Extn
S(M [X], Ni)P ⊗SP

(S/(Xi+1 − ai+1))P 6= 0. By the exact sequence (2.1.1), this last module
is a submodule of Extn

S(M [X], Ni+1)P . Therefore Extn
S(M [X], Ni+1)P is

nonzero.
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Now that we know Extn
S(M [X], N)P 6= 0, we apply 2.3 inductively to

arrive at Extn
Qa

(M,N) 6= 0. If Exti
Qa

(M,N) = 0 for all i � 0, then from
the change of rings long exact sequence 2.4 with A = Q and B = Qa,
Exti

Qa
(M,N) = 0 for all i ≥ v − 1. But this contradicts the fact that

Extn
Qa

(M,N) 6= 0, as n ≥ v − 1. Hence there must exist infinitely many
nonzero Exti

Qa
(M,N). This establishes half of (2).

Now suppose that α := (α1, . . . , αc) 6= 0 is not in Z(In ∩ In+1). Then the
maximal ideal p := (x1−α1, . . . , xc−αc) ∈ Spec(S/ nS) contains neither In
nor In+1. Let a := (a1, . . . , ac) ∈ Qc be any preimage of α. Then the maxi-
mal ideal P := (X1−a1, . . . , Xc−ac)+nS ∈ Spec(S) is a preimage of p, and
by Nakayama’s Lemma, Extn

S(M [X], N [X])P = Extn+1
S (M [X], N [X])P =

0. Note that since Q → Q[X] is a flat extension, our assumption that
Exti

Q(M,N) = 0 for all i ≥ v implies Exti
Q[X](M [X], N [X]) = 0 for all i ≥

v. Now by 2.4 with A = Q[X] and B = S we see that Exti
S(M [X], N [X])P

= 0 for all i ≥ v− 1. From the short exact sequences (2.1.1), we inductively
arrive at Exti

S(M [X], N)P = 0 for all i� 0. That is, Exti
Qa

(M,N) = 0 for
all i� 0 (by 2.3). Since a is an arbitrary preimage of α, we conclude that
α is not in V(Q,f ;M,N).

For the final statement of Thereom 2.1, suppose Exti
Qb

(M,N) 6= 0 for in-
finitely many i. Then α is in V(Q,f ;M,N) = Z(In∩In+1), and the first part
of the proof shows that there exist infinitely many nonzero Exti

Qa
(M,N).

�

The Proof of Theorem 2.2 is exactly the same as the Proof of 2.1.

3. Properties of the support set.

In this section we give various properties of support sets, beginning with:

Independence of generating set.

We first show that the support sets V(Q,f ;M,N) and U(Q,f ;M,N) are
defined independently of the generating set f .

Proposition 3.1. Let f ′ := f ′1, . . . , f
′
c be another minimal generating set

for (f). Then there exists an isomorphism τ : kc → kc such that τ(V(Q,f ;
M,N)) = V(Q,f ′;M,N) and τ(U(Q,f ;M,N)) = U(Q,f ′;M,N).

Proof. Set

S := Q[X1, . . . , Xc]/(X1f1 + · · ·+Xcfc),

and

S′ := Q[Y1, . . . , Yc]/(Y1f
′
1 + · · ·+ Ycf

′
c).
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For 1 ≤ j ≤ c write

f ′j =
c∑

i=1

ajifi with aji ∈ Q.

Then we have a Q-linear ring homomorphism σ : S → S′ defined by

Xi 7→
c∑

j=1

ajiYj .

Since both f and f ′ are minimal generating sets of their ideal, the matrix
(aij) is invertible (over Q). Hence so is its transpose (aji). This means σ is
a Q-algebra isomorphism. Let σ′ denote its inverse.

We also have that the map ρ : S/ nS → S′/ nS′ defined by

xi 7→
c∑

j=1

ajiyj

is an ismorphism of k-algebras. Let ρ′ denote its inverse.
Set

Ii := AnnS/ n S

(
Exti

S(M [X], N [X])⊗S S/ nS
)
,

and
I ′i := AnnS′/ n S′

(
Exti

S′(M [Y ], N [Y ])⊗S′ S′/ nS′
)
.

We claim that ρ′(I ′i) = Ii. To see this, note that we have the isomorphism
µ : M [X] → M [Y ] defined by Xi 7→

∑c
j=1 ajiYj (which is σ-equivariant).

Taking the inverse of this, with M replaced by N , we also have an isomor-
phism ν : N [Y ]→ N [X] (which is σ-equivariant). The upshot is that these
induce isomorphisms

εi : Exti
S(M [X], N [X])⊗S S/ nS → Exti

S′(M [Y ], N [Y ])⊗S′ S′/ nS′

and

ε′i : Exti
S′(M [Y ], N [Y ])⊗S′ S′/ nS′ → Exti

S(M [X], N [X])⊗S S/ nS,

which are ρ-equivariant.
Let ψ be in I ′i. Let e be an arbitrary element of Exti

S(M [X], N [X]) ⊗S

S/ nS. Then there exists e′ ∈ Exti
S′(M [Y ], N [Y ]) ⊗S′ S′/ nS′ such that

ε′(e′) = e. We have ρ′(ψ) ·e = ρ′(ψ) · ε′(e′) = ψ · ε′(e′) = ε′(ψ ·e′) = ε′(0) = 0.
Therefore ρ′(ψ) ∈ Ii, and we have shown ρ′(I ′i) ⊆ Ii. By symmetry, ρ(Ii) ⊆
I ′i, and applying ρ′ gives the reverse inclusion. This establishes the claim.

Let the matrix (bji) (bji ∈ Q) be the inverse of the matrix (aji), so that
for 1 ≤ i ≤ c we have ρ′(yi) =

∑c
j=1 bjixj . Representing elements of kc as

column vectors, we define τ : kc → kc by

τ

([ α1

...
αc

])
= (bji)

[ α1

...
αc

]
.
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Now we are ready to show that τ(V(Q,f ;M,N)) = V(Q,f ′;M,N).

Choose
[ α1

...
αc

]
∈ Z(Ii∩Ii+1) and ψ(y1, . . . , yc) ∈ I ′i∩I ′i+1. Let φ(x1, . . . , xc)

∈ Ii ∩ Ii+1 be such that ρ(φ(x1, . . . , xc)) = ψ(y1, . . . , yc). This equation can
be represented by

φ

(
(aji)

[ x1

...
xc

])
= ψ

([
y1

...
yc

])
.

We have

ψ

(
(bji)

[ α1

...
αc

])
= φ

(
(aji)(bji)

[ α1

...
αc

])
= φ

([ α1

...
αc

])
= 0.

Hence τ
([ α1

...
αc

])
∈ Z(I ′i ∩ I ′i+1). The conclusion follows by symmetry.

The proof that τ(U(Q,f ;M,N)) = U(Q,f ′;M,N) is completely analo-
gous. �

Projective Dimension and Nontriviality of Support Sets.

We now discuss a particular case of interest, namely, when N=k. In
this case the support sets V(Q,f ;M) := V(Q,f ;M,k) and U(Q,f ;M) :=
U(Q,f ;M,k) describe those elements h ∈ (f) − n(f) such that M has
infinite projective dimension over Q/(h). The next proposition shows that
often it is enough to study this special case. The proof of (1) is identical to
the proof of part (8) of Theorem 5.6 of [2], but we include it here since it is
short.

Proposition 3.2. Assume that Q is a regular local ring. Then we have

(1) V(Q,f ;M,N) = V(Q,f ;M) ∩V(Q,f ;N)

and

(2) U(Q,f ;M,N) = U(Q,f ;M) ∩U(Q,f ;N).

Proof. Suppose that 0 6= α ∈ V(Q,f ;M,N). Then Exti
Qa

(M,N) 6= 0 for
infinitely many i where a ∈ Qc is a preimage of α. Hence it must be the
case that M has infinite projective dimension over Qa and N has infinite
injective dimension over Qa. Since Qa is Gorenstein, N has infinite injective
dimension over Qa if and only if it has infinite projective dimension over
Qa. Thus α ∈ V(Q,f ;M) ∩V(Q,f ;N).

Now suppose 0 6= α /∈ V(Q,f ;M,N). This means that Exti
Qa

(M,N) = 0
for all i� 0. By 5.12 of [2], either M or N has finite projective dimension
over Qa, where a a preimage of α.

The proof for homological support sets is similar, using a result of Huneke
and Wiegand this time ((1.9) of [6]), which states that if TorQa

i (M,N) = 0
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for all i � 0, then either M or N has finite projective dimension over the
hypersurface Qa. �

It is quite common that the support set is all of kc:

Example 3.3. Suppose (f) ⊆ n2. Then the residue field k has full support
set V(Q,f ; k) = kc.

This follows from the well-known fact of Auslander-Buchsbaum-Serre,
that the projective dimension of the residue field of a local ring S is finite
if and only if S is regular. If (f) ⊆ n2, then the hypersurfaces Qa are never
regular.

When f is a Q-regular sequence we have V(Q,f ;R) = {0}. However, for
non-regular sequences (f), it may be the case that the cohomological support
set of even this pair (R, k) is the whole space kc, as the next example shows.

Example 3.4. Let Q = k[[X,Y, Z]] and (f) = (XY, Y Z). Then V(Q,f ;R)
= k2.

Proof. We just need to show that R has infinite projective dimension over
each of the hypersurfaces Qa := Q/(a1XY +a2Y Z) with a := (a1, a2) ∈ Q2

a preimage of a nonzero α ∈ k2.
If α 6= 0, then for any preimage a := (a1, a2), either a1 or a2 is a unit in

Q. Without loss of generality assume that a1 is a unit. Then R ' Qa/(yz)
(where y denotes the image of Y in Qa, etc.), and one can easily check that
a Qa-free resolution of R is given by

. . .
[ a1x+a2z ]−−−−−−→ Qa

[ y ]−−−→ Qa
[ a1x+a2z ]−−−−−−→ Qa

[ yz ]−−−→ Qa −−−→ R −−−→ 0,

which is infinite (and periodic after the first step). �

3.5. . We remark here that Example 4.4 of the next section shows that the
codimension three Gorenstein ring

R := k[[X1, . . . , X5]]/(X1X3, X1X4, X2X4, X2X5, X3X5)

also has full support set V(Q,f ;R) = k5.

The next proposition gives a general source of modules without full sup-
port set.

Proposition 3.6. Let M ′ be a module over the regular local ring Q, and
let I be an ideal of Q contained in AnnQM

′. Assume that f ∈ n is regular
on M ′. Let f2, . . . , fc be a minimal generating set for I. Then f, f2, . . . , fc

is a minimal generating set for (f) + I, and for the R := Q/(f) + I-module
M := M ′/fM ′ we have V(Q, f, f2, . . . , fc;M) 6= kc.
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Proof. Since Q is a regular local ring we know that M ′ has a finite Q-free
resolution F, and since f is both Q-regular and M ′-regular, F⊗QQ/(f) is
a finite free resolution of M over Q/(f). Thus the R-module M has finite
projective dimension over the hypersurface Q/(f) with f ∈ (f)+I−n((f)+
I), and so V(Q, f, f2, . . . , fc;M) 6= kc. �

Remark. Proposition 3.6 does not describe the only way for modules to
have a non-full support set. Example 4.5 of the next section illustrates that
the ring R := k[[X1, X2, X3, X4]]/(X1X4, X2X4, X

2
2 −X2

4 , X
2
1 −X2

2 , X1X2−
X3X4) has finite projective dimension over the hypersurface R := k[[X1, X2,
X3, X4]]/(X1X2 − X3X4). However, R does not lift to k[[X1, X2, X3, X4]],
meaning that there is no M ′ such that X1X2 − X3X4 is M ′-regular and
M ′/(X1X2 −X3X4)M ′ ' R (cf. [8]).

Respecting Theorem AB.

Example 3.4 shows that implications (1), (2), (3) =⇒ (4) of Theorem AB
can fail utterly using our notion of support set for quotient rings R = Q/(f)
not defined modulo a regular sequence, and Example 4.4 shows that these
implications can fail even when R is Gorenstein. However, it is an open
question whether the reverse implications hold:

(∗) Suppose Q is a regular local ring. Do the implications (4) =⇒ (1), (2),
(3) of Theorem AB hold for support sets defined over quotients R := Q/(f)
in which f is not a regular sequence?

None of the apparatus used in the proof of Theorem AB is available to
us when f is not a regular sequence. Hence any proof of (∗) would require
a completely different approach.

It seems that the statement V(Q,f ;M) ∩ V(Q,f ;N) = {0} is a much
more severe condition when f is not a regular sequence than when f is
a regular sequence. In fact, we have no counterexample to the following
stronger version of (∗).

Question 3.7. Suppose Q is a regular local ring and that M and N are
R-modules with V(Q,f ;M,N) = {0}. Must R then be a complete intersec-
tion?

4. Macaulay 2 code and examples.

In this section we give code for Macaulay 2 [4], written by Amelia Taylor2

and the current author, that effectively employs the method of Theorem 2.2
to compute homological support sets. Simply replacing the Tors by Exts
yields code for computing cohomological support sets, using Theorem 2.1.

2This research was conducted by the author for the Clay Mathematics Institute.
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The user will input a pair of modules defined over a quotient of a polyno-
mial ring by an ideal minimally generated by c elements. The output is an
ideal of the polynomial ring k[x1, . . . , xc] that defines the support set. This
ideal may or may not be radical (cf. the remark following Theorem 2.2).

We also give several examples illustrating its use.

supportSet=method()

supportSet(Module,Module,Symbol):=(M,N,y)->(

--Input = Modules M and N over a quotient ring

--and an unassigned symbol.

--Output = An ideal defining the support set of M.

--Method: Follows the algorithm of David Jorgensen.

--After constructing a hypersurface, using new variables

--and the generators of the defining ideal, we compute

--the appropriate Tors and take the intersection of their

--annihilators. Finally we lift the ideal to the ring it

--should live in.

R := ring(M);

n1 := numgens(R);

I := ideal(R);

n2 := numgens(I);

--Constructing the Hypersurface. We need to make

--sure Hyp is a homogeneous elt.

Degs:=flatten degrees source gens I;

maxDeg := 1+ max Degs;

newDegs := apply(Degs,d->maxDeg-d);

S := coefficientRing(R)[gens(R),y_1..y_(n2),

MonomialOrder=>ProductOrder{n1,n2},

Degrees=>join(flatten (monoid R).Options.Degrees,newDegs)];

--S is the new poly ring, it has the same vars of R plus the

--new ones.

IS := substitute(I,S);

Hyp:=ideal(sum(apply(n2,i->S_(n1+i)*IS_i)));

T := S/Hyp;

--Get presentations of M and N over the Hypersurface.

MT := substitute(presentation M,T);

NT := substitute(presentation N,T);

IT := substitute(gens IS,T);

M1 := (coker MT)**coker(IT);

N1 := (coker NT)**coker(IT);

L := coker(matrix{apply(n1,i->T_i)});

--Computing the Tors and their annihilators.

E1 := prune(Tor_(n1)(M1,N1) ** L);

A1 := newAnn E1;

E2 := prune(Tor_(n1+1)(M1,N1) ** L);

A2 := newAnn E2;

A := intersect(A1,A2);

--Lifting the support variety into the correct ring.

AA := lift(A,S);
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J := ideal(selectInSubring(n1,gens AA));

U := coefficientRing(R)[T_(n1)..T_(n2+n1-1),Degrees=>newDegs];

intersect(substitute(J,U),ideal(vars U))

)

newAnn = (M) -> (

--Input = A module.

--Output = the annihilator of that module.

--Method = rather than computing (source P):(target P) all at

--once

--we compute it one column at a time.

if M == 0 then ideal(1_(ring M))

else (

P:=presentation M;

F:=target P;

intersect(apply(numgens(F),i->(

m1:=matrix{F_i};

I:=ideal(modulo(m1,P));

I))))

)

Example 4.1. First we give an example illustrating the fact that if R is a
complete intersection, then V(Q,f ;R) = {0}.

Macaulay 2, version 0.8.99

--Copyright 1993-2001, all rights reserved, D. R. Grayson and M. E.

--Stillman

--Factory 1.2c from Singular, copyright 1993-1997, G.-M. Greuel, R.

--Stobbe

--Factorization and characteristic sets 0.3.1, copyright 1996, M.

--Messollen

--GC 6.0 alpha 2, copyright, H-J. Boehm, A. Demers

--GNU C Library (glibc-2.1.3), copyright, Free Software Foundation

--GNU MP Library (gmp-3.1.1), copyright, Free Software Foundation

i1 : load"supportSet.m2"

--loaded supportSet.m2

i2 : R=QQ[a,b,c]/ideal(a^2-b*c,b^2-a*c,c^2+a*b)

o1 : R

o1 : QuotientRing

i3 : k=coker vars R

o3 = cokernel | a b c |

1

o3 : R-module, quotient of R
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i4 : Rm=coker matrix{{0}} ** R

1

o4 = R

o4 : R-module, free

i5 : time supportSet(Rm,k,symbol x)

-- used 0.19 seconds

o5 = ideal (x , x , x )

3 2 1

o5 : Ideal of QQ [x , x , x ]

1 2 3

Example 4.2. We illustrate Example 3.3 (that V(Q,f ; k) = kc when (f) ⊆
n2) for the current ring:

i6 : time supportSet(k,k,symbol x)

-- used 0.32 seconds

o6 = 0

o6 : Ideal of QQ [x , x , x ]

1 2 3

Example 4.3. Some modules have interesting support sets. Here is a mod-
ule whose support set is defined by the ideal (x2 − yz, y2 − xz, z2 − xy).

i7 : use R

o7 = R

o7 : QuotientRing

i8 : M=coker matrix{{-c,0,0,0,0,0,0,-b,0,-a,b,c},

{0,-c,0,0,0,0,0,a,0,c,0,-b},

{0,0,-c,0,0,0,-b,0,0,b,c,a},

{0,0,0,-c,0,0,a,0,0,0,-b,-c},

{0,0,0,0,-c,0,0,0,b,c,a,-b},

{0,0,0,0,0,-c,0,0,-a,-b,-c,0},

{b,c,0,b,-c,-a,c,0,0,0,0,0},

{0,b,-c,-a,-b,-c,0,c,0,0,0,0},

{-c,-a,-b,-c,0,-b,0,0,c,0,0,0},

{0,0,a,b,0,0,0,0,0,c,0,0},

{a,b,0,0,0,0,0,0,0,0,c,0},

{0,0,0,0,-a,-b,0,0,0,0,0,c}};

i9 : time supportSet(M,k,symbol x)
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-- used 3.06 seconds

2 2 2

o9 = ideal (x - x x , x x - x , x - x x )

2 1 3 1 2 3 1 2 3

o9 : Ideal of QQ [x , x , x ]

1 2 3

Example 4.4. We give a codimension three Gorenstein ring R with V(Q,f ;
R) = kc.

i10 : R=QQ[a,b,c,d,e]/ideal(a*c,a*d,b*d,b*e,c*e)

o10 = R

o10 : QuotientRing

i11 : Rm=coker matrix{{0}} ** R

1

o11 = R

o11 : R-module, free

i12 : k=coker vars R

o12 = cokernel | a b c d e |

1

o12 : R-module, quotient of R

i13 : time supportSet(Rm,k,symbol x)

-- used 0.74 seconds

o13 = 0

o13 : Ideal of QQ [x , x , x , x , x ]

1 2 3 4 5

Example 4.5. In this example we indicate that the non-complete intersec-
tion ring R := k[[a, b, c, d]]/(ad, bd, b2 − d2, a2 − b2, ab− cd) has a nontrivial
support set defined by (x2

3 − x2
5).

i14 : R=QQ[a,b,c,d]/ideal(a*d,b*d,b^2-d^2,a^2-b^2,a*b-c*d)

o14 = R

o14 : QuotientRing

i15 : Rm=coker matrix{{0}} ** R
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1

o15 = R

o15 : R-module, free

i16 : k=coker vars R

o16 = cokernel | a b c d |

1

o16 : R-module, quotient of R

i17 : time supportSet(Rm,k,symbol x)

-- used 0.64 seconds

2 2

o17 = ideal(x - x )

3 5

o17 : Ideal of QQ [x , x , x , x , x ]

1 2 3 4 5

Example 4.6. Finally, we give an example of a one-dimensional support
set over a non-complete intersection (cf. Question 3.6).

i18 : R=QQ[a,b,c,d]/ideal(a^2,b^2,b*c,c^2,d^2)

o18 = R

o18 : QuotientRing

i19 : M=coker matrix{{b}}

o19 = cokernel | b |

1

o19 : R-module, quotient of R

i20 : N=coker matrix{{c}}

o20 = cokernel | c |

1

o20 : R-module, quotient of R

i21 : time supportSet(M,N,symbol x)

-- used 0.51 seconds

o21 = ideal (x , x , x , x )

5 4 2 1
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o21 : Ideal of QQ [x , x , x , x , x ]

1 2 3 4 5
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