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For many L-functions of arithmetic interest, the values on
or close to the edge of the region of absolute convergence are
of great importance, as shown for instance by the proof of
the Prime Number Theorem (equivalent to non-vanishing of
ζ(s) for mathrmRe(s) = 1). Other examples are the Dirich-
let L-functions (e.g., because of the Dirichlet class-number
formula) and the symmetric square L-functions of classical
automorphic forms. For analytic purposes, in the absence
of the Generalized Riemann Hypothesis, it is very useful to
have an upper-bound, on average, for the number of zeros of
the L-functions which are very close to 1. We prove a very
general statement of this type for forms on GL(n)/Q for any
n > 1, comparable to the log-free density theorems for Dirich-
let characters first proved by Linnik.

1. Introduction.

The old preprint [KM1] contained a few density results for the zeros of
L-functions attached to modular forms, which were not included in the pub-
lished version [KM2]. Here we partly correct this state of affairs by present-
ing an extension of one of those results, namely [KM1, Théorème 1.2]. The
extension consists in treating much more general families of automorphic
L-functions on GL(n), n > 1, in the spirit of [DK, §4] for instance. That
this is possible is because we study zeros of L-functions close to the edge of
the critical strip, and in such a region everything behaves very much as if all
the L-functions involved were of degree 1 (compare for instance [KM2, §3]).
One point worth mentioning, however, is that we avoid using the analogue
of the Hoffstein-Lockhart bound, which would not be available in general
(compare [KM1, 8.3, p. 38]).

We now state the theorem. Let n > 1 be a fixed integer. We assume
we are given, for all q > 1, a finite set (possibly empty) S(q) of cuspidal
automorphic representations1 of GL(n)/Q ([Bu], [BC]) which satisfy the
following conditions:

1 This means in particular irreducible for us.
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(1) The forms f ∈ S(q) satisfy the Ramanujan-Petersson conjecture at the
finite places, namely all the local components fp of f at a prime p are
tempered.

(2) There exists A > 0 such that for all f ∈ S(q), the conductor ([JPS])
Cond(f) of f satisfies

Cond(f) 6 qA.(1.1)

(3) There exists d > 0 such that

|S(q)| � qd(1.2)

for all q > 1, the implied constant depending only on the family.

(4) All the f ∈ S(q) have the same component at ∞, hence the same gamma
factor in the functional equation.

The data of all S(q), q > 1, is called here a family of automorphic forms;
in particular, if we speak of a constant depending only on the family, it
means independent of q (and in general will depend only on A, d and the
common gamma factor of f ∈ S(q)). We will give below various examples
of such families and comment on the assumptions.

Remark 1. We will use the Ramanujan-Petersson Conjecture in its form
for local L-functions: If p is unramified for f , then fp being tempered is
equivalent with the condition that the “local roots” of Lp(f) (the Satake
parameters) αi,p satisfy

|αi,p| = 1.(1.3)

For p a ramified prime, we will only use the consequence of temperedness
that the local L-function Lp(f, s) is holomorphic for Re(s) > 0 (see e.g., [RS,
App. A]).2

Now we let

M(α, T ) = {z ∈ C | Re(z) > α, and | Im(z)| 6 T}

for α ∈ R, T > 0. For any cuspidal automorphic representation f on
GL(n)/Q, we let

N(f ;α, T ) = |{ρ ∈M(α, T ) | L(f, ρ) = 0}|

(zeros counted with multiplicity).
Our main theorem is the following.

2 Being holomorphic for Re(s) > 1/2− δ for some δ > 0 depending only on the family
would suffice for our application and this is known in general [RS, Prop. A1].
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Theorem 2. Let S(q), q > 1, be as above. Let α > 3/4 and T > 2. Then
there exists c0 > 0, depending only on the family, such that∑

f∈S(q)

N(f ;α, T ) � TBqc0
1−α
2α−1(1.4)

for all q > 1 and some B > 0 (depending only on the family). The implied
constant depends only on the family and the choice of c0, and one can choose
any c0 > c′0, where

c′0 =
5nA

2
+ d.(1.5)

Remark 3. This theorem is only useful when α is very close to 1 and the
T -aspect is essentially irrelevant (by smoothing for instance). Indeed we
have by classical L-function theory

N(f ; 0, T ) ∼ nT

2π
log(Cond(f)T ) as T → +∞,

so the estimate (1.4) is nontrivial only for T fixed and

α > 1− d

c0
.

In that region, it shows that there can only be very few zeros of the L-
functions L(f, s) on average over f ∈ S(q).

Remark 4. One can weaken the assumption that the Ramanujan-Petersson
conjecture holds, and use an estimate towards it of the form

|αi,p| 6 pθ(1.6)

for some θ with 0 < θ < 1/4 (depending only on the family). The re-
quirement θ < 1/4 comes from Lemma 9 below to get a factorization of the
Rankin-Selberg convolution valid in Re(s) > 1−γ for some γ > 0 depending
only on the family.

In particular this is known in full generality for GL(2) over a number
field, where one can take, e.g., θ = 7/64 (Kim and Sarnak [KS]). For n > 3,
the best general bounds are not sufficient. But note that applying the result
of [RS, App. A] that θ = 1/2− 1/(n2 + 1) works for cusp forms on GL(n)
shows that a suitable bound will exist whenever a symmetric square lift
exists, for instance.

Theorem 5. Let S(q), q > 1, be a family satisfying (1.6). Let α > 3/4 and
T > 2. Then there exists c0 > 0, depending only on the family, such that∑

f∈S(q)

N(f ;α, T ) � TBqc0
1−α
2α−1
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for all q > 1 and some B > 0 (depending only on the family). The implied
constant depends only on the family and the choice of c0, and one can choose
any c0 > c′0, where

c′0 =

{
5nA

2 + d, if θ = 0
2

1−4θ

(
nA
2 + 8nAϑ(1 + θ/2)

)
, if θ > 0, where ϑ = 1+θ

2(1+2θ) .

We will not present this computation (see also [Lu]). Note that the
Ramanujan-Petersson conjecture is expected to hold for GL(n), and is
known, by work of Eichler-Shimura, Deligne and Deligne-Serre, for clas-
sical holomorphic cusp forms, and hence follows for families constructed out
of such forms by Langlands functoriality (symmetric square, etc...). More-
over, it also holds for automorphic forms associated to Artin L-functions or
to algebraic varieties (by Deligne’s proof of the Weil Conjectures) as soon
as they are known to exist.

Theorem 2 can sometimes replace the Generalized Riemann Hypothesis
in applications. The case of Dirichlet characters was indeed established for
that purpose by Linnik [Li1], [Li2] who used it as one of the main steps in
his proof that the least prime p ≡ a (mod q), for (a, q) = 1, satisfies

p� qL1(1.7)

for some absolute constant L1 > 0 (see also e.g., [Bo], [J] for proofs of Lin-
nik’s theorem; the best known result is due to Heath-Brown with L1 = 5.5).
Our proof of Theorem 2 will follow Jutila’s version of ideas of Selberg [J].

Remark 6. Using base-changed L-functions from a number field K (when
they are known to exist), one can give applications of our theorem along
the same lines as Linnik’s, concerning the distribution of prime ideals in
ray-class groups for instance. However, such a generalization has already
been proved in full generality by Fogels [Fo] and (with better uniformity in
terms of K) by Weiss [We].

However we take this opportunity to mention the following nice corollary,
which we have not found explicitly stated in the references above:

Corollary 7. There exists an absolute constant L2 > 0, such that for any
n > 0, the smallest prime p of the form p = x2+ny2, with x, y ∈ Z, satisfies

p� nL2 ,

with an absolute implied constant.

To prove this, one need only prove that for any imaginary quadratic order
O with discriminant D, there is a principal prime ideal p in O of degree 1
with norm Np � |D|L2 for some L2 > 0, and apply this to O = Z[

√
−n].

This is a special case of the results of Fogels and Weiss, and can be proved
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using Linnik’s method and Theorem 2 applied to the theta functions asso-
ciated to characters of ray-class groups (see e.g., [Iw1, Ch. 12]).

See Cox’s book [C] for much more about primes of the form x2 + ny2. It
would be interesting to compute an admissible value of L2.

Another possible application of this density theorem consists in the as-
ymptotic evaluation of the moments of L(f, 1) for properly chosen families.
For (L(χ, 1))χ, the family of primitive Dirichlet L-functions for characters
modulo q, this is a very classical topic (see [MV] and the more recent [GS]
for a deep study of the problem). For higher degree L-functions, this ques-
tion was considered recently by Luo [Lu] in the case of symmetric square L
functions of Maass forms with large eigenvalues, and by E. Royer [Ro] for
the case of symmetric square L-functions of holomorphic forms with large
level. In his work, Royer used the main result of this paper to obtain a good
approximation of L(sym(2) f, 1)±1 by a very short Dirichlet polynomial, valid
for almost all forms f .

In a forthcoming paper, we will use the corollary below to evaluate such
moments for algebraic families of L-functions (as opposed to the spectral
ones given above).

More precisely, we will consider a one parameter family of elliptic curves
defined over Q and given by the equation

Et : y2 + a1(t)xy + a3(y) = x3 + a2(t)x+ a4(t)x+ a6(t)(1.8)

with ai(t) ∈ Z[t]. We note ∆(t) 6= 0 the discriminant of the generic fiber,
and j(t) ∈ Q(t) its j-invariant.

In the sequel we assume that the family is not geometrically trivial, i.e.,
j(t) 6∈ Q. For any x ∈ Z such that ∆(x) 6= 0, the specialized fiber Ex is
an elliptic curve and from the work of Wiles, Taylor-Wiles, Breuil-Conrad-
Diamond-Taylor ([Wi, TW, Di, BCDT]) and from the existence of the
Gelbart-Jacquet lift [GJ], we know that the (analytically normalized) L-
functions L(Ex, s), L(sym(2)Ex, s) associated to Ex and to its symmetric
square come from automorphic forms on GL2(Q) and GL3(Q) respectively.

Denote by N(Ex;α, T ) and N(sym(2)Ex;α, T ) the number of zeros of
these L-functions in M(α, T ).

We will deduce the following Corollary from Theorem 2:
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Corollary 8. With the above notations (recall that j(t) is not constant), we
have ∑

|x|6X
∆(x) 6=0

N(Ex;α, T ) � TBXc1
1−α
2α−1

∑
|x|6X
∆(x) 6=0

N(sym(2)Ex;α, T ) � TBXc2
1−α
2α−1

for all X,T > 1 and some absolute constant B > 0. The implied constants
depends only on the choice of c1, c2, and one can choose any c1 > c′1 and
c2 > c′2, where

c′1 = 5deg ∆ + 1, c′2 = 15deg ∆ + 1.(1.9)

This density result will be one of the main tools for the study of the
moments of L(Ex, 1) and L(sym(2)Ex, 1).

We will prove Theorem 2 in Sections 2, 3 and 4 and Corollary 8 in Sec-
tion 5.

2. Factorization of L-functions.

We fix a family S(q), q > 1.
For f ∈ S(q), we write

L(f, s) =
∑
n>1

λf (n)n−s

the Dirichlet series expansion of its L-function (without gamma factor).
There are minor annoyances arising from the ramified primes p | Cond(f),
as usual. In this paper, the most convenient way to deal with them is to
use only the unramified L-function. Therefore, in all that follows, we use
L(f, s) to denote the unramified L-function. This means that

λf (n) = 0 if (n,Cond(f)) 6= 1.

Also note that the unramified L-function differs from the complete L-func-
tion by a finite Euler product which is entire, and doesn’t vanish in Re(s) > 0
(see Remark 1).

The main simplifying fact in considering zeros close to 1 is that in a
region Re(s) > 1/2 + δ, with δ > 0, all L-functions we consider behave as
if they were Euler products of degree 1. This applies not only to L(f, s)
for f ∈ S(q), but also to their Rankin-Selberg convolutions [JPS]. We
recall briefly that by work of Jacquet, Piatetskii-Shapiro and Shalika, for
f and g cuspidal automorphic representations on GL(n)/Q, there exists an
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L-function denoted L(f × g, s) with Dirichlet series expansion∑
n>1

λf×g(n)n−s

(say) for Re(s) large enough, with the properties that:
• We have

λf×g(p) = λf (p)λg(p)(2.1)

for all p (see the remark below: This L(f × g, s) is the unramified
Rankin-Selberg convolution).

• The L-function L(f × g, s) extends to a meromorphic function on C
which has no poles except possibly at s = 1 ([MW]).

• Moreover, it does have a pole at s = 1 if and only if g = f is the
contragredient of f , so λf×f (p) = |λf (p)|2 for p - Cond(f).

• The conductor Cond(f × g) satisfies ([BH])

Cond(f × g) 6 (Cond(f) Cond(g))n.(2.2)

Properly speaking, what we denote here L(f × g, s) is again the un-
ramified Rankin-Selberg L-function, in agreement with our practice with
L(f, s). This is why (2.1) holds for all primes p. This will be very conve-
nient (see (2.6) below).

The unramified L-function L(f × g, s) differs from the “true” L-function
by a finite Euler product over p | Cond(f) Cond(g), which is entire and has
no zeros in Re(s) > 0 (see Remark 1 and [RS, App. A]).

In the following, we fix a real parameter z > 1 (to be chosen explicitly
later), and we let

P = P (z) =
∏
p<z

p.(2.3)

Lemma 9. Let f be a cuspidal automorphic representation on GL(n)/Q —
resp. let f and g be cuspidal automorphic representations on GL(n)/Q. For
z large enough we have a factorization

L(f, s) = L[(f, s)L](f, s)(2.4)

— resp. L(f × g, s) = L[(f × g, s)L](f × g, s) — with

L[(f, s) =
∑[

(n,P )=1

λf (n)n−s =
∏
p>z

(1 + λf (p)p−s)(2.5)

— resp.

L[(f × g, s) =
∑[

(n,P )=1

λf×g,s(n)n−s =
∏
p>z

(1 + λf (p)λg(p)p−s),(2.6)
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where L](f, s) — resp. L](f × g, s) — is holomorphic and has neither zero
nor pole in

Re(s) > 1/2.

Moreover, L](f, s) is uniformly bounded (in terms of f) in any region

Re(s) > 1/2 + ε

for fixed ε > 0 — resp. L](f × g, s) is uniformly bounded in terms of f and
g in Re(s) > 1/2+ε for any fixed ε > 0. Finally, z can be chosen depending
only on the family.

Hence we can perform this factorization for all of our L-functions and
their Rankin-Selberg convolutions.

For a cuspidal automorphic representation f on GL(n)/Q, we let

s(f) = Ress=1 L(f × f, s).(2.7)

Since the pole at s = 1 is simple [MW], this is nonzero.
We also recall the classical convexity bound for the L-functions we use.

Lemma 10. Let f — resp. f and g — be as above and for 0 6 σ 6 1, let
`(σ) be the affine function such that{

`(0) = 1
2

`(1) = 0,

explicitly `(σ) = (1− σ)/2. For any ε > 0, we have

L(f, s) �ε (Cond(f)(|t|+ 2)n)`(Re(s))+ε(2.8)

for 0 6 Re(s) 6 1, the constant depending only on ε and the family, and

L(f × g, s) �ε (Cond(f × g)(|t|+ 2)n2
)`(Re(s))+ε,(2.9)

for 0 6 Re(s) 6 1, the constant depending only on ε and the family.

Proof. This is well-known. The constant depends only on ε and the family
because of the uniform bound for the Fourier coefficients and the fact that
the gamma factors are the same for all f ∈ S(q). �

3. A mean-value estimate with pseudo-characters.

Selberg’s proof of the analogue of Theorem 2 is based on his notion of pseudo-
characters. We will adapt it here to the general case under consideration
(such a generalization is not entirely straightforward, compare with [J]).

Recall that z > 1 has been fixed in the previous section and P is defined
by (2.3).
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Definition. Let f be a cuspidal automorphic representation on GL(n)/Q.
For any integer r > 1 with λf (r) 6= 0, we let

ψf (r) = µ(r)r|λf (r)|−2,(3.1)

and we define the pseudo-character associated to f and r to be the arithmetic
function defined by

ψf,r(n) = µ(n)2ψf ((n, r)).(3.2)

Because of its appearance in the denominator, we have to work with
integers for which |λf (r)| is not too small. Specifically, let δ, 0 < δ < 1/2,
be a parameter to be chosen later, and define

(3.3) R(f) =
{
r > 1 | r is squarefree, (r,Cond(f)P ) = 1, and

p | r ⇒ |λf (p)| > p−δ
}
.

Such integers are quite abundant, as the next lemma shows.

Lemma 11. Let f ∈ S(q). We have∑
r6R

r∈R(f)

1
|ψf (r)|

� s(f) logR(3.4)

for R > qC , where C is any constant > nA. The implied constant depends
only on the family once C is chosen.

Moreover ∑
r6R

r∈R(f)

1
|ψf (r)|

� s(f) logR,(3.5)

for R > 2, the constant depending only on the family.

Proof. This is a consequence of the properties of the Rankin-Selberg convo-
lution and is very similar to what will be done in the next section. Remark
that

1
|ψf (r)|

=
|λf (r)|2

r
=
λf×f (r)

r
.

One computes ∑
r∈R(f)

λf×f (r)ϕ
( r
R

)
(where ϕ is a suitable test function) using Mellin transform. For Re(s) >
1− 2δ, one can replace L(f × f, s) by the product over the primes in R(f),
since ∏

p

(1 + p−2δ−s)
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converges absolutely in that range. Shifting the contour to Re(s) = 1−2δ+ε
and estimating L(f × f, s) on that line using (2.2) and Lemma 10 yields the
result.

For (3.5), we simply write by positivity∑
r6R

r∈R(f)

1
|ψf (r)|

6
∑
r6R

λf×f (r)

r

so we need no assumption on R. �

Now we have the following formal lemma about pseudo-characters (see [J,
Lemma 2-3]), which incorporates their orthogonality.

Lemma 12. Let f and g be cuspidal automorphic representations on
GL(n)/Q, r ∈ R(f), t ∈ R(g). Let h be the arithmetic function defined
by the Dirichlet polynomial identity∑

d>1

h(d)d−s =
∏
p|r
p-t

(1 + (ψf (p)− 1)p−s)
∏
p|t
p-r

(1 + (ψg(p)− 1)p−s)(3.6)

·
∏

p|(r,t)

(1 + (ψf (p)ψg(p)− 1)p−s).

Then we have

ψf,r(n)ψg,t(n) = µ(n)2
∑
d|n

h(d)(3.7)

for all n > 1. If g = f , we have∑
d>1

h(d)|λf (d)|2ρf (d)d−1 = δ(r, t)|ψf (r)|,(3.8)

where

ρf (d) =
∏
p|d

(1 + |λf (p)|2p−1)−1.(3.9)

In particular, note that, by definition, h is supported on the set of divisors
of rt.

The next result can be seen as an analogue with pseudo-characters of the
general mean-value estimate of [DK, §4].

Proposition 13. Assume that N > R2 and that there exists ε > 0 such
that

N1/2−ε > qd+nA/2R2+2δ(logR).(3.10)
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Then we have∑
f∈S(q)

1
s(f)

∑
r6R

r∈R(f)

1
|ψf (r)|

∣∣∣∑
n∼N

anψf,r(n)λf (n)
∣∣∣2 � N

∑
n∼N

|an|2

for any complex numbers an. The implied constant depends on the chosen ε
and on the family only.

From this, proceeding as in [M, VII], one deduces:

Corollary 14. For any f ∈ S(q), let J(f) ⊂ M(α, T ) a finite set of well-
spaced points, i.e.,

Im(ρ− ρ′) >
1

log q

for ρ 6= ρ′ ∈ J(f). Then, under the same assumptions as above, we have∑
f∈S(q)

1
s(f)

∑
ρ∈J(f)

∑
r6R

r∈R(f)

1
|ψf (r)|

∣∣∣∑
n∼N

anψf,r(n)λf (n)n−ρ
∣∣∣2(3.11)

� TB log(qN)
(
1 + log

log 2N
log 2R

) ∑
n∼N

|an|2n1−2α

for any complex numbers an, for some constant B > 0 depending only on
the family.

Proof of the proposition. (Compare [DK, §4].)
We use duality and smooth the sum by positivity so we consider instead

the sum ∑
n∼N

∣∣∣ ∑
f∈S(q)

1√
s(f)

∑
r6R

r∈R(f)

b(f, r)√
ψf (r)

λf (n)ψf,r(n)
∣∣∣2(3.12)

6
∑

f,g∈S(q)

∑
r,t6R

r∈R(f)
t∈R(g)

b(f, r)b(g, t)√
s(f)s(g)|ψf (r)ψg(t)|

S1(f, g, r, t)

where

S1 =
∑
n>1

ψf,r(n)ψg,t(n)λf (n)λg(n)ϕ
( n
N

)
(3.13)

for some fixed smooth test function ϕ : [0,+∞[−→ [0, 1] with compact
support in [1/2, 3] such that ϕ(x) = 1 for 1 6 x 6 2.
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By (3.7), we have

S1 =
∑[

d6N
(d,P )=1

h(d)λf (d)λg(d)
∑[

(n,d)=1
(n,P )=1

λf (n)λg(n)ϕ
(nd
N

)
(3.14)

=
∑[

d6N
(d,P )=1

h(d)λf (d)λg(d)Td(N) (say)

(we have used the fact that for n, d with nd in the support of the pseudo-
characters we have λf (nd) = λf (n)λf (d), and similarly for g).

We now let

L[
d(f × g, s) =

∑[

(n,d)=1
(n,P )=1

λf (n)λg(n)n−s

= L[(f × g, s)
∏
p|d
p>z

(1 + λf (p)λg(p)p−s)−1

(see Lemma 9). By Mellin transform we can write

Td(N) =
1

2iπ

∫
(3)

L[
d(f × g, s)ϕ̂(s)(N/d)sds.

By Lemma 9, we can shift the contour up to Re(s) = 1/2+ ε, for any ε > 0,
and from the properties of the Rankin-Selberg convolution recalled before
the lemma, we encounter on the way only one possible pole at s = 1 at
s = 1, which occurs if and only if f = g. On Re(s) = 1/2 + ε, we estimate
the L-function using the factorization and the convexity bound (2.9) for
L(f × g, s). By [BH], we have

Cond(f × g) 6 (Cond(f) Cond(g))n 6 q2nA,

hence for any ε > 0 we have

L[
d(f × g, s) �ε q

nA/2dεTB

for Re(s) = 1/2 + ε, for some B > 0. It follows that

Td(N) = δ(f, g)sd(f)
N

d
+Oε(N

1/2+εd−1/2+εqnA/2)(3.15)

for all N and d, where

sd(f) = Ress=1 L
[
d(f × f, s) = s(f)ρf (d)L](f × f, 1).
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The implied constant in (3.15) depends on z, ε and the family. For fixed z,
we remark that

L](f × f, 1) � 1(3.16)

uniformly for all f in the family.
Summing over d in (3.14), the error terms contribute at most

N1/2+εqnA/2
∑[

d6N
(d,P )=1

|h(d)λf (d)λg(d)|√
d

.

But by multiplicativity, we have∑[

d6N
(d,P )=1

|h(d)λf (d)λg(d)|√
d

�
∏
p|r

(
1 +

2|ψf (p)λf (p)|
p1/2

) ∏
p|t

(
1 +

2|ψg(p)λg(p)|
p1/2

)
�ε R

2+2δ+εN1/2+εqnA/2.

The main term contributes only if f = g, and is then (because N > R2 >
rt so the sum over d can be extended to all integers), equal to

s(f)L](f × f, 1)N
∑[

d6N
(d,P )=1

h(d)ρf (d)|λf (d)|2d−1

= s(f)L](f × f, 1)N
∑[

d>1
(d,P )=1

h(d)ρf (d)|λf (d)|2d−1

= δ(r, t)s(f)|ψf (r)|L](f × f, 1)N by (3.8).

In (3.12), the “diagonal contribution” is therefore equal to

N
∑

f∈S(q)

L](f × f, 1)
∑
r6R

r∈R(f)

|b(r, f)|2 � N
∑

f∈S(q)

∑
r6R

r∈R(f)

|b(r, f)|2 (by (3.16)),

the implied constant depending only on the family.
On the other hand, the error terms contribute

R2+2δN1/2+εqnA/2

 ∑
f∈S(q)

1√
s(f)

∑
r6R

r∈R(f)

b(f, r)√
|ψf (r)|


2
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and by Cauchy’s inequality, the right-hand sum is ∑
f∈S(q)

1√
s(f)

∑
r6R

r∈R(f)

b(f, r)√
|ψf (r)|


2

6

 ∑
f∈S(q)

∑
r6R

r∈R(f)

|b(r, f)|2


 ∑

f∈S(q)

1
s(f)

∑
r6R

r∈R(f)

1
|ψf (r)|


� |S(q)|(logR)

∑
f∈S(q)

∑
r6R

r∈R(f)

|b(r, f)|2 (by (3.5)),

the implied constant depending only on the family.
Hence the norm of the quadratic form is bounded by

N +N1/2+εqnA/2+dR2+2δ(logR),

and the assumption (3.10) proves the proposition. �

4. End of the proof.

We finish the proof essentially as in [J]. Let 1 6 w < y be two parameters,
to be chosen later. Define

m(d) =


1 if d 6 w,
log(d/y)
log(w/y) if w 6 d 6 y,

0 if y < d,

and

λd = µ(d)m(d)(4.1)

(the Selberg weights). Define also

∆(n) =
∑
d|n

λd.

Notice that

∆(1) = 1, ∆(n) = 0 if 1 < n 6 w.(4.2)

We will need the following result of Graham [G, Lemma 9]:

Lemma 15. For any α with 1/2 < α < 1, we have∑
n6x

∆(n)2n1−2α � log(x/w)
log(y/w)

x2−2α

for all x > 1, with an absolute implied constant.
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We now introduce the mollifier.

Lemma 16. Let f ∈ S(q), r ∈ R(f). We have the identity∑[

(n,P )=1

∆(n)ψf,r(n)λf (n)n−s = L[(f, s)Mr(f, s)(4.3)

where
Mr(f, s) =

∑
d>1

λdηf,r(d; s)ψf,r(d)λf (d)d−s

and

ηf,r(d; s) =
∏

p|r/(r,d)

(1 + ψf (p)λf (p)p−s)
∏
p|rd

(1 + λf (p)p−s)−1.

Proof. This is a formal identity using the multiplicativity of ψf,r(n) and
λf (n): The left-hand side of (4.3) is∑[

(n,P )=1

∆(n)ψf,r(n)λf (n)n−s

=
∑

(d,P )=1

λdψf,r(d)λf (d)d−s
∑[

(n,dP )=1

ψf,r(n)λf (n)n−s

=
∑

(d,P )=1

λdψf,r(d)λf (d)d−s
∏

(p,dP )=1

(1 + ψf,r(p)λf (p)p−s)

= L[(f, s)
∏
p|r

1 + ψf (p)λf (p)p−s

1 + λf (p)p−s

∑
(d,P )=1

λdψf,r(d)λf (d)d−s

·
∏

p|(r,d)

(1 + ψf (p)λf (p)p−s)
∏

p|d/(r,d)

(1 + λf (p)p−s)

= L[(f, s)Mr(f, s).

�

Lemma 17. Let f ∈ S(q), r ∈ R(f). If z is chosen large enough, then for
any s ∈ C with 0 < Re(s) 6 1, we have

Mr(f, s) �ε r
1+2δ−Re(s)+εy1−σ+ε

where the constant depends only on ε and the family.

Proof. We have |λd| 6 1 for d 6 y and λd = 0 for d > y. Since r ∈ R(f), we
also have

|ψf,r(d)λf (d)| 6 (r, d)1+δ 6 rδ(r, d).
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Again since r ∈ R(f), and since Re(s) 6 1, we have∣∣∣∣∣∣
∏

p|r/(r,d)

(1 + ψf (p)λf (p)p−s)

∣∣∣∣∣∣ 6 τ(r)r1+δ−Re(s).

Finally, since Re(s) > 0 we have

|1 + λf (p)p−s| > 1− p−σ > 1/2

if p > z and z is large enough, so∣∣∣∣∣∣
∏
r|rd

(1 + λf (p)p−s)−1

∣∣∣∣∣∣ 6 τ(rd).

The result now follows from the definition of Mr(f, s). �

Lemma 18. Let f ∈ S(q), r ∈ R(f) with r 6 R. Let T > 1 be a real
number and let α be such that

1/2 6 α 6 1.

Let X > 1 be a parameter, x = X(log qT )2, and let zr(f, s) be the “zero-
detector”

zr(f, s) =
∑[

1<n<x
(n,P )=1

∆(n)ψf,r(n)e−n/Xλf (n)n−s.

Last, let ρ ∈M(α, T ) be a zero of L(f, s).
Fix ε > 0. Then we have

1 �ε,α zr(f, ρ)

provided that the following inequalities hold:
X > (yq1/2Tn/2R1+4δ)1/(2α−1)+ε

logX � log qT
(log q)1/2 6 logR 6 1

2 log x.
(4.4)

The implied constant depends only on ε, α and the family.

Proof. This is again a Mellin transform argument. Let σ be any real number
with σ + α > 1/2, say σ = 1/2− α+ ε′ with ε′ > 0. We have

e−1/X +
∑[

n>1
(n,P )=1

∆(n)ψf,r(n)e−n/Xλf (n)n−ρ(4.5)

=
∫

(3)
L[(f, s+ ρ)Mr(f, s+ ρ)Γ(s)Xsds

=
∫

(σ)
L[(f, s+ ρ)Mr(f, s+ ρ)Γ(s)Xsds
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by contour shift, since the zero of L[(f, s+ρ) cancels the simple pole of Γ(s).
On the line Re(s) = σ, we have Re(s+ ρ) = σ+ Re(ρ) > 1/2 + ε′, so we can
apply Lemma 9 and Lemma 10 to estimate L[(f, s+ ρ).

Estimating the mollifier using Lemma 17, and the fact that Re(s) > α,
we see that the integral on Re(s) = σ is

�ε X
1/2−α+εR1/2+2δ+εy1/2+εq

1
4
+εT

n
4
+ε.

The left-hand side of (4.5) is zr(f, ρ) +Oε(1), so the result follows. �

To conclude the proof, suppose given for every f ∈ S(q) a subset Z(f) of
well-spaced points as in Corollary 14, and let Z be the union of the Z(f).
Consider the sum

Z ′ =
∑

f∈S(q)

∑
r6R

r∈R(f)

|Z(f)|
s(f)|ψf (r)|

.

Lemma 19. Assume that R > qC where C > nA. We have

Z ′ � (logR)|Z|

where the implied constant depends only on the family.

Proof. This is clear from (3.4), by summing first over r:

Z ′ =
∑

f∈S(q)

|Z(f)|
s(f)

∑
r6R

r∈R(f)

1
|ψf (r)|

� (logR)
∑

f∈S(q)

|Z(f)|.

�

Lemma 20. We have

Z ′ � TB(log q)x2(1−α)

if the parameters α, w, y, R, satisfy the assumptions (3.10) (with N = x)
and (4.4) and if

log x� log(y/w).

The implied constant depends only on the family.

Proof. We have by Lemma 18

Z ′ �
∑

f∈S(q)

1
s(f)

∑
ρ∈Z(f)

∑
r6R

r∈R(f)

1
|ψf (r)|

|zr(f, ρ)|2.

This expression if of the type considered in Corollary 14 above, with coeffi-
cients

an = ∆(n)e−n/X for 1 < n < x.
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Since an = 0 for 1 < n 6 w, we find

Z ′ � TB(log q)
∑

w<n<x

∆(n)2n1−2α

� TB(log q)x2(1−α) (by Lemma 15).

�

Theorem 2 follows now easily: To count the zeros of L(f, s), we partition
M(α, T ) in rectangles

Rk = [α, 1]× [k/(log q), (k + 1)/(log q)].

Fixing a parity of k (even or odd), for each f and k pick (if it exists) a zero
ρf,k of L(f, s) in Rk. The resulting sets Z(f) are then well-spaced (for each
parity of k separately).

By comparing Lemma 19 and Lemma 20, we find that (if the assumptions
are satisfied), we have ∑

f∈S(q)

|Z(f)| � TBx2(1−α)

if R and q are logarithmically comparable.
To take all zeros of L(f, s) into account, we use the following simple

density lemma (see [J, Lemma 8]) originally proved by Linnik.

Lemma 21. The number of zeros of L(f, s) in the square{
s ∈ C | α 6 Re(s) 6 1, | Im(s)− t| 6 1

2
(1− α)

}
is

� (1− α) log(q(|t|+ 2)) + 1,(4.6)

the implied constant depending only on the family.

Proof. The proof is the same as in [P, p. 332] note that Prachar gives a
bound

� (1− α) log(q(|t|+ 2))
subject to α > 1−1/(log q). However, one can drop that condition by adding
the extra +1 as in (4.6). �

It remains to choose the parameters to obtain Theorem 2. For this, write

R = qa1 , w = qa2 , y = qa3 , X = qa4

and let a5 = (2α− 1)a4.
We let δ → 0, and take

a1 ↓ nA, a2 = 1, a3 ↓ 1, a5 ↓
5nA

2
+ d,
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hence we obtain the value of c′0 in (1.5). Easy computations show that all
conditions are satisfied (if α > 3/4).

5. A density theorem for L-functions in families of elliptic curves.

In this section we prove Corollary 8.
Let Et be the one parameter familly of elliptic curves given by Equa-

tion (1.8). Recall that we assume that the j-invariant j(t) ∈ Q(t) is non-
constant.

For any x ∈ Z such that ∆(x) 6= 0, the specialized fiber Ex is an elliptic
curve and we note Nx his conductor.

From the work of Wiles, Taylor-Wiles, Breuil-Conrad-Diamond-Taylor
([Wi, TW, Di, BCDT]) and from the Gelbart-Jacquet lift [GJ], there exist
automorphic forms fx and sym(2)(fx) on GL(2)/Q and GL(3)/Q (respec-
tively) with (analytically normalized) L-functions equal to the Hasse-Weil
L-function of Ex and its symmetric square.

Moreover, the conductor of fx is = Nx and the conductor Mx of sym(2)fx

is a divisor of N2
x . We have therefore

Nx 6 |∆(x)| � (1 + |x|)deg(∆), Mx � (1 + |x|)2 deg(∆),

with implied constants depending only on the elliptic curve Et/Q(t).
There might be a multiplicity involved, different x giving the same auto-

morphic form.

Lemma 22. There exist a constant C > 0 depending only on the equation
for Et/Q(t) such that the number of x with the same fx is 6 C and the
number of x with the same sym(2)fx is 6 C.

Proof. Let E = Ex one of the fibers. From the isogeny theorem [Fa],
L(Ex, s) = L(Ey, s) if and only if Ex ' Ey, where this indicates isogeny
over Q. By a result of Mazur [Ma], the number of elliptic curves over Q in
a given isogeny class is 6 D for some absolute constant D > 0. Hence all the
j(y) with L(Ey, s) = L(Ex, s) belong to a finite set. Since j is nonconstant,
each j has at most deg(j) preimages.

For the symmetric square, we have (see Ramakrishnan’s Appendix to
[DK]) L(sym(2)fx, s) = L(sym(2)fy, s) if and only if fy is a quadratic twist
of fx. In such a case, j(y) = j(x) (Ex and Ey are isomorphic over a quadratic
field), hence the argument above goes through also. �

Now the corollary follow immediately from Theorem 2 applied to the
families

S(q) = {fx | |x| 6 q} with d = 1, n = 2, A = deg(∆)

S2(q) = {sym(2)fx | |x| 6 q} with d = 1, n = 3, A = 2deg(∆),
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(strictly speaking we have to exclude in the last case the values of x such
that Ex is CM, in which case the symmetric square is not a cusp form;
however this happens only in finitely many cases, since j(x) has to belong
to a finite set, and one can add up the corresponding trivial estimate for the
number of zeros).
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(1989), 605-674, MR 91b:22028, Zbl 0696.10023.

[M] H.L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in
Math., 227, Springer-Verlag, 1971, MR 49 #2616, Zbl 0216.03501.

[MV] H.L. Montgomery and R. Vaughan, Extreme values of Dirichlet L-functions at 1,
in ‘Number Theory in Progress’ (eds. K. Gyory, H. Iwaniec and J. Urbanowicz),
de Gruyter, Berlin, 1999, 1039-1052, MR 2000m:11075, Zbl 0942.11040.

[P] K. Prachar, Primzahlverteilung, Grundl. der Math. Wiss., Springer-Verlag, 1957,
MR 19,393b, Zbl 0080.25901.

[Ro] E. Royer, Statistique de la variable L(sym(2)f, 1), Math. Ann., 321(3) (2001),
667-687, CMP 1 871 974.

[RS] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix
theory, Duke Math. J., 81 (1996), 269-322, MR 97f:11074, Zbl 0866.11050.

[TW] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, An-
nals of Math., 141(3) (1995), 553-572, MR 96d:11072, Zbl 0823.11030.

[We] A. Weiss, The least prime ideal, J. Reine Angew. Math., 338 (1983), 56-94,
MR 84d:12011, Zbl 0492.12008.

[Wi] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Annals of Math.,
141(3) (1995), 443-551, MR 96d:11071, Zbl 0823.11029.

Received April 9, 2001 and revised July 30, 2001.
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