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Let K be any field of characteristic zero. We show that
there are at least four ideals in the group algebra KG of every
simple locally finite group G of 1-type, thus providing the final
step in solving an old question of I. Kaplansky’s for locally
finite groups. We also determine the ideal lattice in KG for
those 1-type groups G which are a direct limit of finite direct
products of alternating groups.

1. Introduction.

It is an old question due to I. Kaplansky [K] for which groups G and which
fields K the augmentation ideal ω(KG) is the only nonzero proper two-sided
ideal in KG. Every such group G must necessarily be simple. Kaplansky’s
question was the starting point for a research programme begun by A.E.
Zalesskǐı to determine the ideal lattices of complex group algebras of infinite
simple locally finite groups G. Here, a group is said to be locally finite if
it is a direct limit of finite groups. The investigation of this topic leads
naturally into the realm of character theory of finite groups, since ideals
in CG correspond naturally with certain systems of irreducible complex
characters of the finite subgroups of G ([Z2], Proposition 1.2). Thus one can
use the highly developed theory of characters to obtain information about
ideals in group algebras of locally finite groups. And conversely results about
such ideals can be interpreted in the spirit of the asymptotic theory of finite
groups.

At present, every infinite simple locally finite group G can be sorted into
one of the following classes: Finitary linear groups, groups of 1-type, groups
of p-type (where p is a prime), and groups of ∞-type. The definition of
these classes is given in Section 2. For any field K of characteristic zero it
is known that the augmentation ideal is the only proper ideal in KG when
G is finitary linear with natural representation over an infinite field ([HZ1],
Theorem B, [HZ3], Theorem 1.1, [LP], Theorem 4.5), or when G is of p- or
∞-type ([LP], Corollary 2.2). On the other hand, if G is a finitary linear
group defined over a finite field, then many ideals can be expected ([HZ2];
[Z2], Proposition 2.6; [LP]). Thus, as far as infinite locally finite groups are
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concerned, Kaplansky’s question is just open for groups of 1-type. In the
present paper we shall prove the following result.

Theorem A. Let G be an infinite simple locally finite group of 1-type, and
let K be any field of characteristic zero. Then KG has at least four two-sided
ideals.

In general, it seems to be quite difficult to describe the full ideal lattice of
KG for groups of 1-type. However, we shall do so for an interesting subclass,
namely for those simple locally finite groups of 1-type which are direct limits
of finite direct products of alternating groups. We shall call these groups
ldA-groups. Note that Theorem A was established for ldA-groups in [HZ3],
Lemma 5.8.

Theorem B. Let G be an ldA-group, and let K be any field of characteristic
zero. Then the lattice of two-sided ideals in KG has the form KG = I0 ⊃
ω(KG) = I1 ⊃ I2 ⊃ I3 ⊃ · · · ⊃

⋂
n∈ω In = 0.

Both theorems will be proved for countable groups first, and then be ex-
tended to groups of arbitrary cardinality by means of the Löwenheim-Skolem
Theorem. One of the key results used in the proof of Theorem A is due to
U. Meierfrankenfeld (see Proof of Lemma 3.1). Theorem B generalizes the
corresponding result for direct limits of finite alternating groups ([Z1], The-
orem 1). The proof of the countable version closely follows the arguments
of [Z1]. In particular it relies heavily on the representation theory of finite
alternating groups.

2. Preliminaries.

For the convenience of the reader, we shall collect some basic notions in
this section. First of all recall that a Kegel cover in the simple locally finite
group G is a family {(Gi,Mi) | i ∈ I}, such that for each i, Mi is a maximal
normal subgroup in the finite subgroupGi ofG, and such that for every finite
subgroup F of G there exists some i ∈ I satisfying F ≤ Gi and F ∩Mi = 1.
The sections Gi/Mi are called the Kegel factors of the Kegel cover. It was
proved in [KW] that every simple locally finite group has a Kegel cover.
When G is countable, the subgroups Gi can be chosen in such a way that
they form an ascending chain G0 ⊂ G1 ⊂ G2 ⊂ . . . with Gi ∩Mi+1 = 1 for
all i. A Kegel cover of this kind is called a Kegel sequence.

A simple locally finite group G is said to be:
• Finitary linear if it acts faithfully on a (possibly infinite-dimensional)

vector space V in such a way that every g ∈ G fixes a subspace of
finite codimension in V pointwise,

• of 1-type if it is not finitary linear, and if every Kegel cover of G has
an alternating Kegel factor,
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• of p-type if it is not finitary linear, and if every Kegel cover of G has a
Kegel factor which is a classical group over a field of characteristic p,

• of ∞-type if it is not finitary linear, and neither of 1-type nor of p-type
for any prime p.

It is clear that every countable simple locally finite group of 1-type has a
Kegel sequence with alternating factors.

The above classification can be found in S. Delcroix’ Ph.D. thesis [D],
Section 3.3. There in fact a simple locally finite group of ∞-type is charac-
terized by the property that for every finite subgroup F of G there exist a
finite subgroup H of G and a maximal normal subgroup M in H such that:

(1) H/M ∼= Alt(Ω) for some finite set Ω,
(2) F ≤ H and F ∩M = 1, and
(3) F has a regular orbit on Ω.

In contrast to this, the following notion of diagonal embedding is introduced
in [PZ]. Suppose that Hi (i = 1, 2) are finite groups with maximal normal
subgroups Mi and alternating quotients Hi/Mi

∼= Alt(Ωi). Then an embed-
ding H1 → H2 is said to be diagonal if in the natural action of H2 on Ω2,
the index |H1 : (H1)ωM1| is either 1 or |Ω1| for each point ω ∈ Ω2. Here
(H1)ω denotes the point stabilizer of ω in H1. The following proposition is a
straight consequence of [PZ], Theorem 1.7 and of the above characterization
of simple locally finite groups of ∞-type.

Proposition 2.1. Let {(Hi,Mi) | i ∈ ω} be a Kegel sequence with alternat-
ing Kegel factors in the countable simple locally finite group G of 1-type.
Then there exist positive integers i0 < i1 < i2 < . . . such that the inclusion
Hik → Hi` is a diagonal embedding for all k < `.

An important tool in the study of the (two-sided) ideals of the group
algebra KG of a locally finite group G, are the so-called inductive systems
with respect to a fixed local system {Gi | i ∈ I} of finite subgroups in G.
By definition, an inductive system Φ = {Φi | i ∈ I} is a set where:

(1) Each Φi is a subset of the set IrrK(Gi) of all irreducible KGi-representa-
tions, and

(2) whenever Gi ≤ Gj , then Φi consists precisely of the irreducible KGi-
constituents of KGj-representations from Φj .

Inductive systems are linked with ideals via the following result of A.E.
Zalesskǐı.

Proposition 2.2 ([Z2], Proposition 1.2). Let G be a locally finite group,
and let K be a field of characteristic zero. Then the inductive systems with
respect to a fixed local system of finite subgroups in G are in order reversing
one-to-one correspondence with the ideals in KG.

Here an ideal J corresponds to the inductive system Φ = {Φi | i ∈ I},
where Φi consists of the irreducible KGi-representations corresponding to
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the irreducible KGi-modules occurring in KGi/(J ∩ KGi). In particular,
the zero ideal corresponds to {IrrK(Gi) | i ∈ I}, the augmentation ideal
corresponds to {{1Gi} | i ∈ I}, and KG corresponds to {∅ | i ∈ I}.

3. Groups of 1-type.

This section is devoted to the proof of Theorem A for countable groups G.
We therefore suppose throughout that G is a countable simple locally finite
group of 1-type with a Kegel sequence H = {(Hi,Mi) | i ∈ ω} such that
Hi/Mi

∼= Alt(Ωi). From Proposition 2.1 we may assume further that all the
inclusions Hi → Hk (i < k) are diagonal.

Lemma 3.1. For each i ≥ 1 there is some j > i such that the following
hold:

(a) There exist an Hi-orbit Θi in Ωj and a maximal Hi-system of imprim-
itivity Di in Θi such that Di is equivalent to Ωi as an Hi-set.

(b) The stabilizer in Hi of any point ω ∈ Ωi contains the stabilizer of every
point δ ∈ Θi which is contained in the block ∆ ∈ Di corresponding to
ω with respect to the above equivalence.

Proof. (a) Because all the inclusions Hi−1 → Hk (i ≤ k) are diagonal,
Hi−1 does not have a regular orbit on Ωk. Since G is not finitary, we must
have lim infk→∞ |supp Ωk

h| = ∞ for every nontrivial h ∈ Hi−1 – otherwise
an ultraproduct argument would yield a finitary permutation representation
for G (see [H1]). Therefore [M], Lemma 2.14 provides some j > i and a
positive integer t ≤ |Hi−1| − 2 such that Hi has a t-pseudo natural orbit Θi

on Ωj with respect to Mi. By definition this means that Mi is the stabilizer
of a maximal Hi-system of imprimitivity Di in Θi, and that the action of
Hi on Di is equivalent to the action of Hi on the set of t-subsets of Ωi.

Consider some ∆ ∈ Di and δ ∈ ∆. Clearly S = NHi(∆) is a point-
stabilizer in the action of Hi on Di, and (Hi)δMi ≤ S. In particular, the
index |Hi : (Hi)δMi| exceeds 1 and must therefore be equal to |Ωi|. But
then S = (Hi)δ Mi, because there are no proper subgroups of index smaller
than |Ωi| in Alt(Ωi). Thus |Di| = |Ωi|, and Hi/Mi acts naturally on Di, that
is, Di and Ωi are equivalent as Hi-sets.

(b) follows immediately from (a), since (Hi)δ ≤ NHi(∆) whenever δ ∈
∆ ∈ Di. �

From passing to a subsequence of the Kegel sequence H we may clearly
assume in the sequel that j = i + 1 for all i in Lemma 3.1. We are now
well-prepared to construct a permutation representation of the group G.

To this end, we consider the subset Ω of the Cartesian product
∏

i∈ω Ωi,
which consists of all tupels (ωi)i∈ω with the following property: There exists
m (depending on the particular tuple) such that for all i ≥ m the point
ωi+1 ∈ Ωi+1 is contained in the block in Di which corresponds to the point
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ωi ∈ Ωi with respect to the Hi-equivalence between Di and Ωi furnished by
Lemma 3.1. Such a tuple is said to be nice from m onwards. We define an
equivalence relation ∼ on Ω via

(ωi)i∈ω ∼ (νi)i∈ω if and only if ωi = νi for all but finitely many i.

Let Ω = Ω/ ∼ denote the set of equivalence classes [ωi]i∈ω of tupels (ωi)i∈ω

∈ Ω modulo ∼. Since every Hi acts on Ωj for all j ≥ i, there is a well-defined
componentwise action of G on Ω.

Lemma 3.2. For each ω = [ωi]i∈ω ∈ Ω and every k ≥ 1 there exists n ≥
k such that the orbit ωHk in Ω is Hk-equivalent to the orbit ωHk

n in Ωn.
Moreover, if ω is nice from k onwards, then Mk acts intransitively on ωHk .

Proof. The tuple ω is nice from some m ≥ k onwards. By Lemma 3.1 the
point stabilizers (Hk)ω`

(` ≥ m) form a descending chain. By finiteness ofHk

the chain must become stationary. But then (Hk)ω =
⋂

`≥m(Hk)ω`
= (Hk)ωn

for some n ≥ m. Suppose now that m = k. As Hk acts naturally on Ωk,
it is clear that Mk(Hk)ωn ⊆ (Hk)ωk

6= Hk. Hence Mk acts intransitively on
ωHk

n . �

We are now in a position to prove the main result of this section.

Theorem 3.3. Let G be a countable simple locally finite group of 1-type.
For any field K of characteristic zero, the group algebra KG has at least
four two-sided ideals.

Proof. Consider the permutation module V = KΓ for some G-orbit Γ in Ω
containing a tuple which is nice from m = 1 onwards. Let Φ = {Φi | i ∈ ω}
be the inductive system with respect to H where Φi is the set of irreducible
KHi-constituents of the representation of G on V . For each i we shall show
that Ψi = {ϕ ∈ Φi | Mi ⊆ kerϕ} equals {1Hi , ηi} where ηi denotes the
nontrivial irreducible constituent of the natural permutation representation
of Hi on Ωi.

Consider some ω = [ωj ]j∈ω ∈ Γ. From Lemma 3.2 there exists n > i such
that the orbit ωHi is Hi-equivalent to the orbit ∆ = ωHi

n in Ωn. If Mi acts
transitively on ∆, then fixK∆(Mi) is spanned by the sum of the elements of
K∆, whence fixK∆(Mi) is 1-dimensional and the trivial Hi-module. How-
ever, Γ also contains a tuple ω which is nice from m = 1 onwards, and in this
situation Lemma 3.2 ensures thatMi acts intransitively on ∆. TheMi-orbits
in ∆ form an Hi-system of imprimitivity S = {Σ1, . . . ,Σr}. Clearly Mi is
the stabilizer of S. Since the inclusion Hi → Hn is diagonal, it follows as in
the proof of Lemma 3.1 that the alternating group Hi/Mi acts naturally on
S. It is readily seen that fixK∆(Mi) = Ks1 ⊕ · · · ⊕Ksr with sk =

∑
σ∈Σk

σ.
But the alternating group Hi/Mi acts naturally on the set {s1, . . . , sr}. We
conclude that fixK∆(Mi) is isomorphic to the natural KHi-module Ωi. By
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Maschke’s Theorem, fixK∆(Mi) contains every irreducible Hi-submodule of
K∆ on which Mi acts trivially. Therefore {1Hi , ηi} = Ψi.

Since every representation of the alternating quotient Hi/Mi lifts to a
representation of Hi, it is now clear that Ψi = {1Hi , ηi} is a proper subset
of {ϕ ∈ IrrK(Hi) | Mi ⊆ kerϕ}, whence Φi is a proper subset of IrrK(Hi).
Therefore Proposition 2.2 links Φi to a proper ideal in the augmentation
ideal of KG. �

4. ldA-groups.

In this section we shall completely describe the ideal lattice of countable
ldA-groups. Again the generalization to uncountable groups will be deferred
to Section 5. Since the proof of our result follows the ideas contained in
[Z1], the reader is referred to that paper for all the definitions related to the
representation theory of alternating groups.

Suppose then that G is a countable ldA-group. G is the union of an
ascending chain G0 < G1 < G2 < . . . of finite subgroups where

Gi = Ai,1 ×Ai,2 × · · · ×Ai,di

with Ai,j = Alt(Ωi,j) for suitable finite sets Ωi,j . Note that Gi acts on the

disjoint union Ωi = Ωi,1
·
∪ · · ·

·
∪ Ωi,di

such that Ai,ν acts naturally on Ωi,ν

while
Mi,ν = Ai,1 × · · · ×Ai,ν−1 ×Ai,ν+1 × · · · ×Ai,di

fixes Ωi,ν pointwise. The above chain of finite subgroups Gi in G is said to
be of strongly diagonal type if for all pairs i ≤ j and every nontrivial Gi-orbit
∆ on Ωj = Ωj,1

·
∪ · · ·

·
∪ Ωj,dj

there exists ν ∈ {1, . . . , di} such that Ai,ν acts
naturally on ∆ while Mi,ν fixes ∆ pointwise. On the other hand the chain
is said to be of regular type if Gi has a regular orbit on Ωj whenever i < j.

It was proved in [HZ3], Theorem 5.4 that any chain of the above kind
has a subchain of either strongly diagonal or regular type. In view of this
fact we readily have that our countable ldA-group, which is of course not
of ∞-type, is the union of a chain of strongly diagonal type. We can still
improve this chain slightly.

Lemma 4.1. Every countable ldA-group G is the union of an ascending
chain G0 < G1 < G2 < . . . of finite direct products of finite alternating
groups as above such that the chain is of strongly diagonal type, such that
Gi ∩Mi+1,j = 1 for all i and all j ∈ {1, . . . , di+1}, and such that Ai,ν has
at least i+ 2 nontrivial orbits on Ωi+1,j for all i, all ν ∈ {1, . . . , di}, and all
j ∈ {1, . . . , di+1}.

Proof. G is already the union of a chain H = {Hi | i ∈ ω} of strongly
diagonal type. The terms Gi of the desired chain are constructed recursively
fromH as follows. Let G0 = H0 and assume that Gi has been found for some
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i. Consider F = 〈Hi, Gi〉. Since G is simple and locally finite, there exists
a positive integer n such that x ∈ 〈yHn〉 for all x ∈ F and every nontrivial
y ∈ F . Let Gi+1 be the normal closure of F in Hn. Because Hn is a direct
product of simple groups, every normal subgroup of Gi+1 is normal in Hn

too. Hence any proper normal subgroup of Gi+1 does not contain F . By
choice of Hn, it must then have trivial intersection with F and in particular
with Gi. This completes the construction of a chain satisfying the first two
requirements.

If there would exist integers νj (j ≥ i) such that the number of orbits
of Ai,νi in Ωj,νj is uniformly bounded for all j ≥ i, then an ultraproduct
argument as in [H1] would show that the group G is finitary linear, a con-
tradiction. Therefore an infinite subchain of the chain constructed so far
also satisfies the third requirement. �

In the sequel we shall consider all representations over a fixed field K of
characteristic zero. The following facts can be extracted from [Z1].

To each irreducible representation ϕ of Alt(n) we can associate a Young
diagram which is completely described by a finite descending sequence (l1, l2,
. . . , lk) of positive integers with sum n; here li is the number of cells in the
i-th row of the Young diagram. This diagram will be denoted by D(ϕ). The
depth δ(ϕ) of the representation ϕ is defined as δ(ϕ) = l2 + · · · + lk. It is
clear that the trivial representation is the unique irreducible representation
of depth zero. The unique irreducible representation of depth one has the
diagram described by the sequence (n− 1, 1) and will be denoted by ηn.

Lemma 4.2 ([Z1], Lemma 4). Let n = n0+· · ·+nk with n0 ≥ 0 and ni > 3
for all i ≥ 1. Assume that ψ is an irreducible representation of Alt(n) of
depth k. If H = Alt(n0)× Alt(n1)× · · · × Alt(nk) is embedded naturally in
Alt(n), then ψ|H contains the irreducible component 1Alt(n0)⊗ηn1⊗· · ·⊗ηnk

.

Lemma 4.3 ([Z1], Lemma 5). Let m > 1. Then

{ψ ∈ IrrK(Alt(n)) | δ(ψ) ≤ m}

is the set of all irreducible components of the representation⊗
m

i = 1
ηn of Alt(n).

Lemma 4.4 ([Z1], Lemma 11). Let Alt(k) → Alt(n) be a strongly diagonal
embedding, and suppose that ϕ is an irreducible representation of Alt(n) of
depth m. If k > max{2m, 4}, then every irreducible constituent of ϕ|Alt(k)

has degree at most m.

We shall now combine the preceding three lemmata to establish the fol-
lowing result.

Proposition 4.5. Suppose that the group H = Alt(n1) × · · · × Alt(nk) is
strongly diagonally embedded in Alt(n). Assume further that there exists



440 F. LEINEN AND O. PUGLISI

m ∈ ω such that ni > 2m+ 2 for each i, and such that each Alt(ni) has at
least m+ 2 nontrivial orbits on Ω = {1, . . . , n}, the natural set for Alt(n).

(a) Let ϕ be any irreducible representation of Alt(n) of depth m, and
choose irreducible representations σi of Alt(ni) in such a way that
δ(σ1)+ · · ·+ δ(σk) ≤ m. Then σ = σ1⊗ · · ·⊗σk is a component of the
restriction ϕ|H .

(b) Conversely, if ϕ is any irreducible representation of Alt(n) of depth
m and σ = σ1 ⊗ · · · ⊗ σk is an irreducible H-constituent of ϕ, then
δ(σ1) + · · ·+ δ(σk) ≤ m.

Proof. Since the result is trivial for m = 0, we assume in the sequel that
m ≥ 1.

(a) For each i ∈ {1, . . . , k}, select mi = δ(σi) + 2 nontrivial Alt(ni)-
orbits ∆i,j (1 ≤ j ≤ mi) in Ω. Since H is embedded strongly diagonally in
Alt(n), all these orbits are pairwise distinct H-orbits. Let ∆0 = Ω\

⋃
i,j ∆i,j .

The group H is contained in the subgroup K = Alt(∆0) × K1 × · · · × Kk

of Alt(n), where Ki = Alt(∆i,1) × · · · × Alt(∆i,mi). And the canonical
projection πi : K → Ki embeds Alt(ni) onto the diagonal subgroup of Ki.

By Lemma 4.2, the restriction ϕ|K contains the irreducible component

ψ = 1Alt(∆0) ⊗ ψ1 ⊗ · · · ⊗ ψk, where ψi = ⊗
mi

j = 1
ηni . And from Lemma 4.3,

the restriction of ψi to Alt(ni) contains all the irreducible representations of
Alt(ni) of depth at most mi. In particular, σi is a component of ψi|Alt(ni).
It follows that σ is a component of ϕ|H .

(b) Conversely, let ∆i be the support of Alt(ni) in Ω, and let ∆0 =
Ω\supp ΩH. Then H is contained in the subgroup K = Alt(∆0)×Alt(∆1)×
· · · ×Alt(∆k) of Alt(n) in such a way that the inclusion Alt(ni) → Alt(∆i)
is strongly diagonal for each i ≥ 1. Let ρ = ρ0 ⊗ · · · ⊗ ρk be an irreducible
component of ϕ|K . It follows from the Littlewood-Richardson rule (see [Z1],
(IV)) and from Frobenius reciprocity that δ(ρ1) + · · ·+ δ(ρk) ≤ m. We now
apply Lemma 4.4 which shows that the irreducible Alt(ni)-components of ρi

all have depth at most δ(ρi). This proves that the irreducible H-constituent
σ = σ1⊗ · · ·⊗σk of ρ satisfies δ(σ1)+ · · ·+ δ(σk) ≤ δ(ρ1)+ · · ·+ δ(ρk) ≤ m,
as required. �

We are now prepared to describe inductive systems for our countable
ldA-group G.

Theorem 4.6. Let K be a field of characteristic zero, and let G be a count-
able ldA-group which is the union of an ascending chain of finite direct prod-
ucts Gi = Ai,1×· · ·×Ai,di

of finite alternating groups Ai,j = Alt(Ωi,j) as in
Lemma 4.1. Then for every m ∈ ω, an inductive system Φm = {Φm,i | i ∈ ω}
with respect to {Gi | i ∈ ω} is given by

Φm,i = {ϕ ∈ IrrK(Gi) | ϕ = ϕ1 ⊗ · · · ⊗ ϕdi
with δ(ϕ1) + · · ·+ δ(ϕdi

) ≤ m}
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for all i ≥ m.

Proof. For i ≥ m, choose an irreducible representation ϕ1 of Ai+1,1 with
depth m, and let ϕ = ϕ1 ⊗ 1 ⊗ · · · ⊗ 1 ∈ Φm,i+1. It follows straight away
from Part (a) of Proposition 4.5, that every representation in Φm,i is a
component of ϕ|Gi . Hence Φm,i ⊆ Φm,i+1|Gi .

Conversely, consider ϕ = ϕ1 ⊗ · · · ⊗ ϕdi+1
∈ Φm,i+1. Let πj : Gi+1 →

Ai+1,j denote the canonical projection. The restriction ϕ|Gi is a sum of
representations of the form σ = σ1 ⊗ · · · ⊗ σdi+1

, where each σj is an
irreducible constituent of ϕj |Giπj . And σj = ρj,1 ⊗ · · · ⊗ ρj,di

, for certain
irreducible representations ρj,k of Ai,kπj . Proposition 4.5(b) yields δ(ρj,1)+
· · ·+δ(ρj,di

) ≤ δ(ϕj) for each j ∈ {1, . . . , di+1}. Every irreducible constituent
χ of σ has the form χ = χ1⊗· · ·⊗χdi

for certain irreducible representations
χk of Ai,k, and χk is a component of σ|Ai,k

= ρ1,k⊗· · ·⊗ ρdi+1,k. From [Z1],
(III) we see that δ(χk) ≤ δ(ρ1,k) + · · ·+ δ(ρdi+1,k). Thus

di∑
k=1

δ(χk) ≤
di∑

k=1

di+1∑
j=1

δ(ρj,k) =
di+1∑
j=1

di∑
k=1

δ(ρj,k) ≤
di+1∑
j=1

δ(ϕj) ≤ m.

This shows that Φm,i+1|Gi ⊆ Φm,i. �

It remains to prove that every inductive system of G coincides with Φm

for some m.

Proposition 4.7. In the notation of Theorem 4.6, suppose that i ≥ m.
Then every representation in Φm,i is a constituent of the restriction to Gi of
every representation in τ = τ1⊗· · ·⊗τdi+2

of Gi+2 with δ(τ1)+· · ·+δ(τdi+2
) =

m.

Proof. Since the canonical projection Gi+2 → Ai+2,j embeds Ai+1,1 strongly
diagonally into Ai+2,j , Proposition 4.5(a) ensures that, for each j ∈ {1, . . . ,
di+2}, some irreducible representation θj of Ai+1,1 of depth mj = δ(τj) is
a constituent of τj |Ai+1,1 . In particular, the representation θ = θ1 ⊗ · · · ⊗
θdi+2

is a component of τ |Ai+1,1 . From [Z1], (III), θ contains an irreducible
representation σ1 of depth δ(σ1) = m1 + · · · + mdi+2

= m. And so, when
restricting τ to Gi+1, we find an irreducible component of the form σ = σ1⊗
· · ·⊗σdi+1

where σk is an irreducible representation of Ai+1,k also for k ≥ 2.
On the other hand, Proposition 4.5(b) implies that δ(σ1)+· · ·+δ(σdi+1

) ≤ m,
whence δ(σk) = 0 and σk = 1 for all k ≥ 2. But now Proposition 4.5(b)
yields that every representation in Φm,i is a constituent of σ|Gi and hence
of τ |Gi . �

Theorem 4.8. In the situation of Theorem 4.6, every inductive system Ψ =
{Ψi | i ∈ ω} of G with respect to {Gi | i ∈ ω} is either {∅ | i ∈ ω}, or one of
the Φm (m ∈ ω), or {IrrK(Gi) | i ∈ ω}.
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Proof. Let the Ψi be nonempty. Every representation σ ∈ Ψi has the form
σ = σ1 ⊗ · · · ⊗ σdi

for certain irreducible representations σj of Ai,j . Define
δ(σ) = δ(σ1) + · · · + δ(σdi

). Consider the function µ : ω → ω, given by
µ(i) = max{δ(σ) | σ ∈ Ψi}.

Suppose first that lim supi→∞ µ(i) takes a finite value m. Then, for every
n ≥ m, there exists k ≥ n+2 such that µ(k) = m, and Propositions 4.7 and
4.6 imply that Φm,i ⊆ Ψi for all i ≤ n. It follows that Φm,i ⊆ Ψi for all i.
The converse inclusion holds trivially. Hence Ψ = Φm.

Suppose now that lim supi→∞ µ(i) = ∞. Then, for every pair n ≥ m,
there exists k ≥ n + 2 such that µ(k) ≥ m, and Propositions 4.7 and 4.6
imply that Φm,i ⊆ Ψi for all i ≤ n. It follows that Φm,i ⊆ Ψi for all i and
all m. Hence Ψ = IrrK(Gi). �

Clearly Φm,i ⊂ Φm+1,i for all i and every m. Therefore the final result of
this section is a direct consequence of Proposition 2.2 and Theorem 4.8.

Theorem 4.9. Let G be a countable ldA-group, and let K be any field of
characteristic zero. Then the lattice of two-sided ideals in KG has the form
KG = I0 ⊃ ω(KG) = I1 ⊃ I2 ⊃ I3 ⊃ · · · ⊃

⋂
n∈ω In = 0.

5. Uncountable groups.

It remains to extend Theorems A and B to uncountable groups. This will be
accomplished by an application of the Theorem of Löwenheim and Skolem
(see [EFT], Theorem IX.2.4).
5.1. The extension of Theorem A. Because of Theorem 3.3 it suffices
to show the following two facts.

Proposition 5.1.
(a) The class of simple locally finite groups of 1-type is axiomatizable by a

sentence in the infinitary language Lω1ω.
(b) The assertion in Theorem A is an Lω1ω-sentence.

Proof. We use a 2-sorted language with variables for field elements and for
group elements.

(a) In view of the characterization of simple locally finite groups of ∞-
type mentioned in Section 2, we just need to formalize the two sentences:

Every finite subset X of G is contained in a finite subgroup H of G,
such that X ∩N ⊆ {1} for some maximal normal subgroup N of H with
alternating quotient,

and:
There exists a finite subgroup F in G such that, whenever H is a finite
subgroup of G with F ≤ H and F ∩N = {1} for some maximal normal
subgroup N of H with alternating quotient H/N ∼= Alt(Ω), then F does
not have a regular orbit on Ω.
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In Lω1ω we can easily quantify over all finite subsets or all finite subgroups of
G (by writing down group tables). Therefore the first sentence is expressible
in Lω1ω. We can similarly scope with the second sentence provided we can
express that F does not have a regular orbit on Ω. But the point stabilizers
of the action of H on Ω are precisely the subgroups of index |Ω| in H which
contain N . And so we just need to write down that every such maximal
subgroup of H contains a nontrivial element from F .

(b) Let K be a field andG be a group. It suffices to formalize the sentence:

If char K = 0, then there exist elements 0 6= x, y ∈ KG with coefficient
sum zero, such that y does not lie in the ideal generated by x.

The condition “char K = 0” is clearly encoded by the infinite conjunction∧
n∈ω ψn where the sentence ψn expresses that the (n+1)-fold sum of 1 ∈ K

is nonzero. The membership “there exists x ∈ KG” where x is considered to
be of the form x = k0g0 + · · ·+kngn is expressible by the infinite disjunction∨

n∈ω

∃ k0, . . . , kn ∈ K ∃ g0, . . . , gn ∈ G.

And finally, “y ∈ KG does not lie in the ideal generated by x ∈ KG” becomes∧
n∈ω

∀u0, . . . , un, v0, . . . , vn ∈ KG y 6= u0xv0 + · · ·+ unxvn.

�

5.2. The extension of Theorem B. We shall use the Löwenheim-Skolem
technique to deduce the following result from Theorem 4.9.

Proposition 5.2. Let K be a field of characteristic zero, and let G be any
ldA-group. Then there are ideals KG = I0 ⊃ I1 ⊃ I2 ⊃ . . . such that every
further ideal of KG is contained in Iω =

⋂
n∈ω In.

To this end it suffices to establish the following two facts.

Proposition 5.3.

(a) The class of ldA-groups is axiomatizable by a sentence in Lω1ω.
(b) The assertion in Proposition 5.2 is an Lω1ω-sentence.

Proof. (a) This follows as in the proof of Proposition 5.1(a), since every ldA-
group is a simple locally finite group of 1-type such that every finite subset
is contained in a finite subgroup which is a direct product of alternating
groups.

(b) Simply consider
∧

n∈ω ψn −→
∧

n∈ω ϕn where the sentence ψn ex-
presses that the (n + 1)-fold sum of 1 ∈ K is nonzero, and where ϕn is the



444 F. LEINEN AND O. PUGLISI

sentence:
There exist elements x0, . . . , xn ∈ KG such that:
• Every element of KG lies in the ideal generated by x0,
• for every i ≤ n−1, the element xi does not lie in the ideal generated

by xi+1, but xi+1 lies in the ideal generated by xi, and
• for every 1 ≤ i ≤ n, whenever an element y ∈ KG does not lie

in the ideal generated by xi, then xi−1 is contained in the ideal
generated by y.

�

Proof of Theorem B. In the notation of Proposition 5.2, it suffices to show
that Iω = 0. Choose elements un ∈ In \ In+1 (n ∈ ω). By Proposition 5.3(a)
and [EFT], Theorem IX.2.4, every countable subset of G is contained in a
countable ldA-subgroup H of G. By Theorem 4.9, the assertion of Theo-
rem B holds already for every such subgroup H. We may also assume with-
out loss that u0, u1, · · · ∈ KH for every such group H. Hence KH ∩ Iω = 0.
And this implies that Iω = 0, as desired. �
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