Pacific Journal of Mathematics

CONSTRUCTION DE LA TOUR DES 2-CORPS DE CLASSES DE HILBERT DE CERTAINS CORPS BIQUADRATIQUES

ABDELMALEK AZIZI

Volume 208 No. 1 January 2003

CONSTRUCTION DE LA TOUR DES 2-CORPS DE CLASSES DE HILBERT DE CERTAINS CORPS BIQUADRATIQUES

Abdelmalek Azizi

Let p and q be prime numbers such that $p \equiv 1 \mod 8$, $q \equiv -1 \mod 4$ and $(\frac{p}{q}) = -1$, d = pq, $k = Q(\sqrt{d}, i)$, $k_2^{(1)}$ be the 2-Hilbert class field of $k, k_2^{(2)}$ be the 2-Hilbert class field of $k_2^{(1)}$ and G_2 be the Galois group of $k_2^{(2)}/k$. The 2-part $C_{k,2}$ of the class group of k is of type (2,2), so $k_2^{(1)}$ contains three extensions K_i/k , i = 1, 2, 3. Our goal is to determine the group $C_{k,2}$, to study the problem of capitulation of the 2-classes of k in K_i , i = 1, 2, 3 and to construct the 2-class field tower of k.

Résumé.

Soient p et q deux nombres premiers tels que $p \equiv 1 \mod 8$, $q \equiv -1 \mod 4$ et $(\frac{p}{q}) = -1$, d = pq, $i = \sqrt{-1}$, $k = Q(\sqrt{d},i)$, $k_2^{(1)}$ le 2-corps de classes de Hilbert de $k, k_2^{(2)}$ le 2-corps de classes de Hilbert de $k_2^{(1)}$ et G_2 le groupe de Galois de $k_2^{(2)}/k$. La 2-partie $C_{k,2}$, du groupe de classes de k est de type (2,2), par suite $k_2^{(1)}$ contient trois extensions K_i/k , i=1,2,3. On s'intéresse à déterminer le groupe $C_{k,2}$, à etudier la capitulation des 2-classes de k dans K_i , i=1,2,3 et à la construction de la tour du 2-corps de classes de Hilbert de k.

1. Introduction.

Soient \mathbf{k} un corps de nombres de degré fini sur \mathbf{Q} , \mathbf{F} une extension non ramifiée de \mathbf{k} et p un nombre premier. L'extension $\mathbf{k}^{(1)}$ de \mathbf{k} , abélienne maximale et non-ramifiée pour tous les idéaux premiers finis et infinis , est dite corps de classes de Hilbert de \mathbf{k} . De même l'extension $\mathbf{k}_p^{(1)}$ de \mathbf{k} dont le degré est une puissance de p, abélienne maximale et non-ramifiée pour tous les idéaux premiers finis et infinis est dite p-corps de classes de Hilbert de \mathbf{k} .

La recherche des idéaux de k qui capitulent dans \mathbf{F} (deviennent principaux dans \mathbf{F}), a été l'objet d'étude d'un grand nombre de mathématiciens. En effet, Kronecker était parmi les premiers à avoir abordé des problèmes de capitulation dans le cas des corps quadratiques imaginaires. Dans le cas

où \mathbf{F} est égal au corps de classes de Hilbert $\mathbf{k}^{(1)}$ de \mathbf{k} , D. Hilbert avait conjecturé que toutes les classes de \mathbf{k} capitulent dans $\mathbf{k}^{(1)}$ (théorème de l'idéal principal). La preuve de ce dernier théorème a été réduite par E. Artin à un problème de la théorie des groupes, et c'est Ph. Furtwängler qui l'avait achevée.

Le cas où \mathbf{F}/\mathbf{k} est une extension cyclique et $[\mathbf{F}:\mathbf{k}]=p$, un nombre premier, a été traité par Hilbert. Sa réponse est le sujet du Théorème 94 qui affirme qu'il y a au moins une classe non-triviale dans \mathbf{k} qui capitule dans \mathbf{F} . De plus, Hilbert avait trouvé le résultat suivant:

Soient σ un générateur du groupe de Galois de \mathbf{F}/\mathbf{k} , N la norme de \mathbf{F}/\mathbf{k} , \mathbf{U}_0 le groupe des unités de \mathbf{k} , \mathbf{U} le groupe des unités de \mathbf{F} et \mathbf{U}^* le sous-groupe des unités de \mathbf{U} dont la norme, relative à l'extension \mathbf{F}/\mathbf{k} , est égale à 1. Alors le groupe des classes de \mathbf{k} qui capitulent dans \mathbf{F} est isomorphe au groupe quotient $\mathbf{U}^*/\mathbf{U}^{1-\sigma} = \mathbf{H}^1(\mathbf{U})$, le groupe cohomologique de \mathbf{U} de dimension 1.

A l'aide de ce théorème et de plusieurs résultats sur les groupes cohomologiques des unités, on montre le théorème suivant:

Théorème 1. Soit \mathbf{F}/\mathbf{k} une extension cyclique de degré un nombre premier, alors le nombre des classes qui capitulent dans \mathbf{F}/\mathbf{k} est égal à

$$[\mathbf{F}:\mathbf{k}][\mathbf{U}_0:N(\mathbf{U})].$$

On trouve une preuve de ce théorème dans un papier de Heider et Schmithals [11].

Plusieurs résultats ont été établis; en particulier on a:

Soit \mathbf{k} tel que $C_{\mathbf{k},2}$, la 2-partie du groupe des classes $C_{\mathbf{k}}$ de \mathbf{k} , est isomorphe à $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$, $\mathbf{k}_2^{(2)}$ le 2-corps de classes de Hilbert de $\mathbf{k}_2^{(1)}$ et G_2 le groupe de Galois de $\mathbf{k}_2^{(2)}/\mathbf{k}$. On sait par la théorie des corps de classes que $\mathrm{Gal}(\mathbf{k}_2^{(1)}/\mathbf{k}) \simeq C_{\mathbf{k},2}$, par suite $\mathrm{Gal}(\mathbf{k}_2^{(1)}/\mathbf{k}) \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$. Alors $\mathbf{k}_2^{(1)}$ contient trois extensions quadratiques de \mathbf{k} dénotées par \mathbf{K}_1 , \mathbf{K}_2 et \mathbf{K}_3 .

D'après Kisilevsky [12] on a:

Théorème 2. Soient \mathbf{k} tel que $C_{\mathbf{k},2} \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ et G_2 le groupe de Galois de $\mathbf{k}_2^{(2)}/\mathbf{k}$; alors on a trois types de capitulation:

Type 1. Les quatre classes de $C_{\mathbf{k},2}$ capitulent dans chacune des extensions \mathbf{K}_i/\mathbf{k} , i=1, 2, 3. Ceci est possible si et seulement si $\mathbf{k}_2^{(2)} = \mathbf{k}_2^{(1)}$.

Type 2. Les quatre classes de $C_{\mathbf{k},2}$ capitulent toutes seulement dans une extension parmi les trois extensions \mathbf{K}_i/\mathbf{k} , $i=1,\,2,\,3$. Dans ce cas le groupe G_2 est diédral.

Type 3. Seulement deux classes capitulent dans chacune des extensions \mathbf{K}_i/\mathbf{k} , $i=1,\,2,\,3$. Dans ce cas le groupe G_2 est semidiédral ou quaternionique.

Soit G_2' le groupe dérivé de G_2 , si $C_{\mathbf{k},2} \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$, alors on a de même $G_2/G_2' \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$; ce qui implique que G_2' est cyclique. Comme $G_2' \simeq \operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k}_2^1)$ est cyclique, alors la tour des 2-corps de classes de Hilbert de \mathbf{k} s'arrête en $\mathbf{k}_2^{(2)}$. Donc pour construire la tour des 2-corps de classes de Hilbert, il suffit de construire $\mathbf{k}_2^{(1)}$ et $\mathbf{k}_2^{(2)}$. On trouve plusieurs travaux sur la construction des 2-corps de classes de Hilbert; en particulier on trouve les travaux de H. Cohn dans $[\mathbf{9}]$ et dans $[\mathbf{10}]$, qui a construit le 2-corps de classes de Hilbert de $\mathbf{Q}(\sqrt{-p})$ où p est un premier tel que $p \equiv 1 \mod 4$.

Dans toute la suite on désigne par p et q deux nombres premiers tels que $p \equiv 1 \mod 8$, $q \equiv -1 \mod 4$ et $(\frac{p}{q}) = -1$, d = pq, $\mathbf{k} = \mathbf{Q}(\sqrt{d}, i)$, $\mathbf{k}_2^{(1)}$ le 2-corps de classes de Hilbert de $\mathbf{k}_2^{(1)}$ et G_2 le groupe de Galois de $\mathbf{k}_2^{(2)}/\mathbf{k}$. D'après Azizi [2], on a $C_{\mathbf{k},2} \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$. Donc $\mathbf{k}_2^{(1)}$ contient trois extensions quadratiques de \mathbf{k} , \mathbf{K}_1 , \mathbf{K}_2 et \mathbf{K}_3 . Notre but est de déterminer $C_{\mathbf{k},2}$, d'étudier la capitulation dans les trois extensions \mathbf{K}_i/\mathbf{k} , i = 1, 2, 3 et de construire la tour des 2-corps de classes de Hilbert de \mathbf{k} . En particulier on a le résultat principal suivant:

Théorème 3. Soient ϵ l'unité fondamentale de $\mathbf{Q}(\sqrt{p})$, $\mathbf{L} = \mathbf{Q}(\sqrt{-p})$ et $\mathbf{L}_2^{(1)}$ le 2-corps de classes de Hilbert de \mathbf{L} . Alors il existe deux entiers $a, b \in \mathbf{N}$ tels que $p = a^2 + 16b^2$. Soient $\pi_1 = a + 4bi$, $\pi_2 = a - 4bi$, \mathcal{H}_1 et \mathcal{H}_2 les idéaux premiers au-dessus de π_1 et π_2 dans \mathbf{k} . Alors la 2-partie du groupe de classes de \mathbf{k} est engendré par les classes de \mathcal{H}_1 et \mathcal{H}_2 et les trois extensions quadratiques non-ramifiées sur \mathbf{k} sont: $\mathbf{k}^{(*)} = \mathbf{k}(\sqrt{p})$, $\mathbf{K}_1 = \mathbf{k}(\sqrt{\pi_1})$ et $\mathbf{K}_2 = \mathbf{k}(\sqrt{\pi_2})$. De plus si $\mathbf{k}_2^{(2)} \neq \mathbf{k}_2^{(1)}$, alors seules la classe de \mathcal{H}_1 et son carré capitulent dans \mathbf{K}_1 et il en est de même pour \mathbf{K}_2 , c'est-à-dire seules la classe de \mathcal{H}_2 et son carré capitulent dans \mathbf{K}_2 . De plus on a $\mathbf{k}_2^{(1)} = \mathbf{k}(\sqrt{p})(\sqrt{\epsilon})$ et $\mathbf{k}_2^{(2)} = \mathbf{k}^{(*)}\mathbf{L}_2^{(1)}$.

2. Capitulation dans le corps de genres de k.

Soient p et q deux nombres premiers, d = pq et $\mathbf{k} = \mathbf{Q}(\sqrt{d}, i)$. Dans toute la suite on supposera que $p \equiv 1 \mod 8$, $q \equiv -1 \mod 4$ et $(\frac{p}{q}) = -1$. Soient $\mathbf{k}_2^{(1)}$ le 2-corps de classes de Hilbert de \mathbf{k} et $\mathbf{k}^{(*)}$ le corps des genres de \mathbf{k} (c'est l'extension maximale non-ramifiée pour tous les idéaux premiers, finis et infinis, et qui est abélienne sur \mathbf{Q}).

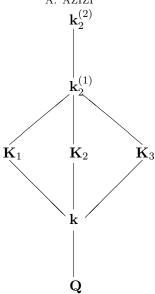


Diagramme 1.

Le corps des genres de \mathbf{k} est $\mathbf{k}^{(*)} = \mathbf{Q}(\sqrt{p}, \sqrt{q}, i)$. D'après Azizi [6], on a les deux résultats suivants:

Théorème 4. Soient $\mathbf{k} = \mathbf{Q}(\sqrt{pq}, i)$ avec p et q deux nombres premiers tels que $q \equiv -1 \mod 4, p \equiv 1 \mod 8$, $(\frac{p}{q}) = -1$, $\mathbf{k}^{(*)} = \mathbf{Q}(\sqrt{p}, \sqrt{q}, i)$ le corps des genres de \mathbf{k} , $\mathbf{k}_2^{(1)}$ le 2-corps de classes de Hilbert de \mathbf{k} , $\mathbf{k}_2^{(2)}$ le 2-corps de classes de Hilbert de $\mathbf{k}_2^{(1)}$ et $\mathbf{C}_{\mathbf{k},2}$ la 2-partie du groupe des classes au sens large de \mathbf{k} . Alors on a:

- 1. toutes les classes de $C_{k,2}$ capitulent dans $k^{(*)}$.
- 2. $\mathbf{k}_2^{(2)} \neq \mathbf{k}_2^{(1)} \Leftrightarrow 4|h(\mathbf{k}^{(*)}) \Leftrightarrow p = x^2 + 32y^2$.

Corollaire 5. Soit $\mathbf{k} = \mathbf{Q}(\sqrt{pq}, i)$ avec p et q deux nombres premiers tels $que\ q \equiv -1 \mod 4, p \equiv 1 \mod 8, \ (\frac{p}{q}) = -1.$ Soit G_2 le groupe de Galois de $\mathbf{k}_2^{(2)}/\mathbf{k}$. Alors le groupe G_2 est de type (2,2) ou bien diédral d'ordre 2^m . De plus, G_2 est diédral si et seulement si $p = x^2 + 32y^2$ avec x et y deux entiers naturels.

D'après le Théorème 4, toutes les classes de $C_{k,2}$ capitulent dans $k^{(*)}$ et d'après le Théorème 2 on a les deux possibilités suivantes:

- i) si $\mathbf{k}_2^{(2)} = \mathbf{k}_2^{(1)}$, alors toutes les classes de $\mathbf{C}_{\mathbf{k},2}$ capitulent dans \mathbf{K}_1 et dans \mathbf{K}_2 .
- ii) si $\mathbf{k}_2^{(2)} \neq \mathbf{k}_2^{(1)}$, alors seulement une classe non-triviale de $\mathbf{C}_{\mathbf{k},2}$ capitule dans \mathbf{K}_1 et il en est de même pour \mathbf{K}_2 .

Dans toute la suite on va déterminer le groupe $C_{k,2}$ et mettre le point sur les classes qui capitulent dans K_1 et celles qui capitulent dans K_2 .

3. Capitulation de type classe et construction de la tour des 2-corps de classes de Hilbert.

Soient d=pq avec p et q deux premiers tels que $p\equiv 1 \mod 8,\ q\equiv -1 \mod 4$ et $(\frac{p}{q})=-1,\ \mathbf{k}=\mathbf{Q}(\sqrt{d},i),\ \mathbf{C_{k,2}}$ le 2-groupe des classes de $\mathbf{k},\ \mathbf{E_k}$ le groupe des unités de $\mathbf{k},\ \mathbf{k}_2^{(1)}$ le 2-corps de classes de Hilbert de $\mathbf{k},\ \mathbf{k}^{(*)}$ le corps des genres de $\mathbf{k},\ H$ le groupe de Galois de $\mathbf{k}_2^{(1)}/\mathbf{k}$ et \hat{H} le groupe des caractères de H. Soit \mathbf{L} une extension quadratique de \mathbf{k} . Alors il existe un nombre α de \mathbf{k} tel que $\mathbf{L}=\mathbf{k}(\sqrt{\alpha})$. Si \mathbf{L}/\mathbf{k} est non-ramifié aux idéaux premiers finis, alors on peut choisir α premier avec 2 tel que:

- i) il existe un idéal \mathcal{H} tel que $\mathcal{H}^2 = (\alpha)$;
- ii) il existe $x \in \mathbf{k}$ tel que $\alpha \equiv x^2 \mod 4$.

Cette dernière condition est satisfaite si et seulement si $\alpha = x^2 + 4\frac{r}{s}$, où r et s sont des entiers de **k** et s est premier avec 2.

Soient $\overline{R_{\mathbf{k}}}$ l'ensemble de tous les nombres α de \mathbf{k} vérifiant les deux conditions précédentes, $R_{\mathbf{k}} = \overline{R_{\mathbf{k}}}/\overline{R_{\mathbf{k}}} \cap (\mathbf{k}^*)^2$ et $U_{\mathbf{k}}$ l'ensemble des unités de \mathbf{k} appartenant à $\overline{R_{\mathbf{k}}}$.

Définition 6. On dit que \mathbf{k} est de type classe si et seulement si $U_{\mathbf{k}} = \mathbf{E}_{\mathbf{k}}^2$. Dans le cas contraire on dit que \mathbf{k} est de type unité.

On définit un homomorphisme φ de $R_{\mathbf{k}}$ dans $\mathbf{C}_{\mathbf{k},2}$ de la façon suivante: À une classe de $R_{\mathbf{k}}$ d'un nombre α on fait correspondre la classe de l'idéal \mathcal{H} tel que $\mathcal{H}^2 = (\alpha)$. Alors on a $\operatorname{Ker}(\varphi) = U_{\mathbf{k}}/\mathbf{E}_{\mathbf{k}}^2$ et \mathbf{k} est de type classe si et seulement si $\operatorname{Im}(\varphi)$ est égal au sous-groupe du groupe des classes au sens restreint, engendré par les éléments d'ordre deux.

Proposition 7. Soient $\mathbf{k}^{(*)} = \mathbf{k}(\sqrt{p})$ le corps des genres de \mathbf{k} et \mathcal{H}_0 l'idéal de \mathbf{k} tel que $\mathcal{H}_0^2 = (p)$. Si \mathbf{k} est de type classe, alors la classe de l'idéal \mathcal{H}_0 est d'ordre 2. Si (π_1) et (π_2) sont les deux idéaux premiers au-dessus de p dans $\mathbf{Q}(i)$ et \mathcal{H}_1 (resp. \mathcal{H}_2) est un idéal premier au-dessus de π_1 (resp. π_2) dans $\mathbf{k}/\mathbf{Q}(i)$, alors les classes de \mathcal{H}_1 et de \mathcal{H}_2 engendrent $\mathbf{C}_{\mathbf{k},2}$ et on a $\mathcal{H}_1\mathcal{H}_2 = \mathcal{H}_0$.

Preuve. Comme $p \equiv 1 \mod 4$, alors il existe deux nombres π_1 et π_2 de $\mathbf{Q}(i)$ tels que $\pi_1\pi_2 = p$. De plus, puisque p est ramifié dans $\mathbf{k}/\mathbf{Q}(i)$, alors il existe deux idéaux de \mathbf{k} , \mathcal{H}_1 et \mathcal{H}_2 tels que $\mathcal{H}_1^2 = (\pi_1)$, $\mathcal{H}_2^2 = (\pi_2)$ et $(\mathcal{H}_1\mathcal{H}_2)^2 = (p) = \mathcal{H}_0^2$. D'où $\mathcal{H}_1\mathcal{H}_2 = \mathcal{H}_0$. Si \mathbf{k} est de type classe , la classe de l'idéal \mathcal{H}_0 dans $\mathbf{C}_{\mathbf{k},2}$ est d'ordre 2, car sinon, il existe un $\beta \in \mathbf{k}$ tel que $\mathcal{H}_0 = (\beta)$ et $(\beta^2) = (p)$. Il s'ensuit que $p = \beta^2 \epsilon$ pour une certaine unité ϵ de \mathbf{k} . Comme $\mathbf{k}(\sqrt{p}) = \mathbf{k}(\sqrt{\epsilon})$ est non-ramifié pour tous les idéaux premiers, alors $\epsilon \in U_{\mathbf{k}}$ et $\epsilon \notin \mathbf{E}_{\mathbf{k}}^2$, ce qui est contraire au fait que \mathbf{k} est de type classe.

Il vient que les classes de \mathcal{H}_1 et \mathcal{H}_2 sont d'ordre 2 et comme leur produit est d'ordre 2, alors leurs classes engendrent $\mathbf{C}_{\mathbf{k},2}$.

Proposition 8. Soient a un entier composé, impair et sans facteurs carrés, $\mathbf{k} = \mathbf{Q}(\sqrt{a}, i)$, p un nombre premier et \mathcal{H} un idéal de \mathbf{k} tel que $\mathcal{H}^2 = (p)$. Alors on a:

- i) Si l'unité fondamentale de $\mathbf{Q}(\sqrt{a})$ est de norme -1, alors \mathcal{H} est d'ordre 2 dans $\mathbf{C_{k,2}}$.
- ii) Si l'unité fondamentale de $\mathbf{Q}(\sqrt{a})$, $\epsilon_0 = s + t\sqrt{a}$, est de norme 1 on a:
 - a) Si $\{\epsilon_0\}$ est un SFU de \mathbf{k} , alors \mathcal{H} est principal si et seulement si $2p(s\pm 1)$ ou $p(s\pm 1)$ est un carré dans \mathbf{N} .
 - b) Sinon, l'idéal \mathcal{H} est d'ordre 2 dans $\mathbf{C}_{\mathbf{k},2}$.

Preuve. Soient p un nombre premier et \mathcal{H} un idéal de \mathbf{k} tel que $\mathcal{H}^2 = (p)$. On suppose que \mathcal{H} est principal. Il existe $\beta \in \mathbf{k}$ et ϵ une unité de \mathbf{k} tels que $\beta^2 = p\epsilon$. Nous déterminons les conditions pour que $p\epsilon$ soit un carré dans \mathbf{k} . Soit $\epsilon_0 = s + t\sqrt{a}$ l'unité fondamentale de $\mathbf{Q}(\sqrt{a})$. Alors un SFU de \mathbf{k} est $\{\epsilon_0\}$ ou $\{\sqrt{i\epsilon_0}\}$.

Cas où $\{\epsilon_0\}$ est un SFU de **k**:

On se ramène aux cas où ϵ est égal à i, ϵ_0 ou à $i\epsilon_0$.

* Si $\epsilon = \epsilon_0$, alors il existe $(\beta_1, \beta_2) \in \mathbf{Q}(\sqrt{a})^2$ tel que $p\epsilon_0 = \beta^2 = (\beta_1 + \beta_2 i)^2 = \beta_1^2 - \beta_2^2 + 2\beta_1\beta_2 i$. D'où

$$\left\{ \begin{array}{l} \beta_1\beta_2=0 \\ \beta_1^2-\beta_2^2=p\epsilon_0 \end{array} \right., \text{ ce qui est \'equivalent \`a } \left\{ \begin{array}{l} \beta_2=0 \\ \beta_1^2=p\epsilon_0. \end{array} \right.$$

On pose $\beta_1 = x + y\sqrt{a}$. Alors on a:

$$\left\{ \begin{array}{l} x^2+ay^2=ps\\ 2xy=pt \end{array} \right. \text{, ce qui est \'equivalent \`a} \ \left\{ \begin{array}{l} 4x^4-4psx^2+ap^2t^2=0\\ y=\frac{pt}{2x}\\ \Delta=16p^2(s^2-at^2). \end{array} \right.$$

Le nombre Δ est le discriminant de l'équation du deuxième degré $4x^4 - 4psx^2 + ap^2t^2 = 0$ pour l'indéterminée x^2 . On désigne cette dernière équation par (1).

- Si ϵ_0 est de norme -1 alors Δ est négatif. Donc il n'y a pas de solutions pour l'équation (1).
- Si ϵ_0 est de norme 1, alors $x^2 = \frac{2ps \pm 2p}{4}$. Par suite, il y a une solution pour l'équation (1) si et seulement si $2p(s\pm 1)$ est un carré dans \mathbf{N} .
- * Soit $\epsilon = i\epsilon_0$. De la même façon, on se ramène à $2p\epsilon_0 = \gamma^2$ où $\gamma \in \mathbf{Q}(\sqrt{a})$ et on trouve des résultats similaires:
 - Si ϵ_0 est de norme -1, il n'y a pas de solutions.
 - Sinon, il y a une solution si et seulement si $p(s \pm 1)$ est un carré dans \mathbf{N} .

* Soit $\epsilon = i$. On a $pi = \beta^2 \Leftrightarrow p = 2\beta_1^2$ où β_1 est la partie réelle de β . Or ceci implique que $\sqrt{2p} \in \mathbf{Q}(\sqrt{a})$, ce qui n'est pas notre cas.

Cas où $\{\sqrt{i\epsilon_0}\}$ est un SFU de **k**:

Soit l'équation $p\epsilon = \beta^2$. Alors on se ramène aux cas: $p^2\epsilon^2 = \beta^4$ et $\epsilon^2 = \pm i\epsilon_0$, $\epsilon = i$, $\epsilon = i\epsilon_0$ ou $\epsilon = \epsilon_0$.

- Si $\epsilon^2 = \pm i\epsilon_0$, on a $\beta = \beta_1 + i\beta_2$ et $\pm ip^2\epsilon_0 = (\beta_1^2 \beta_2^2)^2 4(\beta_1\beta_2)^2 + 4\beta_1\beta_2(\beta_1^2 \beta_2^2)i$. D'où $(\beta_1^2 \beta_2^2)^2 4(\beta_1\beta_2)^2 = (\beta_1^2 \beta_2^2 2\beta_1\beta_2)(\beta_1^2 \beta_2^2 + 2\beta_1\beta_2) = 0$ et donc on a $(\beta_1 \beta_2)^2 = 2\beta_2^2$ ou $(\beta_1 + \beta_2)^2 = 2\beta_2^2$, ce qui entraı̂ne que $\sqrt{2} \in \mathbf{Q}(\sqrt{a})$. Mais ceci n'est pas notre cas.
- Si $\epsilon=i$, avec le même raisonnement que précédemment on trouve que le nombre pi n'est pas un carré dans \mathbf{k} .
- Si $\epsilon = i\epsilon_0$, alors $pi\epsilon_0 = \beta^2$ implique que p est un carré dans $\mathbf{Q}(\sqrt{a})$. Ceci n'est pas notre cas.
- Si $\epsilon = \epsilon_0$, on se ramène au cas $\epsilon = i$ (car $i\epsilon_0$ est un carré dans **k**).

Proposition 9. Soit $\mathbf{k} = \mathbf{Q}(\sqrt{d}, i)$ où d = pq avec $p \equiv 1 \mod 8$, $q \equiv -1 \mod 4$, $(\frac{p}{q}) = -1$. Alors \mathbf{k} est de type classe.

Preuve. D'après Azizi [6], $\{\sqrt{i\epsilon_0}\}$ est un SFU de k, donc d'après la proposition précédente, l'idéal \mathcal{H} tel que $\mathcal{H}^2 = (p)$ est d'ordre 2 dans $\mathbf{C}_{\mathbf{k},2}$. Par suite $\mathbf{k}^{(*)}$ n'est pas de la forme $\mathbf{k}(\sqrt{\epsilon})$ où ϵ est une unité de \mathbf{k} . On suppose que \mathbf{k} est de type unité. Il existe une unité ϵ de **k** telle que $\mathbf{k}(\sqrt{\epsilon})$ soit non-ramifié sur \mathbf{k} . En particulier, il existe x dans \mathbf{k} , r et s deux entiers de \mathbf{k} tels que s est premier avec 2 et $\epsilon = x^2 + 4\frac{r}{s}$. On désigne par $\epsilon_1 = \sqrt{i\epsilon_0}$ et σ l'automorphisme de **k** défini par $\sigma(i) = i$ et $\sigma(\sqrt{d}) = -\sqrt{d}$. L'unité ϵ ne peut pas être égale à i, car sinon, $\mathbf{k}(\sqrt{2})$ sera non-ramifié sur \mathbf{k} et par suite $\mathbf{k}_2^{(1)}$ sera égal à $\mathbf{k}(\sqrt{2},\sqrt{p})$ et sera abélien sur \mathbf{Q} . D'où $\mathbf{k}_2^{(1)}=\mathbf{k}^{(*)}$, ce qui n'est pas le cas. Par conséquent, $\epsilon = i^m \epsilon_1$ pour un certain entier m. Il vient ensuite que $\sigma(\epsilon) = \pm i^m \sqrt{i\epsilon'_0}$ où ϵ'_0 est le conjugué de ϵ_0 et $\sigma(\epsilon) = \sigma(x)^2 + 4\frac{\sigma(r)}{\sigma(s)}$, où $\sigma(r)$ et $\sigma(s)$ restent des entiers de \mathbf{k} et $\sigma(s)$ reste premier avec 2. D'où $\mathbf{k}(\sqrt{\sigma(\epsilon)})$ est non-ramifié sur k. D'autre part, $\epsilon\sigma(\epsilon)=i^m\sqrt{i\epsilon_0}\times(\pm i^m)\sqrt{i\epsilon_0'}=\pm i$ n'est pas un carré dans k. Donc $\mathbf{k}(\sqrt{\epsilon}) \neq \mathbf{k}(\sqrt{\sigma(\epsilon)})$ et $\mathbf{k}(\sqrt{\epsilon\sigma(\epsilon)})$ est non-ramifié sur \mathbf{k} , ce qui n'est pas possible d'après le cas $\epsilon = i$. On en déduit que \mathbf{k} n'est pas de type unité. Donc ${\bf k}$ est de type classe.

Théorème 10. Soit $\mathbf{k} = \mathbf{Q}(\sqrt{pq}, i)$ avec p et q deux nombres premiers tels que $q \equiv -1 \mod 4, p \equiv 1 \mod 8, (\frac{p}{q}) = -1$. Soit ϵ l'unité fondamentale de $\mathbf{Q}(\sqrt{p})$. Alors $\mathbf{k}_2^{(1)} = \mathbf{k}(\sqrt{p})(\sqrt{\epsilon})$.

Preuve. Montrons que $\mathbf{k}_2^{(1)} = \mathbf{k}(\sqrt{p})(\sqrt{\epsilon})$. On sait d'après Cohn [9], que si $p \equiv 1 \mod 8$, alors $\mathbf{k}_1 = \mathbf{Q}(\sqrt{p}, i)(\sqrt{\epsilon})$ est une extension cyclique non-ramifiée sur $\mathbf{Q}(\sqrt{-p})$. Soit G_0 le groupe de Galois de \mathbf{k}_1/\mathbf{Q} et ϵ' le conjugué de ϵ , alors G_0 est engendré par les automorphismes σ et τ_1 définis par:

	\sqrt{p}	i	$\sqrt{\epsilon}$	$\sqrt{\epsilon'}$
σ	$-\sqrt{p}$	-i	$\sqrt{\epsilon'}$	$-\sqrt{\epsilon}$
τ_1	$-\sqrt{p}$	i	$\sqrt{\epsilon'}$	$\sqrt{\epsilon}$

De plus on a que $\sigma^4 = \tau_1^2 = (\sigma \tau_1)^2 = 1$. Comme $\mathbf{L} = \mathbf{k}(\sqrt{p})(\sqrt{\epsilon}) = \mathbf{k}_1 \mathbf{Q}(\sqrt{q})$; on peut prolonger σ et τ_1 par l'identité à \mathbf{L} . De même, si on désigne par τ_2 l'automorphisme défini sur $\mathbf{Q}(\sqrt{q})$ par $\tau_2(\sqrt{q}) = -\sqrt{q}$, alors on peut prolonger τ_2 par l'identité à \mathbf{L} . Par suite, le groupe de Galois de \mathbf{L}/\mathbf{Q} est engendré par σ , τ_1 et τ_2 . On va déterminer le groupe de Galois de \mathbf{L}/\mathbf{k} . Il est clair que σ^2 et $\tau_1\tau_2$ laissent fixe \mathbf{k} . D'autre part $\sigma^2(\sqrt{p}) = \sqrt{p}$, $\tau_1\tau_2(\sqrt{p}) = -\sqrt{p}$, $\sigma^2(\sqrt{\epsilon}) = -\sqrt{\epsilon}$, $\tau_1\tau_2(\sqrt{\epsilon}) = \sqrt{\epsilon'}$, $(\sigma^2)^2 = (\tau_1\tau_2)^2 = 1$ et $\sigma^2\tau_1\tau_2 \neq 1$. Donc le groupe engendré par σ^2 et $\tau_1\tau_2$ laisse fixe \mathbf{k} et il est de type (2,2). De plus, on a que $\mathbf{k}(\sqrt{p})$ est non-ramifié sur \mathbf{k} et comme \mathbf{k}_1 est non-ramifié sur $\mathbf{Q}(\sqrt{q})\mathbf{Q}(\sqrt{p},i)$ = $\mathbf{k}(\sqrt{p})$. D'où \mathbf{L} est non-ramifié sur \mathbf{k} et le groupe de Galois de \mathbf{L}/\mathbf{k} est de type (2,2). Par conséquent $\mathbf{L} = \mathbf{k}_2^{(1)}$.

Théorème 11. Soit $\mathbf{k} = \mathbf{Q}(\sqrt{pq}, i)$ avec p et q deux nombres premiers tels $que\ q \equiv -1 \mod 4, p \equiv 1 \mod 8, \ (\frac{p}{q}) = -1.$ Alors il existe deux entiers $a,\ b \in \mathbf{N}$ tels $que\ p = a^2 + 16b^2$. Soient $\pi_1 = a + 4bi,\ \pi_2 = a - 4bi,\ \mathcal{H}_1$ et \mathcal{H}_2 les idéaux premiers au-dessus de π_1 et π_2 dans \mathbf{k} . Alors la 2-partie du groupe de classes de \mathbf{k} est engendré par les classes de \mathcal{H}_1 et \mathcal{H}_2 et les trois extensions quadratiques non-ramifiées sur \mathbf{k} sont: $\mathbf{k}^{(*)} = \mathbf{k}(\sqrt{p}), \mathbf{K}_1 = \mathbf{k}(\sqrt{\pi_1})$ et $\mathbf{K}_2 = \mathbf{k}(\sqrt{\pi_2})$. De plus si $\mathbf{k}_2^{(2)} \neq \mathbf{k}_2^{(1)}$, alors seules la classe de \mathcal{H}_1 et son carré capitulent dans \mathbf{K}_1 et il en est de même pour \mathbf{K}_2 , c'est-à-dire seules la classe de \mathcal{H}_2 et son carré capitulent dans \mathbf{K}_2 .

Preuve. On sait, d'après Barruccand et Cohn [7], que si $p \equiv 1 \mod 8$, alors il existe deux entiers a et b tels que $p = a^2 + 16b^2$. Il est clair que a est impair et donc $a \equiv \pm 1 \mod 4$. On pose $\pi_1 = a + 4bi$ et $\pi_2 = a - 4bi$. Comme $-1 = i^2$, alors $\pi_1 \equiv x^2 \mod 4$ et $\pi_2 \equiv x^2 \mod 4$ sont résolubles. Les nombres π_1 et π_2 sont des premiers ramifés dans $\mathbf{k}/\mathbf{Q}(i)$. Par suite, il existe deux idéaux de \mathbf{k} , \mathcal{H}_1 et \mathcal{H}_2 tels que $\mathcal{H}_1^2 = (\pi_1)$ et $\mathcal{H}_2^2 = (\pi_2)$. Par conséquent, \mathbf{K}_1/\mathbf{k} et \mathbf{K}_2/\mathbf{k} sont non-ramifiés. Comme \mathbf{k} est de type classe, alors la 2-partie du groupe des classes de \mathbf{k} est engendrée par les classes de \mathcal{H}_1 et \mathcal{H}_2 . D'autre part, $\mathcal{H}_1^2 = ((\sqrt{\pi_1})^2)$ entraîne que l'idéal engendré par \mathcal{H}_1 dans $\mathbf{K}_1 = \mathbf{k}(\sqrt{\pi_1})$ est égal à l'idéal $(\sqrt{\pi_1})$. Ceci veut dire que \mathcal{H}_1 capitule

dans \mathbf{k}_1 . Il en est de même pour \mathcal{H}_2 dans \mathbf{k}_2 . Ainsi, si $\mathbf{k}_2^{(2)} \neq \mathbf{k}_2^{(1)}$, comme toutes les classes de \mathbf{C}_2 capitulent dans $\mathbf{k}^{(*)}$, alors seulement la classe de \mathcal{H}_1 et son carré capitulent dans \mathbf{K}_1 et seulement la classe de \mathcal{H}_2 et son carré capitulent dans \mathbf{K}_2 .

Théorème 12. Soit $\mathbf{k} = \mathbf{Q}(\sqrt{pq}, i)$ avec p et q deux nombres premiers tels que $q \equiv -1 \mod 4, p \equiv 1 \mod 8, \ (\frac{p}{q}) = -1$. Soient $\mathbf{L} = \mathbf{Q}(\sqrt{-p})$ et $\mathbf{L}_2^{(1)}$ le 2-corps de classes de Hilbert de \mathbf{L} , alors $\mathbf{k}_2^{(2)} = \mathbf{k}^{(*)} \mathbf{L}_2^{(1)}$.

Preuve. D'après le théorème précédent, \mathbf{K}_1 et \mathbf{K}_2 sont conjugués. Par suite $\operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{K}_2)$ et $\operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{K}_1)$ sont conjugués et les 2-groupes de classes de \mathbf{K}_1 et \mathbf{K}_2 ont la même structure. D'autre part, d'après le Théorème 2, si $\mathbf{k}_2^{(2)} \neq \mathbf{k}_2^{(1)}$, alors les 2-groupes de classes des corps $\mathbf{k}^{(*)} = \mathbf{k}(\sqrt{p}), \mathbf{K}_1 = \mathbf{k}(\sqrt{\pi_1})$ et $\mathbf{K}_2 = \mathbf{k}(\sqrt{\pi_2})$ sont cycliques ou bien un seul corps parmi ces derniers corps est de 2-groupe de classes cyclique. Ainsi le 2-groupe de classes de $\mathbf{k}^{(*)}$ est cyclique. Par suite $\mathbf{k}_2^{(2)} = (\mathbf{k}^{(*)})_2^{(1)}$. En calculant la 2-partie du nombre de classes de $\mathbf{k}^{(*)}$ on voit que si $\mathbf{L}_2^{(1)}$ est le 2-corps de classes de Hilbert de \mathbf{L} , alors $\mathbf{k}_2^{(2)} = \mathbf{k}^{(*)}\mathbf{L}_2^{(1)}$.

Remarque 13. Toute l'étude faite dans ce paragraphe pour le cas d = pq est aussi valable pour le cas $d = p_1p_2$ où p_1 et p_2 sont deux nombres premiers tels que $p_1 \equiv 1 \mod 8$, $p_2 \equiv 5 \mod 8$ et $\mathbf{C}_{\mathbf{k},2}$, le 2-groupe des classes de \mathbf{k} , est de type (2,2) (pour plus de détails pour ce cas voir [4]).

References

- [1] A. Azizi, Sur la capitulation des 2-classes d'idéaux de $\mathbf{Q}(\sqrt{d}, i)$, C.R. Acad. Sci. Paris, **325**, Série I, 1997, 127-130, MR 98d:11131, Zbl 0885.11061.
- [2] ______, Sur le groupe de classes d'idéaux de $\mathbf{Q}(\sqrt{d},i)$, Rendiconti del Circolo Matematico di Palermo, **47** (1998), 71-92.
- [3] ______, Unités de certains corps de nombres imaginaires et abéliens sur Q, Annales des Sciences Mathématiques du Québec, 23(1) (1999), 15-21, MR 2000k:11120.
- [4] _____, Capitulation of the 2-ideal classes of $\mathbf{Q}(\sqrt{p_1}, \sqrt{-p_2})$, Lecture Notes in Pure and Applied Mathematics, **208**, 13-19, Marcel Dekker, New York, Basel, 2000, MR 2000h:11118.
- [5] ______, Capitulation des 2-classes d'idéaux de $\mathbf{Q}(\sqrt{2pq}, i)$, Acta Arithmetica, $\mathbf{XCIV.4}$ (2000), 383-399, MR 2001k:11221, Zbl 0953.11033.
- [6] ______, Sur une question de capitulation, Proc. Amer. Math. Soc., 130(8) (2002), 2197-2202 (electronic), CMP 1 897 477.
- [7] P. Barruccand and H. Cohn, Note on primes of type $x^2 + 32y^2$, class number, and residuacity, J. Reine Angew. Math., 238 (1969), 67-70, MR 40 #2641, Zbl 0207.36202.
- [8] S.M. Chang and R. Foote, Capitulation in class field extensions of type (p, p), Can. J. Math., **32**(5) (1980), 1229-1243, MR 82i:12013, Zbl 0459.12007.

- [9] H. Cohn, The explicit Hilbert 2-cyclic class fields of $\mathbf{Q}(\sqrt{-p})$, J. Reine Angew. Math., **321** (1981), 64-77, MR 82e:12011, Zbl 0455.12006.
- [10] ______, Introduction to the Construction of Class Fields, Cambridge University Press, 1985, MR 87i:11165, Zbl 0571.12001.
- [11] F.P. Heider und B. Schmithals, Zur kapitulation der idealklassen in unverzweigten primzyklischen erweiterungen, J. Reine Angew. Math., 336 (1982), 1-25, MR 84g:12002, Zbl 0505.12016.
- [12] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94, J. Number Theory, 8 (1976), 271-279, MR 54 #5188, Zbl 0334.12019.
- [13] K. Miyake, Algebraic investigations of Hilbert's Theorem 94, the principal ideal theorem and capitulation problem, Expos. Math., 7 (1989), 289-346, MR 90k:11144, Zbl 0704.11048.
- [14] H. Suzuki, A generalization of Hilbert's Theorem 94, Nagoya Math. J., 121 (1991), 161-169, MR 92h:11098, Zbl 0728.11061.
- [15] F. Terada, A principal ideal theorem in the genus fields, Tôhoku Math. J. Second Series, 23(4) (1971), 697-718, MR 46 #5285, Zbl 0243.12003.

Received July 30, 2001 and revised November 28, 2001.

DÉPARTEMENT DE MATHÉMATIQUES FACULTÉ DES SCIENCES UNIVERSITÉ MOHAMMED 1 OUJDA MAROCCO

E-mail address: azizi@sciences.univ-oujda.ac.ma