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Let X be an irreducible smooth projective curve over an
algebraically closed field k of characteristic p, with p > 5. Let
G be a connected reductive algebraic group over k. Let H
be a Levi factor of some parabolic subgroup of G and χ a
character of H. Given a reduction EH of the structure group
of a G-bundle EG to H, let Eχ be the line bundle over X
associated to EH for the character χ. If G does not contain
any SL(n)/Z as a simple factor, where Z is a subgroup of the
center of SL(n), we prove that a G-bundle EG over X admits
a connection if and only if for every such triple (H, χ, EH),
the degree of the line bundle Eχ is a multiple of p. If G has a
factor of the form SL(n)/Z, then this result is valid if n is not
a multiple of p. If G is a classical group but not of the form
SL(n)/Z, then this criterion for the existence of connection
remains valid even if p ≥ 3.

1. Introduction.

Let X be an irreducible smooth projective curve over an algebraically closed
field k. Take a vector bundle E over X. A subbundle V of E is called a direct
summand if the quotient homomorphism E −→ E/V splits. For k = C, a
theorem of Andre Weil says that E admits a connection if and only if every
direct summand of E is of degree zero [10].

Let G be a connected reductive algebraic group over k. Let EG be a
principal G-bundle over X. Our aim is to give a criterion for the existence of
a connection on EG. Note that since the dimension ofX is one, the curvature
of a connection on EG must vanish. In other words, any connection on EG

is automatically flat.
Let H ⊆ G be a Levi factor of a parabolic subgroup of G. Let EH ⊆ EG

be a reduction of structure group of EG to H. Take a character

χ : H −→ k∗

of H and consider the line bundle Eχ := (EH × k)/H associated to EH for
the character χ. A connection on EG induces a connection on EH (Propo-
sition 2.2), which, in turn, induces a connection on the line bundle Eχ.
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It is well-known that a line bundle ξ over X admits a connection if and
only if the degree of ξ is a multiple of the characteristic of k (see also
Corollary 2.1). Therefore, if EG admits a connection then the degree of any
line bundle Eχ of the above type must be a multiple of the characteristic of
k.

Let p denote the characteristic of k. We will assume that p > 5.
Let Z(SL(n)) ⊂ SL(n) be the center. First assume that G does not have

a simple factor of the form SL(n)/Z, where Z ⊆ Z(SL(n)). We prove that
if the degree of any Eχ of the above type is a multiple of p, then EG admits
a connection (Theorem 2.3).

If G contains a simple factor of the form SL(n)/Z, where Z ⊆ Z(SL(n)),
and p does not divide n, then EG admits a connection if and only if the
degree of any line bundle Eχ of the above type is a multiple of p.

If G is a classical group but not SL(n)/Z, where Z ⊆ Z(SL(n)), then the
condition p > 5 can be relaxed to p > 2.

2. The Atiyah bundle.

Let H be an algebraic group over k. Take a principal H-bundle EH over
X. The projection of the total space of EH to X will be denoted by ψ. For
any open subset U of X, consider the space of H-invariant vector fields on
ψ−1(U) for the natural action of H on the fibers of ψ. This gives rise to a
vector bundle At(EH) on X known as the Atiyah bundle.

Let h denote the Lie algebra of H. Consider the adjoint action of H on
h. The associated vector bundle (EH × h)/H, known as the adjoint bundle,
will be denoted by ad(EH). Note that ad(EH) corresponds to the sheaf
of H-invariant vertical vector fields on EH . Therefore, we have an exact
sequence

0 −→ ad(EH) −→ At(EH) −→ TX −→ 0(2.1)

of vector bundles over X. This sequence is known as the Atiyah exact
sequence.

A connection on EH is a splitting of the exact sequence (2.1) [1], [9]. See
Section 5 of [7] for connections on vector bundles in positive characteristics.

Note that both the sheaves At(EH) and TX are equipped with a Lie
algebra structure induced by the Lie bracket operation of vector fields. Given
a splitting

σ : TX −→ At(EH)
of the Atiyah exact sequence, consider the homomorphism

σ : TX ⊗ TX −→ ad(EH)

defined by s⊗ t 7−→ [σ(s), σ(t)]− σ([s, t]), where s and t are local sections
of TX, which is known as the curvature. Since p 6= 2, σ is skew-symmetric
and dimX = 1, we have σ = 0. In other words, any connection on X is flat.
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Set H = GL(n). So, using the standard representation of GL(n), EH

corresponds to a rank n vector bundle V over X. The exact sequence (2.1)
becomes

0 −→ End(V ) −→ At(V ) −→ TX −→ 0,(2.2)

where At (V ) is the subbundle of the sheaf of differential operators
Diff1

X(V, V ) defined by the condition that the image by the symbol homo-
morphism Diff1

X(V, V ) −→ TX
⊗

End(V ) is contained in the subbundle
TX

⊗
IdV .

Consider the extension class

τ ∈ H1(X, KX ⊗ End(V ))

for the exact sequence (2.2), where KX is the canonical bundle of X. Using
the trace homomorphism tr : End(V ) −→ OX , we have

tr(τ) ∈ H1(X, KX) = k

(k is the base field), where the identification H1(X, KX) = k is the one
given by Serre duality.

Let d ∈ Z be the degree V , which is same as the degree of the line bundle∧nV . The image of d in k by the obvious homomorphism Z −→ k coincides
with tr(τ).

Consequently, if a GL(n)-bundle admits a connection, then the degree of
the corresponding rank n vector bundle is a multiple of p, the characteristic
of k.

This observation and the above identity d = tr(τ) together have the
following corollary:

Corollary 2.1. A line bundle ξ over X admits a connection if and only if
the degree of ξ is a multiple of p (possibly zero).

The above corollary is well-known [7, p. 190, Theorem 5.1] (in [7] this
Theorem 5.1 is attributed to P. Cartier), [8].

As in the introduction, let G be a connected reductive algebraic group
over k. Let P be a parabolic subgroup of G. Let Ru(P ) denote the unipotent
radical of P . The quotient group P/Ru(P ) is called the Levi factor of P
[4]. The projection P −→ P/Ru(P ) splits in the sense that there is a
connected closed reductive subgroup H of P which projects isomorphically
to P/Ru(P ). However, there may be more than one such subgroup. We will
call a subgroup H of P with this property a Levi factor of P .

Take a G-bundle EG over X. Suppose

σ : X −→ EG/H

be a reduction of structure group of EG to a Levi factor H. So, the inverse
image q−1(σ(X)), where q : EG −→ EG/H is the obvious quotient map, is
an H-bundle. This H-bundle will be denoted by EH .
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Fix a character χ : H −→ k∗ of H. Consider the quotient

Eχ := (EH × k)/H

for the diagonal action of H, where H acts on k through χ, which is a line
bundle over X. We recall that the diagonal action of any g ∈ H sends a
point (z, t) ∈ EH × k to (zg, χ(g−1)t).

Proposition 2.2. If EG admits a connection, then the degree of the line
bundle Eχ is a multiple of p.

Proof. Any connection on EH induces a connection on Eχ. Therefore, in
view of Corollary 2.1 it suffices to show that any connection on EG induces
a connection on EH .

Let g (respectively, h) denote the Lie algebra of G (respectively, H). Since
H is a Levi factor, there exists a H-equivariant splitting

f : g −→ h(2.3)

of the inclusion homomorphism of h in g. Indeed, if p and q are two opposite
parabolics containing h as the common Levi factor, then the direct sum of
the radicals of p and q is a H-invariant complement of h.

We recall that a connection on EG is a g-valued 1-form ω on EG satisfying
the two conditions:

1) For any v ∈ g, the evaluation of ω on the vector field corresponding to
v coincides with the constant function v;

2) the form ω is equivariant for the action of G on EG and the adjoint
action of G on its Lie algebra g.

The kernel of such a form ω defines a splitting of the Atiyah exact sequence
(2.1). To explain this, let ψ denote the projection of EG to X. Given a
tangent vector v ∈ TxX, where x ∈ X, and a point z ∈ ψ−1(x) ⊂ EG, there
is a unique tangent vector w ∈ TzEG projecting to v that is contained in the
kernel of the form ω. This way we get a section v′ of TEG over ψ−1(x). This
section v′ is clearly G-invariant. In other words, v′ gives n element v′′ of
the fiber At(EG)x. Sending any v to v′′ we obtain a splitting of the Atiyah
exact sequence (2.1). Conversely, given a splitting σ : TX −→ At(EG) of
the Atiyah exact sequence, it is easy to see that there is a unique one-form
ω satisfying the above two conditions such that the kernel of ω is the image
of σ.

Given a connection on EG defined by a one-form ω, let ω′ denote the
restriction of ω to EH ⊆ EG. Now consider the h-valued one-form

ω := f ◦ ω′

on EH , where f is defined in (2.3).
It is easy to check that the form ω satisfies the two conditions needed to

define a connection on EH . Consequently, existence of a connection on EG
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ensures the existence of a connection on EH . This completes the proof of
the proposition. �

As before, let Z(SL(n)) denote the center of SL(n).
Following is the main result proved here:

Theorem 2.3. Let p > 5 and assume that G does not contain SL(n)/Z as
a simple factor, where Z ⊆ Z(SL(n)). A G-bundle EG over X admits a
connection if and only if for every pair (H, χ), where χ is a character of the
Levi factor H of some parabolic subgroup, the degree of the line bundle Eχ is
a multiple of p. If there is a subgroup Z ⊆ Z(SL(n)) such that G contains
SL(n)/Z as a simple factor, then same criterion is valid if p > 5 and p does
not divide n.

Since H is reductive, Proposition 2.2 says that if EG admits a connection,
then the line bundle Eχ is a multiple of p. We will complete the proof of
the theorem in Section 4. In the next section we will show that it suffices
to prove for simple groups.

3. Reduction to the case of simple groups.

Let Z(G) ⊂ G denote the reduced center of G. Let

G′ := G/Z(G)

be the quotient. Consider the commutator [G, G], and let

Z = G/[G, G]

be the quotient. So G′ is a semisimple quotient of G and Z is an abelian
quotient of G.

For a principal G-bundle EG on X, let EG′ (respectively, EZ) denote
the principal G′-bundle (respectively, principal Z-bundle) obtained by ex-
tending the structure group of EG using the obvious projection of G to G′

(respectively, Z).

Lemma 3.1. The G-bundle EG admits a connection if and only if both EG′

and EZ admit connection.

Proof. Since EG′ and EZ are extensions of structure group of EG, any con-
nection on EG induces connection on EG′ and EZ .

Note that the fiber product EG′ ×X EZ is a principal (G′ × Z)-bundle.
Let

ρ : G −→ G′ × Z
be the diagonal homomorphism induced by the projections of G to G′ and
Z. Since the kernel of ρ is finite and it induces an isomorphism of Lie
algebras, the natural map EG −→ EG′ ×X EZ is an étale covering map.
Consequently, the Atiyah exact sequence for EG and EG′ ×X EZ coincide.
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It is easy to see that if

0 −→ ad (EG′) −→ A f1−→ TX −→ 0

and
0 −→ ad(EZ) −→ B f2−→ TX −→ 0

are the Atiyah exact sequences for EG′ and EZ respectively, and p (respec-
tively, q) is the obvious projection of A

⊕
B to A (respectively, B), then the

exact sequence

0 −→ ad(EG′)⊕ ad(EZ) −→ kernel(f1 ◦ p− f2 ◦ q) ⊂ A⊕ B −→ TX −→ 0

obtained by combining the above two exact sequences is the Atiyah exact
sequence for EG′ ×X EZ . From this it follows that if the Atiyah exact
sequences for EG′ and EZ split, then the Atiyah exact sequence for EG′ ×X

EZ also splits. Indeed, if
σ1 : TX −→ A

and σ2 : TX −→ B are splittings of Atiyah exact sequences for EG′ and EZ

respectively, then the diagonal homomorphism

(σ1, σ2) : TX −→ A⊕ B
is the splitting of the Atiyah exact sequence for EG′ ×X EZ . Therefore, if
both EG′ and EZ admit connections then the (G′ × Z)-bundle EG′ ×X EZ

also admits a connection. This completes the proof of the lemma. �

The group Z is a product of copies of k∗, and Z has exactly one parabolic
subgroup which is Z itself. Therefore, Theorem 2.3 is valid for Z.

The image of a parabolic subgroup P of G by the projection G −→ G′

is a parabolic subgroup of G′. Moreover, all parabolic subgroups of G′ arise
this way. The image, in G′, of a Levi factor H ⊂ P is a Levi factor of the
corresponding parabolic subgroup of G′.

Consequently, to establish Theorem 2.3 for G, it suffices to prove it for
the semisimple group G′.

Any parabolic subgroup of G1 ×G2, where G1 and G2 are semisimple, is
of the form P1 × P2, where Pi is a parabolic subgroup of Gi. Furthermore,
from the Proof of Proposition 2.2 it follows immediately that if we have Gi-
bundle EGi , i = 1, 2, over X, then both EG1 and EG2 admit a connection if
and only if the principal (G1×G2)-bundle EG1×XEG2 admits a connection.
Therefore, it suffices to prove Theorem 2.3 under the assumption that G is
simple.

If H ⊂ G is a Levi factor of a parabolic subgroup of G, and if H1 ⊂ H
is a Levi factor of a parabolic subgroup of H, then H1, as a subgroup of
G, is a Levi factor of some parabolic subgroup of G. Since H1 is a Levi
factor of G, using reverse induction, we may reduce the structure group of
G to such a situation where it does not admit any further reduction to some
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Levi factor. A Levi factor H of some parabolic subgroup of G will be called
nontrivial if H is a proper subgroup of G. Theorem 2.3 follows from the
following theorem:

Theorem 3.2. Let p > 5 and G simple. Assume that either of the following
two is valid:

1) G is not isomorphic to SL(n)/Z for some subgroup Z of the center
Z(SL(n)) of SL(n);

2) if G is isomorphic to SL(n)/Z, where Z ⊆ Z(SL(n)), then p does not
divide n.

Let EG be a G-bundle over X such that EG does not admit any reduction of
structure group to any nontrivial Levi factor. Such a G-bundle EG admits
a connection.

This theorem will be proved in the next section.

4. Obstruction for connection.

Let G be a simple algebraic group over k. As in Theorem 3.2, assume that
either of the following two is valid:

1) G is not isomorphic to SL(n)/Z for some subgroup Z of the center
Z(SL(n)) of SL(n);

2) if G is isomorphic to SL(n)/Z, where Z ⊆ Z(SL(n)), then p does not
divide n.

This assumption ensures that the Lie algebra g of G is isomorphic to g∗ as
a G-module. Indeed, from [5, 0.13] we know that g is simple. Now, as g
and g∗ are simple modules of same highest-weight, they are isomorphic [6,
p. 200, Proposition 2.4(a)]. In other words, g is self-dual.

Consequently, for G-bundle EG we have ad(EG) = ad(EG)∗. Now the
Serre duality gives

H1(X, KX ⊗ ad(EG)) = H0(X, ad(EG))∗.(4.1)

Assume that EG satisfies the conditions in Theorem 3.2. Let

τ ∈ H1(X, KX ⊗ ad(EG))(4.2)

be the extension class for the Atiyah exact sequence for EG. Let

θ ∈ H0(X, ad(EG))∗(4.3)

be the functional that corresponds to τ by the isomorphism (4.1). Theo-
rem 3.2 will be proved by showing that the functional θ vanishes identically.
For this we need to study the section of ad(EG).

For any x ∈ X the fiber of ad(EG) over x will be denoted by ad(EG)x.
Note that ad(EG)x is isomorphic, as a Lie algebra, with g.
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Lemma 4.1. Let φ be a section of ad(EG) such that for some point x ∈ X,
the evaluation φ(x) is a nilpotent element of the Lie algebra ad(EG)x. Then
we have θ(φ) = 0.

Proof. We noted earlier that the assumption on G (stated at the beginning
of this section) ensures that g is simple. Therefore, an element v of the
simple Lie algebra g is nilpotent if ad(v) is nilpotent. If f is a G-invariant
function on g, then evaluating f on φ we get a function on X. Note that
an element v of g is nilpotent if and only if all G-invariant functions on g
vanishing at 0 ∈ g also vanishes at v. Since X is connected and complete
there are no nonconstant functions on X. Consequently, if φ is nilpotent
over some point, this observation implies that φ(y) is a nilpotent element of
ad(EG)y for every point y ∈ X.

Using φ we will construct a reduction of structure group of EG to a para-
bolic subgroup of G. For that we will first construct a parabolic subalgebra
bundle of ad(EG).

Take any point y ∈ X such that φ(y) 6= 0. Let Vy be the line in ad(EG)y

generated by φ(y). Let n1
y ⊂ ad(EG)y be the normalizer of Vy and r1y ⊂ n1

y

be the nilpotent radical.
Now inductively define ni+1

y to be the normalizer of ri
y in ad(EG)y and

ri+1
y to be the nilpotent radical of ni+1

y .
Let ny := lim ni

y and ry := lim ri
y be the limits of these two increasing

sequences. From the construction of the two sequences it is obvious that
ny is the normalizer, in ad(EG)y, of ry. Also, ry is the nilpotent radical of
ny. Therefore, ny is a parabolic subalgebra of ad(EG)y. See [4, 30.3] for the
details of this construction.

Consider the action of G on itself by inner conjugation. Let Ad(EG) :=
(EG × G)/G be the gauge bundle (adjoint bundle) constructed using this
action. Let Py ⊂ Ad(EG)y be the parabolic subgroup of the fiber Ad(EG)y

whose Lie algebra coincides with the parabolic subalgebra ny constructed
above.

Since there are only finitely many conjugacy classes of parabolic subalge-
bras of G, there is a nonempty Zariski open subset U of X such that the
conjugacy class of nz is independent of z ∈ U . Fix a parabolic subgroup P
of G whose Lie algebra is in the same conjugacy class as nz, where z ∈ U .
To explain this with more details, we observe that the variety of nilpotent
elements in g is irreducible. Indeed, it is the image of g by the Jordan
decomposition. The variety of nilpotent elements in g is filtered by conju-
gacy classes. Therefore, on some nonempty Zariski open subset of X, the
evaluation of φ must lie in some particular stratum of this filtered variety.

Consider the obvious projection

q(y) : (EG)y ×G −→ Ad(EG)y.(4.4)
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Let (EP )y ⊂ (EG)y be the subvariety consisting all elements z such that
q(z, g) ∈ Pz for every g ∈ P . It is easy to check that EP ⊂ EG is a
reduction of structure group over U of EG to the parabolic subgroup P of
G. Indeed, this is an immediate consequence of the fact that the normalizer
of P in G is P itself.

Since G/P is a complete variety and dimX = 1, the reduction over U
extends to a reduction of structure group over X of EG to P . Let EP ⊂ EG

denote this reduction of structure group.
Let ad(EP ) ⊂ ad(EG) be the adjoint bundle. The commutativity of the

diagram

0 −→ ad(EP ) −→ At(EP ) −→ TX −→ 0y y ∥∥∥
0 −→ ad(EG) −→ At(EG) −→ TX −→ 0

ensures that the cohomology class τ ∈ H1(X, KX
⊗

ad(EG)) defined in
(4.2) lies inside the image of H1(X, KX

⊗
ad(EP )) for the homomorphism

defined by the inclusion of ad(EP ) in ad(EG).
Now, since φ(y) is in the nilpotent radical ry of the parabolic subalgebra

ny, it follows that
θ(φ) = 0,

where θ is defined in (4.3). Indeed, the subalgebra ry is contained in the
annihilator of ny for each y ∈ X. Now, τ defined in (4.2) is in the image of
H1(X, KX

⊗
ad(EP )). This immediately implies that for the nondegener-

ate pairing

H1(X, KX ⊗ ad(EP ))⊗H0(X, ad(EP )) −→ k

defining the Serre duality, we have τ ⊗ φ 7−→ 0. In other words, θ(φ) = 0.
This completes the proof of the lemma. �

In view of Lemma 4.1, to complete the proof of Theorem 3.2 it suffices to
show that θ(φ) = 0, where φ is a everywhere semisimple section of ad(EG).
Indeed, by the Jordan decomposition theorem, any section φ of ad(EG)
decomposes uniquely as φs +φn, where φs is everywhere semisimple and φn

is everywhere nilpotent. So, to prove that the θ(φ) = 0, it is enough to show
that θ(φs) = 0 and θ(φn) = 0.

We will show that ad(EG) does not admit any nonzero section which is
semisimple everywhere. This is the content of the following lemma:

Lemma 4.2. Let EG be as in Theorem 3.2. Let φ ∈ H0(X ad (EG)) be
such that φ(y) is a semisimple vector of ad(EG)y for every y ∈ X. Then the
section φ vanishes identically.
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Proof. Let φ be a nonzero section of ad(EG) which is semisimple everywhere.
Since X is connected and complete, the characteristic polynomial for the
adjoint action of φ(y) on ad(EG)y is independent of y. So φ does not vanish
at point of X.

We have a decomposition

ad(EG)y =
⊕
λ∈Λ

V λ
y ,(4.5)

where V λ is the eigenspace for the eigenvalue λ for the adjoint action of
φ(y) on ad(EG)y. So, V 0

y coincides with the subalgebra of ad(EG)y that
centralizes φ(y).

Let Vy ⊂ ad(EG)y denote the direct sum of all eigenspaces in (4.2) with
eigenvalue less than or equal to zero in the lexicographic ordering. Since

[V λ1
y , V λ2

y ] ⊂ V λ1+λ2
y ,

unless [V λ1
y , V λ2

y ] = 0, we have Vy as a subalgebra of ad(EG)y.
Note that the direct sum of all eigenspaces in (4.5) with eigenvalue strictly

positive (in the lexicographic ordering) is a nilpotent subalgebra. In other
words, Vy has a complement which is nilpotent. Using [2, p. 473, Corollary
4.10], [3, p. 747, Lemma 4], it now follows that Vy is a parabolic subalgebra
of ad(EG)y and V 0

y its Levi factor.
Let Py ⊂ Ad(EG)y be the parabolic subgroup with Vy as its Lie algebra.

Let Hy be the Levi factor of Py whose Lie algebra is V 0
y .

Let Wy denote the direct sum of all eigenspaces in (4.5) with eigenvalue
greater than or equal to zero. Just as before, Wy is a parabolic subalgebra
of ad(EG)y with V 0

y as its Levi factor.
Let Qy ⊂ Ad(EG)y be the parabolic subgroup whose Lie algebra is the

direct sum of all eigenspaces in (4.5) with nonnegative eigenvalues. For the
same reason as for Py, the subgroup Hy is a Levi factor of Qy. Clearly we
have Py

⋂
Qy = Hy.

It is easy to see that the conjugacy classes of Py and Hy are independent
of y. Fix subgroups P , Q and H in G such that some identification of G
with Ad(EG)y takes them to Py, Qy and Hy respectively. Note that P , Q
and H have been fixed independent of y. So P

⋂
Q = H and H is a Levi

factor for both P and Q.
As in the Proof of Lemma 4.1, using Py we have a reduction of structure

group EP ⊂ EG to P . More precisely, let (EP )y ⊂ (EG)y be the subvariety
consists of all z with such that q(y)(z) ∈ Px for every g ∈ P , where q(y)
is the projection in (4.4). Similarly, we have a reduction of structure group
EQ ⊂ EG of EG to Q ⊂ G. Let

EH := EP ∩ EQ ⊂ EG
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be the intersection of the two subvarieties EP and EQ of EG. Clearly EH

defines a reduction of structure group of EG to P
⋂
Q = H.

Recall the assumption in Theorem 3.2 that EG does not admit any re-
duction to a nontrivial Levi. Therefore, we have H = G. This immediately
implies that φ = 0. This completes the proof of the lemma. �

Lemma 4.1 and Lemma 4.2 together complete the proof of Theorem 3.2. It
was noted in Section 3 that Theorem 3.2 completes the proof of Theorem 2.3.
Therefore, the proof of Theorem 2.3 is complete.

If G is a classical group but not isomorphic to SL(n)/Z for some subgroup
Z of the center Z(SL(n)) of SL(n), then g = g∗ as a G-module if p > 2 [5,
0.13]. Therefore, Theorem 2.3 remains valid in this case.

We note that for G = E6, the G-module g fails to be isomorphic to g∗ if
p = 3 [5, 0.13, p. 9]. For G = E7, the G-module g fails to be isomorphic to
g∗ if p = 2 [5, 0.13, p. 9]. For classical groups of type Br and Cr, we have
g 6= g∗ if p = 2 [5, 0.13].

Acknowledgments. We thank the referee for helpful comments that helped
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