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We give an explicit description of each of the five connected
components of the moduli space of real algebraic curves of
genus 2. This is done in terms of the coefficients of equations
defining such curves. We also find the subsets consisting of
curves with prescribed automorphism group.

Introduction.

Riemann’s moduli problem could be formulated as that of describing the
set of isomorphism classes of complex algebraic curves of a given topological
type. Its real counterpart, i.e., the description of the set of real isomorphism
classes of real algebraic curves, was initiated by Klein [8] and [9], who mainly
worked with polynomial equations that define the real curve in question. The
problem has acquired importance in the last three decades due to both the
development of proper techniques of real algebraic geometry and the right
definition of the “analytic” surface associated to a real algebraic curve. Such
definition is given in [1] and the associated surface is known as Klein surface.
This establishes the well-known coequivalence between real algebraic curves
(algebraic objects) and Klein surfaces (geometric ones). A large number of
works have appeared since; a good reference for many of them is [11].

Usual methods to deal with moduli spaces are based on Teichmüller ones.
Different points of view can be considered, such as quasiconformal map-
pings, see for example [12, 14, 7], abelian varieties [13, 15] or non-euclidean
crystallographic groups [10]. They rely upon the geometry of the surface
associated to a curve. The approach here is more classical in the sense that
we directly work with polynomial equations of curves.

By considering antianalytic involutions on Riemann surfaces of genus 0
and 1, Alling and Greenleaf classified all isomorphism classes of rational
and elliptic real curves ([1], Thms. 1.9.4 and 1.9.8). So it is interesting to
understand the situation in higher genera. In this paper we study the case of
hyperelliptic real curves, which in particular covers the genus 2 case. Using
coefficients of polynomial equations we describe the connected components
of the space MR

2 of isomorphism classes of real algebraic curves of genus 2.

53

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2003.208-1


54 FRANCISCO-JAVIER CIRRE

We also find their subsets consisting of curves with prescribed automorphism
group.

The paper is organized as follows. In Section 1 we recall some well-known
facts about real curves. The reader may find them, e.g., in Chapters 3 and 5
in [14]. The second section deals with hyperelliptic curves. In it we develop
a simple method to approach the problem of classifying hyperelliptic real al-
gebraic curves of arbitrary genus up to birational isomorphism. The method
is based on a detailed analysis of the action of real Möbius transformations
on the sphere. It is worth pointing out how much information can be ob-
tained from this simple method. It is applied in Sections 3 to 6 to the genus
2 case; namely, for each topological type (2, k, ε) we find a bijection Ψ(2,k,ε)

between a basic semialgebraic subset ∆(2,k,ε) of R3 and the real moduli space
M(2,k,ε) of real algebraic curves of topological type (2, k, ε). The bijection
Ψ(2,k,ε) is given in terms of the branch points of the curve. The moduli space
M(2,k,ε) admits a semianalytic structure (see [13, 6]) which is natural in the
sense that the positions of the branch points could be chosen as analytic
parameters for the curves. (In the complex case, the branch-point positions
were the first (heuristic) method used by Riemann to predict the dimension
3g − 3 of the moduli space of complex algebraic curves of genus g.) We ex-
hibit this naturality in Section 7 by showing that each map Ψ(2,k,ε) is indeed
real analytic.

1. Preliminaries.

A real algebraic curve of genus g is a pair (X, σ) where X is a projective,
smooth, irreducible complex algebraic curve of genus g and σ : X → X
is an antianalytic involution on X. Two real curves (X, σ) and (Y, τ) are
isomorphic if there exists an isomorphism f : X → Y such that f ◦σ = τ ◦f.
We denote by MR

g the moduli space of real algebraic curves of genus g:

MR
g = {isomorphism classes of real algebraic curves of genus g}.

Two isomorphic real curves are homeomorphic but the converse is not true.
((X, σ) and (Y, τ) are homeomorphic if f ◦σ = τ ◦f for some homeomor-
phism f : X → Y .) Weichold [16] showed that the homeomorphism class of
(X, σ) is determined by its topological type (g, k, ε), where g is the genus of
X, k is the number of connected components of the real part Xσ of (X, σ),
which is the fixed point set of σ, and ε = 1 if X − Xσ is connected and 0
otherwise. For each value of g, there are exactly [(3g + 4)/2] topologically
different real algebraic curves of genus g, where [r] stands for the integer
part of r. For each admissible triple (g, k, ε) we write

M(g,k,ε) =
{

(X, σ) ∈MR
g : (X, σ) has topological type (g, k, ε)

}
,
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where we have used (X, σ) to denote both a real algebraic curve and its
isomorphism class. This convention will be assumed throughout this paper.
For abbreviation, a real algebraic curve of topological type (g, k, ε) will be
called a (g, k, ε)-curve. The usual topology on MR

g makes the sets M(g,k,ε)

be the connected components of MR
g . For example, MR

2 has the following
5 connected components:

MR
2 = M(2,3,0) ∪M(2,2,1) ∪M(2,1,1) ∪M(2,1,0) ∪M(2,0,1).

In terms of Klein surfaces (2,3,0)-curves correspond to spheres with 3 holes,
(2,2,1)-curves to projective planes with 2 holes, (2,1,1)-curves to connected
sums of two projective planes with a hole, (2,1,0)-curves to tori with a hole
and (2,0,1) to connected sums of three projective planes.

A natural partition of the moduli space M(g,k,ε) arises when considering
its subsetsM(g,k,ε)(H) formed by curves with the same automorphism group
H:

M(g,k,ε)(H) =
{
(X, σ) ∈M(g,k,ε) : Aut(X, σ) = H

}
,

where Aut(X, σ) = {f : X → X : f analytic selfhomeomorphism such that
f ◦σ = σ ◦f} is the automorphism group of (X, σ). By means of combina-
torial methods, the list of groups which are realized as the automorphism
groups of real algebraic curves of genus 2 was calculated in [2] for (2,0,1)-
curves and in [3] for the rest of cases. As a by-product we obtain here the
same results although in a very different way. We will denote the cyclic
group of order N by CN and the dihedral group of order 2N by DN . Thus
D2 stands for the non-cyclic group of order 4.

2. Hyperelliptic real algebraic curves.

A real algebraic curve (X, σ) of genus g ≥ 2 is hyperelliptic if so is the
complex curve X, that is, if X admits a meromorphic function of degree 2.
Throughout this paper we represent X by its affine plane model

X = {(x, y) ∈ C2 : y2 = PX(x) := (x− e1) . . . (x− e2g+1+δ)}
with ei 6= ej and δ = 0 or 1. In this model we identify the characteristic
elements of a hyperelliptic curve. First, a meromorphic function of degree
2 is given by the projection πX : (x, y) 7→ x onto the Riemann sphere
Ĉ := C ∪ {∞}. Its branch points are thus the roots of PX and possibly ∞.
They constitute what we call (by abuse of language) the branch point set of
X,

BX =

{
{e1, . . . , e2g+2} if δ = 1,

{e1, . . . , e2g+1,∞} if δ = 0.

The automorphism interchanging the two sheets of πX is known as the
hyperelliptic involution hX : (x, y) 7→ (x,−y). It is central in Aut(X, σ).
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Let Y = {w2 = PY (z)} be another hyperelliptic curve and BY its branch
point set. Every birational isomorphism f : X → Y induces a Möbius
transformation f̂ : Ĉ → Ĉ which maps BX onto BY . In fact, f̂ is defined by
f̂ : πX(p) 7→ πY (f(p)) for any p ∈ X.

X

Ĉ

πX

f̂

f

Ĉ

Y

πY

-

-

? ?

Conversely, every Möbius transformation m : Ĉ → Ĉ which maps BX onto
BY induces exactly two birational isomorphisms f1, f2 : X → Y such that
f̂i = m, i = 1, 2 (in fact, f2 = f1 ◦hX = hY ◦f1). We call these isomorphisms
liftings of m. Their formulae can be calculated explicitly, [4].

Liftings of Möbius transformations. Writing

m(x) =
ax + b

cx + d
with detm := ad− bc 6= 0,

we have:
- If ∞ ∈ BX and m(∞) = ∞ then

f1(x, y) =

(
ax + b

d
, y ·

(a

d

)g
√

det m

d

)
.

- If ∞ ∈ BX and m(∞) 6= ∞ then

f1(x, y) =
(

ax + b

cx + d
,

y · cg

(cx + d)g+1

√
−det m · P ′

Y (m(∞))
)

,

where P ′
Y denotes the derivative of PY .

- If ∞ /∈ BX and m(∞) = ∞ then

f1(x, y) =
(

ax + b

d
, y ·

(a

d

)g+1
)

.

- If ∞ /∈ BX and m(∞) 6= ∞ then

f1(x, y) =
(

ax + b

cx + d
,

y · cg+1

(cx + d)g+1

√
PY (m(∞))

)
.

We now return to real algebraic curves. If the hyperelliptic complex curve
Y admits an antianalytic involution τ then its branch point set BY is pre-
served by the antianalytic involution τ̂ : Ĉ → Ĉ induced by τ. Further, τ̂ is
conjugate to either the complex conjugation x 7→ x or the antipodal map
x 7→ −1/x ([1], Thm 1.9.4). In the latter case Y has odd genus (see 2.2.(a)
below). Since we are interested here in genus 2 curves, we only have to
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consider those (Y, τ) such that τ̂ is conjugate to the complex conjugation.
The next lemma provides suitable plane models for such curves, [4].

Lemma 2.1. With the above notations, each hyperelliptic real curve (Y, τ)
with τ̂(x) = x is isomorphic to one and only one of the following:

(i) (X = {y2 = PX(x)}, σX) where PX is a monic real polynomial without
multiple roots, or

(ii) (X = {y2 = −PX(x)}, σX) where PX is a monic real polynomial with-
out multiple roots and without real roots,

and in both cases, σX : (x, y) 7→ (x, y).

Note that curves of type (ii) have empty real part Xσ since PX is always
positive on R. On the contrary, curves of type (i) have nonempty real part.
The complete topological description of any hyperelliptic real curve is given
in the next lemma. It may be seen as a reformulation of results in [5],
Section 6 adapted to our situation.

Topological Classification Lemma 2.2.
(a) Let (X = {y2 = PX}, τ) be a hyperelliptic real curve such that the

antianalytic involution that τ induces in Ĉ is conjugate to τ̂ : x 7→
−1/x. Then its topological type is (g, 0, 1) with g = [(deg PX − 1)/2]
odd.

(b) Let (X = {y2 = PX(x)}, σX) be a hyperelliptic real curve of type (i) in
the above lemma and let zR be the number of real roots of PX . Then
its topological type is (g, k, ε) with g = [(deg PX − 1)/2] and

(b.1) k = g + 1, ε = 0 if zR = deg PX ,
(b.2) k = [(zR + 1)/2] and ε = 1 if 0 < zR < deg PX ,
(b.3) k = 1, ε = 0 if zR = 0 and g is even,
(b.4) k = 2, ε = 0 if zR = 0 and g is odd.

(c) Let (X = {y2 = −PX(x)}, σX) be a hyperelliptic real curve of type
(ii) in the above lemma. Then its topological type is (g, 0, 1) with g =
(deg PX − 2)/2.

Since for curves of type (i) or (ii) (the only ones to be considered through-
out this paper), the antianalytic involution is the complex conjugation, we
will omit it and in the sequel we will simply say that X is a real curve.

Let us return to the problem of classifying hyperelliptic curves up to iso-
morphism. Recall that a necessary and sufficient condition for two complex
hyperelliptic curves to be isomorphic is the existence of a (complex) Möbius
transformation mapping the branch point set of one of them onto that of the
other. However, the situation in the real case is more complicated: The exis-
tence of a real Möbius transformation mapping BX onto BY does not assure
X and Y to be isomorphic. This obstruction in the real case is detected by
means of the formulae of liftings (see above). A case by case examination
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of such formulae proves the following lemma. (A similar result for curves
appearing in (a) of the Topological Classification Lemma is given in [4].)

R-lifting Lemma 2.3. Let X and Y = {y2 = PY (x)} be two hyperelliptic
real curves of type (i) in Lemma 2.1 and let m be a real Möbius transforma-
tion mapping the branch point set of X onto that of Y . The liftings of m
are isomorphisms between X and Y if and only if:

- det m > 0 if ∞ ∈ BX and m(∞) = ∞;
- det m · P ′

Y (m(∞)) < 0 if ∞ ∈ BX and m(∞) 6= ∞;
- always if ∞ /∈ BX and m(∞) = ∞;
- PY (m(∞)) > 0 if ∞ /∈ BX and m(∞) 6= ∞.

The same holds true if both X and Y are of type (ii).

In either case we will say that m has real liftings.

Isomorphisms between X and Y become automorphisms of X when Y =
X. The automorphism group AutX of X consists of the liftings of those real
Möbius transformations preserving BX which, in addition, have real liftings.
We denote by AutXbC the group of such Möbius transformations:

AutXbC := {m : m real, m(BX) = BX and m has real liftings}.

Results of this section are applied to the particular case of genus 2 curves.
In each of the following sections we give an explicit description of each
M(2,k,ε). We develop in detail only the case of (2, 3, 0)-curves. In the rest of
the cases, proofs are outlined.

3. Moduli of (2,3,0)-curves.

The Topological Classification Lemma shows that all the branch points of
a (2,3,0)-curve lie on the real line R ∪ {∞}. An easy consequence of the
R-lifting lemma is that ∞ may be fixed as one of them. Moreover, we have
the following:

Proposition 3.1. Each (2, 3, 0)-curve is isomorphic to another of the form

X(a, b, c) =
{
y2 = PX(a,b,c)(x) := x(x− 1)(x− a)(x− b)(x− c)

}
with 0 < a < b < c < 1.

Proof. Let BY = {e1, . . . , e5,∞} with e1 < · · · < e5 be the branch point set
of a (2,3,0)-curve Y. The Möbius transformation m : x 7→ (x− e1)/(e5 − e1)
maps BY onto BX = {0, a := m(e2), b := m(e3), c := m(e4), 1,∞} with
0 < a < b < c < 1. So the curve X(a, b, c) we are looking for is the curve
which ramifies over BX and given by the above equation. Indeed, it follows
from the R-lifting lemma that a lifting of m makes X and Y isomorphic. �
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Let T be the following open subset of R3:

T = {(a, b, c) ∈ R3 : 0 < a < b < c < 1}.

The above proposition may be restated by saying that the mapping from T
to M(2,3,0) given by

T → M(2,3,0)

(a, b, c) 7→ X(a, b, c)

is surjective. Thus, in order to describe M(2,3,0) we have to find the fibres
of this mapping. It turns out that they are orbits of points under the action
of a finite group acting on T.

Proposition 3.2. Let G be the dihedral group of order 6 generated by the
involutions

α : (a, b, c) 7→
(
a,

a

c
,
a

b

)
and β : (a, b, c) 7→

(
b− c

b− 1
,
a− c

a− 1
, c

)
.

Then, with the above notations, X(a′, b′, c′) is isomorphic to X(a, b, c) if and
only if (a′, b′, c′) = γ(a, b, c) for some γ ∈ G.

Proof. We first have to determine all the real Möbius transformations which
map BX(a,b,c) = {∞, 0, a, b, c, 1} onto BX(a′,b′,c′) = {∞, 0, a′, b′, c′, 1}. If m is
such a transformation then its restriction to R−{m−1(∞)} is either strictly
increasing or strictly decreasing according to the sign of its determinant.
Therefore, the images by m of the branch points of X(a, b, c) are completely
determined by the image of one of them and by the increasing or decreasing
nature of m. This gives 12 Möbius transformations, one for each choice of,
e.g., m(∞) and the sign of det m. We then have to apply the R-lifting lemma
in order to find those having real liftings. For that we compute the sign of
P ′

X(a′,b′,c′) at m(∞) (if m(∞) 6= ∞). It appears in the fourth column of
Table 1. In the fifth one we write “yes” or “no” according to whether m has
real liftings or not.

We next calculate the formula of each Möbius transformation having real
liftings. In order to express it in terms of a, b and c we use the data
m−1

j (0),m−1
j (∞) and m−1

j (1). We obtain the following six formulae:

m1(x) = x; m4(x) =
a

x
; m5(x) =

b− c

b− 1
· x− 1
x− c

;

m8(x) =
c− b

c− a
· x− a

x− b
; m9(x) =

a

b
· x− b

x− a
; m12(x) =

x− c

x− 1
.

Calculating finally mj(BX(a,b,c)) for each mj and arranging in increasing
order the images different to 0, 1 and∞, we get the points (a′, b′, c′) with 0 <
a′ < b′ < c′ < 1 we are looking for. They are precisely the images of (a, b, c)
under the elements of the group G in the statement of the proposition. �
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Table 1

mj(∞) det mj P ′
X(a′,b′,c′)(mj(∞)) real liftings

m1 ∞ + Yes
m2 ∞ − No
m3 0 + + No
m4 0 − + Yes
m5 a′ + − Yes
m6 a′ − − No
m7 b′ + + No
m8 b′ − + Yes
m9 c′ + − Yes
m10 c′ − − No
m11 1 + + No
m12 1 − + Yes

As a consequence, each isomorphism class of a (2,3,0)-curve is represented
by one and only one point of the quotient space T/G. The next proposition
describes a fundamental set for the action of G on T.

Proposition 3.3. The mapping (a, b, c) 7→ orbit (a, b, c) is a bijection be-
tween the subset ∆ of T given by ∆ =

{
bc ≤ a ≤ b−c

b−1

}
and the quotient

T/G.

Proof. The generating involutions α and β act as two reflections with respect
to two surfaces of T intersecting along a curve of T. More precisely, the fixed
point set of α is the surface of T fix(α) = {a = bc}, and the two semispaces
in which it divides T are interchanged by α, i.e., (a, b, c) ∈ {a > bc} if and
only if α(a, b, c) ∈ {a < bc}. Similarly, (a, b, c) ∈ {a > (b− c)/(b− 1)} if and
only if β(a, b, c) ∈ {a < (b− c)/(b− 1)}, where {a = (b− c)/(b− 1)} is the
fixed point set of β. Straightforward calculations show that the intersection
{a ≥ bc} ∩ {a ≤ (b− c)/(b− 1)} is a fundamental set ∆ for the action of G
on T. �

Summarizing, we have the following:

Theorem 3.4. The mapping

Ψ : (a, b, c) 7→ X(a, b, c) = {y2 = x(x− 1)(x− a)(x− b)(x− c)}
is a bijection between

∆ =
{
(a, b, c) ∈ R3 : 0 < a < b < c < 1, bc ≤ a ≤ b− c

b− 1

}
and M(2,3,0).
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The next step for a better description of M(2,3,0) is to identify in ∆ its
strata, i.e., its subsets M(2,3,0)(H) consisting of curves whose automorphism
group is H. It is clear that points in T with nontrivial G-stabilizer represent
curves with “nontrivial” automorphism group, i.e., other than 〈hX〉. Hence,
the strata of M(2,3,0) are described in terms of fixed point sets of elements of
G. In addition, we can calculate explicitly the automorphism group of each
(2,3,0)-curve since we know all the Möbius transformations which permute
its branch points.

Proposition 3.5. The subsets D=
{

bc < a < b−c
b−1

}
, S =

{
bc = a < b−c

b−1

}
∪{

bc < a = b−c
b−1

}
and C =

{
bc = a = b−c

b−1

}
correspond, via the bijection Ψ

decribed above, to M(2,3,0)(C2), M(2,3,0)(D2) and M(2,3,0)(D6) respectively.
These are the only strata of M(2,3,0). Furthermore, the explicit formulae of
the automorphisms of the curves belonging to each stratum are given.

Proof. Let m be any of the 6 Möbius transformations with real liftings we
find in Proposition 3.2. We just have to calculate which conditions a, b and
c must fulfill so that m(BX(a,b,c)) coincides with BX(a,b,c). With the same
notations:

- m4(x) = a
x preserves BX(a,b,c) if and only if a = bc.

- m5(x) = b−c
b−1 ·

x−1
x−c preserves BX(a,b,c) if and only if bc = a = b−c

b−1 .

- m8(x) = c−b
c−a ·

x−a
x−b preserves BX(a,b,c) if and only if a = 1 + c− c

b . This
surface intersects ∆ in the curve bc = a = b−c

b−1 ; therefore m8 preserves
BX(a,b,c) if and only if bc = a = b−c

b−1 .

- m9(x) = a
b ·

x−b
x−a preserves BX(a,b,c) if and only if bc = a = b−c

b−1 .

- m12(x) = x−c
x−1 preserves BX(a,b,c) if and only if a = b−c

b−1 .

Recall that the group of Möbius transformations with real liftings that pre-
serve BX(a,b,c) is denoted by AutX(p)bC, where p = (a, b, c) for short. Let

f : (x, y) 7→

(
a

x
,
−ya3/2

x3

)
and g : (x, y) 7→

(
x− c

x− 1
,
y(1− c)3/2

(x− 1)3

)
be liftings of m4 and m12, respectively. As a consequence of the above
computations:

(i) If p ∈ D = {bc < a < b−c
b−1} then none of the above Möbius transfor-

mations preserves BX(p), i.e., AutX(p)bC = {idbC} and so AutX(p) =
〈hX〉 ' C2.

(ii) If p ∈ {bc = a < b−c
b−1} then AutX(p)bC = {idbC,m4} and so AutX(p) =

〈hX , f〉 ' D2. If p ∈ {bc < a = b−c
b−1} then AutX(p)bC = {idbC,m12} and

so AutX(p) = 〈hX , g〉 ' D2.
(iii) If p ∈ C = {bc = a = b−c

b−1} then AutX(p)bC = {idbC, m4, m5, m8, m9,

m12}. It turns out that AutX(p) = 〈f, g〉 ' D6. �
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Figure 1 illustrates what ∆ looks like (dashed lines do not belong to ∆).
In it we identify its subsets corresponding to the strata of M(2,3,0). The
stratum M(2,3,0)(C2) corresponds to the interior of ∆ in T, which is the
domain bounded by the two shadowed surfaces.

Figure 1. The moduli space of (2, 3, 0)-curves.

4. Moduli of (2,2,1)-curves.

By the Topological Classification Lemma, exactly 2 of the 6 branch points
of a (2,2,1)-curve are complex non-real. It is easy to see that we may fix
i :=

√
−1, −i and ∞ as branch points.

Proposition 4.1. Write T = {(a, b, c) ∈ R3 : a < b < c}. The mapping
T → M(2,2,1) given by (a, b, c) 7→ X(a, b, c) = {y2 = (x2 + 1)(x − a)(x −
b)(x− c)} is surjective.

Its fibres are orbits under the action of a finite group acting on T .

Proposition 4.2. Let G be the dihedral group of order 4 generated by the
involutions

α : (a, b, c) 7→
(

a,
ac + 1
c− a

,
ab + 1
b− a

)
and β : (a, b, c) 7→

(
bc + 1
b− c

,
ac + 1
a− c

, c

)
.

Then, with the above notations, X(a′, b′, c′) is isomorphic to X(a, b, c) if and
only if (a′, b′, c′) = γ(a, b, c) for some γ ∈ G.
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Outline of Proof. A real Möbius transformation mapping BX(a,b,c) = {∞, a,
b, c, i,−i} onto BX(a′,b′,c′) = {∞, a′, b′, c′, i,−i} preserves the set {i,−i}.
There exist 8 such Möbius transformations, half of them with real liftings.
Namely, (writing their formulae in terms of a, b and c):

m1(x) = x, m2(x) =
ax + 1
x− a

, m3(x) =
bx + 1
−x + b

and m4(x) =
cx + 1
x− c

.

Calculating then mj({∞, a, b, c, i,−i}) for each mj and arranging in increas-
ing order the finite real values, we get the points (a′, b′, c′) ∈ T we are looking
for. They are precisely the images of (a, b, c) under the elements of G. �

The generating involutions α and β act as two reflections with respect
to the surfaces fix(α) = {b = (ac + 1)/(c − a)} and fix(β) = {b = (ac +
1)/(a − c)}, which intersect along a curve in T . It follows that ∆ =
{(ac + 1)(a− c) ≤ b ≤ (ac + 1)(c− a)} is a fundamental set for the action
of G in T . This proves half of the following theorem.

Theorem 4.3. The mapping

Ψ : (a, b, c) 7→ X(a, b, c) = {y2 = (x2 + 1)(x− a)(x− b)(x− c)}
is a bijection between

∆ =
{
(a, b, c) ∈ R3 : a < b < c,

ac + 1
a− c

≤ b ≤ ac + 1
c− a

}
and M(2,2,1).

The subsets D =
{

ac+1
a−c < b < ac+1

c−a

}
, S =

{
ac+1
a−c = b < ac+1

c−a

}
∪
{

ac+1
a−c <

b = ac+1
c−a

}
and C = {ac + 1 = b = 0} correspond, via Ψ, to M(2,2,1)(C2),

M(2,2,1)(D2) and M(2,2,1)(D4) respectively. These are the only strata of
M(2,2,1). Furthermore, the explicit formulae of the automorphisms of the
curves belonging to each stratum are given.

Proof. The only Möbius transformations with real liftings which may pre-
serve BX(a,b,c) are those appearing in the proof of Proposition 4.2. With the
same notations:

- m2(x) = ax+1
x−a preserves BX(a,b,c) if and only if b = ac+1

c−a .

- m3(x) = bx+1
−x+b preserves BX(a,b,c) if and only if ac + 1 = b = 0.

- m4(x) = cx+1
x−c preserves BX(a,b,c) if and only if b = ac+1

a−c .

Let

f : (x, y) 7→

(
cx + 1
x− c

,
y(c2 + 1)3/2

(x− c)3

)
and

g : (x, y) 7→

(
ax + 1
x− a

,
y(a2 + 1)3/2

(x− a)3

)
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be liftings of m4 and m2 respectively. Denoting p = (a, b, c) for short, we
conclude:

(i) If p ∈ D = {ac+1
a−c < b < ac+1

c−a } then AutX(p)bC = {idbC} and so
AutX(p) = 〈hX〉 ' C2.

(ii) If p ∈ {ac+1
a−c = b < ac+1

c−a } then AutX(p)bC = {idbC,m4} and so AutX(p)
= 〈hX , f〉 ' D2. If p ∈ {ac+1

a−c < b = ac+1
c−a } then AutX(p)bC = {idbC,m2}

and so AutX(p) = 〈hX , g〉 ' D2.
(iii) If p ∈ C = {ac + 1 = b = 0} then AutX(p)bC = {idbC,m2,m3,m4}. In

this case AutX(p) = 〈f, g〉 ' D4.

�

Figure 2 illustrates what ∆ looks like (dashed lines do not belong to ∆).
The stratum M(2,2,1)(C2) corresponds to the interior of ∆ in T, which is the
domain bounded by the two shadowed surfaces.

Figure 2. The moduli space of (2, 2, 1)-curves.

5. Moduli of (2,1,1)-curves.

These curves have two real branching points and four complex non-real ones.
We may fix 0 and ∞ as the real ones and the imaginary part of two of the
others.
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Proposition 5.1. Write T = {b > 0, (a, b) 6= (c, 1)} ⊂ R3. The mapping
T → M(2,1,1) given by (a, b, c) 7→ X(a, b, c) = {y2 = x((x − a)2 + b2)((x −
c)2 + 1)} is surjective.

Its fibres are calculated in the next proposition. Its proof is similar to
that of Proposition 4.2 and so we just indicate the formulae of the unique 4
Möbius transformations with real liftings mapping BX(a,b,c) onto BX(a′,b′,c′).
Apart from the identity, they are the following:

m2(x) =
x

b
, m3(x) =

c2 + 1
x

, and m4(x) =
a2 + b2

bx
.

Proposition 5.2. Let G be the dihedral group of order 4 generated by the
involutions

α : (a, b, c) 7→
(

a · c2 + 1
a2 + b2

, b · c2 + 1
a2 + b2

, c

)
and

β : (a, b, c) 7→
(

c

b
· a2 + b2

c2 + 1
,
1
b
· a2 + b2

c2 + 1
,
a

b

)
.

Then X(a′, b′, c′) is isomorphic to X(a, b, c) if and only if (a′, b′, c′)=γ(a, b, c)
for some γ ∈ G.

A fundamental set for the action of G on T is the set ∆ appearing in the
next theorem.

Theorem 5.3. The mapping

Ψ : (a, b, c) 7→ X(a, b, c) = {y2 = x((x− a)2 + b2)((x− c)2 + 1)}

is a bijection between

∆ = {(a, b, c) ∈ R3 : b > 0, (a, b) 6= (c, 1), a ≥ bc, a2 + b2 ≥ c2 + 1}

and M(2,1,1). The subsets D = {a > bc, a2 + b2 > c2 + 1} and S = {a =
bc}∪{a2 + b2 = c2 +1} correspond, via Ψ, to M(2,1,1)(C2) and M(2,1,1)(D2)
respectively. These are the only strata of M(2,1,1). Furthermore, the explicit
formulae of the automorphisms of the curves belonging to each stratum are
given.

Proof. We prove the claims concerning the strata. The only Möbius trans-
formations with real liftings which may preserve BX(a,b,c) are given above.
With the same notations:

- m2(x) = x/b preserves BX(a,b,c) if and only if a = c and b = 1. However,
a, b and c cannot take these values.

- m3(x) = (c2 + 1)/x preserves BX(a,b,c) if and only if a2 + b2 = c2 + 1.

- m4(x) = (a2 + b2)/(bx) preserves BX(a,b,c) if and only if a = bc.
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Let

f : (x, y) 7→

(
b(c2 + 1)

x
,
y(b(c2 + 1))3/2

x3

)
and

g : (x, y) 7→

(
c2 + 1

x
,
y(c2 + 1)3/2

x3

)
be liftings of m4 and m3 respectively. Taking into account that no point
p = (a, b, c) ∈ ∆ fulfills simultaneously the equations a = bc and a2 + b2 =
c2 + 1, we get:

(i) If p ∈ D = {a > bc, a2 + b2 > c2 + 1} then AutX(p)bC = {idbC}, and so
AutX(p) = 〈hX〉 ' C2.

(ii) If p ∈ {a = bc} then AutX(p)bC = {idbC,m4} and so AutX(p) =
〈hX , f〉 ' D2. If p ∈ {a2 + b2 = c2 + 1} then AutX(p)bC = {idbC,m3}
and so AutX(p) = 〈hX , g〉 ' D2.

�

Figure 3 illustrates what ∆ looks like (dashed lines do not belong to ∆).
Note that, unlike the preceding cases, the closures in ∆ of the two surfaces
corresponding to M(2,2,1)(D2) do not intersect.

Figure 3. The moduli space of (2, 1, 1)-curves.
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6. Moduli of (2,1,0) and (2,0,1)-curves.

We may study simultaneously the moduli sets of (2,1,0) and (2,0,1)-curves.
Indeed, as a consequence of the Topological Classification Lemma, if PX is
a monic real polynomial of degree 6 with no real root then X = {y2 = PX}
is a (2,1,0)-curve (and any such curve is like this) while X ′ = {y2 = −PX}
is a (2,0,1)-curve (and any such curve is like this). Therefore, roots of a
polynomial as the above serve as parameters to describe the moduli sets
of curves of both types. Furthermore, concerning the classification up to
isomorphism, an easy computation shows the following.

Lemma 6.1. A mapping f : X → Y is an isomorphism between X =
{y2 = PX} and Y = {y2 = PY } if and only if f is an isomorphism between
X ′ = {y2 = −PX} and Y ′ = {y2 = −PY }. In particular, the automorphism
group of X coincides with that of X ′.

Consequently, along this section we only need to deal with (2,1,0)-curves,
for instance.

Remark 6.2. Curves of these topological types are described by polyno-
mials which are positive on R. In particular ∞ is not a branch point and
so the R-lifting lemma is superfluous along this section: Every real Möbius
transformation mapping the branch point set of X onto that of Y has real
liftings.

The description of M(2,1,0) and M(2,0,1) by means of the real and imag-
inary parts of roots of PX is more involved than in the preceding sections.
However, the fact that no branch point of X lies in the real axis R ∪ {∞}
allows us to consider hyperbolic distances between those with positive imag-
inary part. The advantage of working with such distances is that they are
preserved by real Möbius transformations. Indeed, restrictions to the upper
half plane H of those with positive determinant are the direct isometries
of H, whilst the composite of the complex conjugation with those having
negative determinant are its inverse ones. Now, the 3 branch points of a
(2,1,0)-curve lying on H define a hyperbolic triangle or a hyperbolic seg-
ment. Therefore, since here the R-lifting lemma is superfluous, two (2, 1, 0)-
curves are isomorphic if and only if their corresponding hyperbolic triangles
(or segments) are H-isometric.

It is clear that any hyperbolic triangle or hyperbolic segment is isometric
to another with vertices i, ai and b + ci for some a ∈ (0, 1) and b ≥ 0. We
can now introduce the following parameters:

δ1 = ρ(i, ai), δ2 = ρ(ai, b + ci), δ3 = ρ(i, b + ci),

where ρ is the hyperbolic distance. Note that 0 < δi ≤ δj + δk, for
{i, j, k} = {1, 2, 3} because they are distances between different points. This
way, each isomorphism class of a (2,1,0)-curve may be represented by a
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triple (δ1, δ2, δ3). In order to get unicity in this representation we impose
δ1 ≤ δ2 ≤ δ3. This shows that

∆ρ = {0 < δ1 ≤ δ2 ≤ δ3 ≤ δ1 + δ2}
is in bijective correspondence with M(2,1,0).

We now recover the real and imaginary parts of roots of polynomials
defining (2,1,0)-curves as the parameters to describe M(2,1,0). For that we
translate the restrictions defining ∆ρ to restrictions on a, b and c. Using the
explicit formula for the hyperbolic distance

ρ(z, w) = ln
{
|z − w|+ |z − w|
|z − w| − |z − w|

}
we get the expressions of δ1, δ2 and δ3 in terms of a, b and c. Then, easy
computations give:

- δ1 ≤ δ2 if and only if (a2 − c)(c− 1) ≤ b2,
- δ2 ≤ δ3 if and only if b2 ≤ a− c2,
- δ3 ≤ δ1 + δ2 always, and δ3 = δ1 + δ2 if and only if b = 0.

Note that if δ3 = δ1 + δ2 then ai lies in the interior of the segment joining i
with ci; that is, if b = 0 then 0 < c < a < 1, and so in this case condition
δ1 ≤ δ2 is equivalent to c ≤ a2.

We can now formulate the main result of this section:

Theorem 6.3. The mapping

Ψ : (a, b, c) 7→ X(a, b, c) = {y2 = (x2 + 1)(x2 + a2)((x− b)2 + c2)},
(respectively

Ψ : (a, b, c) 7→ X ′(a, b, c) = {y2 = −(x2 + 1)(x2 + a2)((x− b)2 + c2)}),
is a bijection between

∆ =
{

0 < a < 1, b ≥ 0, c > 0, (0, a) 6= (b, c) 6= (0, 1),

(a2 − c)(c− 1) ≤ b2 ≤ a− c2
}

and M(2,1,0) (respectively M(2,0,1)). Furthermore, the subsets of ∆

D = {b > 0, (a2 − c)(c− 1) < b2 < a− c2},
S = {b > 0, (a2 − c)(c− 1) = b2 < a− c2} ∪

{b > 0, (a2 − c)(c− 1) < b2 = a− c2} ∪
{b = 0, c < a2},

C = {b = 0, c = a2} and
L = {b > 0, (a2 − c)(c− 1) = b2 = a− c2}

correspond, via Ψ, respectively to M(2,1,0)(C2), M(2,1,0)(D2), M(2,1,0)(D4)
and M(2,1,0)(D6) (respectively to M(2,0,1)(C2), M(2,0,1)(D2), M(2,0,1)(D4)
and M(2,0,1)(D6)). These are the only strata of M(2,1,0) (respectively of
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M(2,0,1)). Furthermore, the explicit formulae of the automorphisms of the
curves belonging to each stratum are given.

Proof. In order to calculate the automorphism group of X(a, b, c) we have to
find the isometry group of the hyperbolic triangle (or segment) determined
by i, ai and b + ci.

Case 1. If δ3 = δ1 + δ2 then i, ai and ci determine a segment with ai in its
interior. So any isometry s of this segment fixes ai.

1.1: If s also fixes i and ci then s is either the identity or the reflection
x 7→ −x in the imaginary axis.

1.2: If s interchanges i and ci then s is the reflection in the H-line orthog-
onal to the imaginary axis at ai, i.e., x 7→ a2/x. Note that this case
happens only if δ1 = δ2.

Case 2. If δ3 6= δ1 + δ2 then i, ai and b+ ci determine a hyperbolic triangle.
2.1: If δ1 < δ2 < δ3 then the triangle is scalene, and so only the identity

preserves it.
2.2: If δ1 = δ2 < δ3 then the triangle is isosceles non-equilateral; the only

nontrivial isometry that preserves it is the reflection in the angle bi-
sector at ai, i.e., x 7→ (bx + a2(1− c))/((1− c)x− b).

2.3: If δ1 < δ2 = δ3 then the triangle is also isosceles non-equilateral; the
only nontrivial isometry that preserves it is the reflection in the angle
bisector at b + ci, i.e., x 7→ a/x.

2.4: If δ1 = δ2 = δ3 then the triangle is equilateral and so its isometry
group is generated by the two reflections described above.

Viewing isometries of H as real Möbius transformations we obtain the cor-
responding liftings:

f1 : (x, y) 7→ (−x, y), f2 : (x, y) 7→
(

a2

x
,
ya3

x3

)
,

f3 : (x, y) 7→

(
a

x
,
ya3/2

x3

)
and

f4 : (x, y) 7→

(
bx + a2(1− c)
(1− c)x− b

,
y · [(1− a2)(c− c2)]3/2

[(1− c)x− b]3

)
.

Translating conditions on δ1, δ2 and δ3 into conditions of a, b and c we get
the following, where p = (a, b, c) for short:

(i) If p ∈ {b > 0, (a2−c)(c−1) < b2 < a−c2} then AutX(p) = 〈hX〉 ' C2.
(ii) If p ∈ {b = 0, c < a2} then AutX(p) = 〈hX , f1〉 ' D2. If p ∈ {b >

0, (a2 − c)(c − 1) = b2 < a − c2} then AutX(p) = 〈hX , f4〉 ' D2. If
p ∈ {b > 0, (a2 − c)(c− 1) < b2 = a− c2} then AutX(p) = 〈hX , f3〉 '
D2.



70 FRANCISCO-JAVIER CIRRE

(iii) If p ∈ {b = 0, a2 = c} then AutX(p) = 〈f1, f2〉 ' D4.
(iv) If p ∈ {b > 0, (a2−c)(c−1) = b2 = a−c2} then AutX(p) = 〈f3, f4〉 '

D6.

�

In order to see what ∆ looks like, it is easier to think of its description
in terms of δ1, δ2 and δ3, i.e., to think of ∆ρ. Figure 4 illustrates the
relative position of the strata of ∆ρ. There are three boundary surfaces,
which correspond to M(2,1,0)(D2). Their closures intersect pairwise in three
lines; two of them correspond to M(2,1,0)(D4) and M(2,1,0)(D6), whilst the
third (the dashed one) does not belong to ∆. The domain bounded by the
three shadowed surfaces corresponds to M(2,1,0)(C2).

Figure 4. The moduli spaces of (2, 1, 0) and (2, 0, 1)-curves.

7. Real analyticity.

In the preceding sections we gave, for each of the five different topological
types of real algebraic curves of genus 2, a bijection Ψ(2,k,ε) : ∆(2,k,ε) →
M(2,k,ε) between a semialgebraic subset ∆(2,k,ε) of R3 and the moduli space
M(2,k,ε). This latter is known to have a natural semianalytic structure. A
natural question arises: Whether the above mapping Ψ(2,k,ε) is real analytic
or not. In this section we answer the question in the affirmative.

Theorem 7.1. Each bijection Ψ(2,k,ε) : ∆(2,k,ε) →M(2,k,ε) described in the
preceding sections is real analytic.
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Let us begin with the case of (2, 3, 0)-curves. With the notations of Sec-
tion 3, consider the real analytic manifold T(2,3,0) = T = {(a, b, c) ∈ R3 : 0 <
0 < b < c < 1}. It contains ∆(2,3,0) and the mapping Ψ(2,3,0) extends to T
in the obvious way. Of course, it suffices to show that this extension is real
analytic. Let R be the sheaf of real analytic functions on T and consider
the polynomial f ∈ R(T )[X, Y ] given by

f = Y 2 −X(X − 1)(X − u1)(X − u2)(X − u3),

where each ui ∈ R(T ) is the ith projection. Consider, with the notations in
[7, Section 22], the triple (C,U , ϕ) where U is the trivial open covering of T ,
C is given by

C(T ) =
R(T )[X, Y ]

(f)
and the gluing data ϕ is superfluous here.

Notice that for each p = (a, b, c) ∈ T the fiber Cp coincides with C(T )⊗R(T )

R, where R is considered as an R(T )-algebra via the evaluation map at p.
Hence, Cp coincides with R[X, Y ]/(fp), where fp = Y 2 − X(X − 1)(X −
a)(X − b)(X − c). Since p ∈ T, the geometric fiber

Spec Cp(R) = {(x, y) ∈ R2 : fp(x, y) = 0}
is a real algebraic curve of topological type (2, 3, 0).

Since f is monic it follows that the triple (C,U , ϕ) is an analytic family of
real algebraic curves of topological type (2,3,0) as defined in [7]. Therefore a
direct application of Theorem 22.2 in [7] gives that the map Ψ(2,3,0) : T →
M(2,3,0) is real analytic.

For the rest of topological types the proof is exactly the same, changing f
by the appropriate polynomial, because the mapping Ψ(2,k,ε) extends to an
open subset T of R3. For (2, 2, 1) and (2, 1, 1)-curves, we may take T as in
Propositions 4.1 and 5.1, respectively. For (2, 1, 0) and (2, 0, 1)-curves, it is
enough to choose as T a sufficiently small open neighbourhood of the subset
∆ defined in Theorem 6.3 to which Ψ(2,k,ε) extends.

Remark. The image under Ψ(2,k,ε) of the interior of ∆(2,k,ε) is the set of
(isomorphism classes of) (2, k, ε)-curves whose full automorphism group has
order 2. By Theorem 5.1 in [6] this is the complement in M(2,k,ε) of its
boundary and so it is a real analytic manifold of pure dimension 3. Hence
by the invariance domain theorem, the restriction of Ψ(2,k,ε) to the interior
of ∆(2,k,ε) is a homeomorphism onto its image.
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