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The geodesics for a sub-Riemannian metric on a three-
dimensional contact manifold M form a 1-parameter family of
curves along each contact direction. However, a collection of
such contact curves on M , locally equivalent to the solutions
of a fourth-order ODE, are the geodesics of a sub-Riemannian
metric only if a sequence of invariants vanish. The first of
these, which was first identified by Fels, determines if the dif-
ferential equation is variational. The next two determine if
there is a well-defined metric on M and if the given paths are
its geodesics.

Introduction.

In this note we discuss the problem of recovering the geometric structure of
a three-dimensional contact manifold with a sub-Riemannian metric from
the geodesics for the metric. (Sub-Riemannian metrics are also known as
Carnot-Carathéodory metrics.) Since all the results herein will be local in
nature, the manifold may be taken to be an open set U ∈ R3 with contact
form dy − zdx, and we may assume that on contact planes the metric has
the form

g = Edx2 + Fdxdz + Gdz2,

where E,F, G are smooth functions on U such that g is positive definite. The
geodesics form a collection of paths tangent to the contact structure, such
that there is a 1-parameter family of distinct paths tangent to each contact
direction at each point. Thus, part of the problem will be to determine
which such collections of paths come from a sub-Riemannian metric.

As explained below, the paths are locally equivalent to the integral curves
of a scalar fourth-order ODE. The variational multiplier problem for fourth-
order ODE—i.e., the problem of characterizing equations which are, up to
multiple, the Euler-Lagrange equations for a second-order Lagrangian—was
solved by M. Fels [4]. Since sub-Riemannian geodesics arise as solutions of
a variational problem, the present work is an extension of that of Fels; to
avoid confusion, the notation of [4] will be used whenever possible.
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1. Contact path geometries.

In this section we review the construction of sub-Riemannian geodesics, and
define a G-structure canonically associated to the geodesics as paths.

Let M be an oriented three-manifold with contact distribution D and
sub-Riemannian metric g. It is standard that one can associate to g a
SO(2)-structure N inside the oriented coframe bundle F (M), such that, for
any coframing which is a local section of N , the forms (ω1, ω2, ω3) of the
coframing satisfy:

(i) ω3 annihilates the contact planes;
(ii) (ω1)2 + (ω2)2 coincides with the metric on the contact planes; and,
(iii) ω1 ∧ ω2 gives the induced orientation.

Furthermore, we may specify N uniquely by requiring that dω3 = ω1 ∧
ω2. Then N has a connection form φ satisfying the following structure
equations:1

dω1 = φ ∧ ω2 + (a1ω
1 + a2ω

2) ∧ ω3

dω2 = −φ ∧ ω1 + (a2ω
1 − a1ω

2) ∧ ω3

dω3 = ω1 ∧ ω2

dφ = Kω1 ∧ ω2 mod ω3.

The functions a1, a2 are components of the torsion of g and K is the
curvature.2

Every oriented contact curve in M has a lift to N on which the forms
ω2 and ω3 vanish. Applying the Griffiths formalism [7] to find the integral
curves in N of the Pfaffian system {ω2, ω3} which are extremal curves for
arclength

∫
ω1, we obtain the following characterization of sub-Riemannian

geodesics:3

Proposition 1.1. Let Z be the rank one affine subbundle of T ∗N on which
the canonical one-form is σ = ω1 − xω3, x ∈ R. (Forms on Z are pulled
back via π : Z → N.) Then smooth geodesics are in 1-to-1 correspondence,
via the submersion Z → M , with integral curves of the Pfaffian system

1This result appears in [6], where it is attributed independently to Bryant-Hsu and to
G. Wilkens. A detailed derivation can be found in [9].

2 Clearly, taking the ωi as an orthonormal coframe canonically associates to g with
Riemannian metric bg on M , which induces g on D, and defines a canonical foliation
perpendicular to D. The torsion tensor is the Lie derivative of bg along the leaves; if this
vanishes, g descends to any (locally defined) quotient surface by foliation, and K is the
Gauss curvature of the metric on that surface.

3See [9] and [10] for derivations of the geodesics by this and other methods.
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F = {θ0, θ1, θ2, θ3} on Z, where

θ0 = ω3

θ1 = ω2

θ2 = φ− xω1

θ3 = dx− a1ω
1 − a2ω

2.

Remark. For variational problems with differential constraints, it is in gen-
eral not known under what conditions all extremal curves arise as projections
of integral curves of the differential system formulated by Griffiths. For ex-
ample, for sub-Riemannian metrics on a generic two-plane distribution in
dimension four, exceptional extremal curves exist which do not come from
the Griffiths system. Essentially, this is because these abnormal minimiz-
ers [2, 10] have few or no compactly supported variations that are tangent
to the given distribution. However, by applying the regularity test given
by Hsu [8], one can show that for a sub-Riemannian metric on a contact
manifold, all geodesics arise via the Griffiths formalism. (Intuitively, enough
variations exist because contact curves can be locally expressed in terms of
an arbitrary function and its derivatives.)

Returning to the system F given above, let L be the line field on Z which
is annihilated by F . Integral curves of this line field push down via π to give
a 1-parameter family of curves through each point of N , and push down
to M to give a 1-parameter family of geodesics tangent to each contact
direction.

Recall that the prolongation [2] of a contact manifold M is the sub-bundle
of the projectivization of TM whose fibre consists of all contact directions at
the basepoint in M . For a distribution D of two-planes on a three-manifold,
the prolongation is a P1-bundle PD over M . This bundle carries a canonical
smooth two-plane distribution D′, defined as follows: For a nonzero vector
v ∈ D, we say that a vector w ∈ T[v]PD is tangent to D′ if and only if π∗w
is a multiple of v, where π : PD → M is the fibration. It follows that D′ is
tangent to the fibres of π.

For example, let D be the contact distribution on sub-Riemannian three-
manifold M . Then the canonical SO(2)-structure N is a double cover of
PD, by the map that sends coframe (ω1, ω2, ω3) ∈ T ∗

xM to the line in TxM
annihilated by ω2 and ω3. It follows that D′ lifts to N to be the two-plane
field annihilated by ω2 and ω3.

The construction of the prolongation may be repeated, resulting each
time in a P1-bundle over the previous space, carrying a canonical two-plane
distribution. For example, Z can be embedded as an open subset of the
prolongation of the two-plane field on N (the subset consisting of directions
v such that ω1(v) 6= 0) by sending a point in the fibre Zu to the line in TuN
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annihilated by θ0, θ1 and θ2. Under this embedding, the integral curves of
the Pfaffian system F defined above become tangent to the contact planes
on the prolongation of N . Moreover, under the natural lifting of the double
cover N → PD to a double cover from Z to an open subset U ⊂ PD′, these
integral curves descend to give a well-defined foliation of U .

We will now generalize this situation by throwing away the metric.

Definition 1.2. Let M3 be a contact manifold and let P 5 be the second
prolongation of M . Let L be a line field on P which is tangent to the
canonical two-plane distribution D′′ and everywhere transverse to the fibres
of ρ : P → M . Let I be the Pfaffian system on P which annihilates L and
the fibres of ρ, and let J be the intersection of the retracting space [1] of I
with the annihilator of L. Then (P,L, ρ) defines a contact path geometry
on M if:

(i) The first derived system I ′ is one-dimensional at each point of P ;
(ii) J ′ = I at each point of P .

These two conditions need explaining. Because L is transverse to the
fibres, I is two-dimensional. If I were integrable (i.e., I ′ = I, instead of
being one-dimensional) then all paths through a given fibre ρ−1(x) would
project down to a single contact curve on M , so that there would be only one
path through x ∈ M . Condition (i) implies that J is three-dimensional at
each point; it is automatic that I ⊂ J ′. If J were integrable, then integral
surfaces of J would intersect ρ−1(x) in a 1-parameter family of curves; since
each such surface would project down to a single contact curve in M , this
would imply that there was only a 1-parameter family of paths through x.

Since I ′ contains the pullback of a contact form on M , condition (i) also
implies that I ′′ = 0. Thus, the three-dimensional distribution containing
L and the kernel of ρ∗ is bracket-generating. That in turn guarantees, by
Chow’s theorem [3], that two arbitrary points in M can be connected by a
piecewise smooth sequence of paths.

In practice, we will work locally, assuming that L is defined on an open
subset U ⊂ P . Now the question of which path geometries are sub-Rieman-
nian becomes that of which such line fields L are locally diffeomorphic to
the line field on Z associated to some sub-Riemannian metric on M , under
diffeomorphisms which respect the fibrations and two-plane distributions.

Proposition 1.3. Given a contact path geometry we can construct, in a
neighbourhood of any point q ∈ P , a coframe (σ, θ0, θ1, θ2, θ3) such that:

1. v ∈ TP projects down to be a contact direction on M if and only if
θ0(v) = 0

2. I = {θ0, θ1}
3. J = {θ0, θ1, θ2}
4. L⊥ = {θ0, θ1, θ2, θ3}.
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Moreover, these forms satisfy

dθi ≡ θi+1 ∧ σ mod θ0, . . . , θi, 0 ≤ i ≤ 2.(1)

These will be called 0-adapted coframes for the contact path geometry.

Proof. Let ρ(q) = x ∈ M . On a neighbourhood V of x, there exists a contact
form θ0, and 1-forms σ, θ1 such that dθ0 ≡ θ1 ∧ σ mod θ0. Pull these forms
back to U = ρ−1(V ) ⊂ P ; we will shrink U when necessary. Since σ, θ1 both
restrict to be zero along the fibres of ρ, they cannot be independent modulo
I. Therefore we can arrange, by adding multiples of σ, that θ1 ∈ I. (Note
that now θ1 is no longer the pullback of a form on V .) Since θ0, θ1 ∈ L⊥,
then σ /∈ L⊥. Since θ0 ∈ I ′, then dθ1 6= 0 mod I.

Since θ0, θ1, σ span an integrable system, then there will be a smooth 1-
form θ2 on U that dθ1 ≡ θ2 ∧ σ mod I. (Since I ′ is one-dimensional at
each point, θ2 is nonzero on U .) By adding multiples of σ, we can arrange
that θ2 ∈ L⊥, giving condition 3. Because J ′ 6= J , there must be a nonzero
1-form θ3 on U such that dθ2 ≡ θ3 ∧ σ mod J . We can similarly arrange
that θ3 ∈ L⊥. �

Remark. The above proposition could also be proved just using the as-
sumption that L is a line field on a five-manifold P , carrying a two-dimen-
sional Pfaffian system I annihilating L, such that I,J satisfy conditions (i,
ii) in Defn. 1.2. The contact structure and the submersion to M can be
recovered from I ′ and the retracting space C(I ′) respectively.

Corollary 1.4. In some neighbourhood U of any given point q ∈ P , there
exist coordinates x, y0, y1, y2, y3 such that, for some function F on U ,

σ = −dx(2)
θ0 = dy0 − y1dx

θ1 = dy1 − y2dx

θ2 = dy2 − y3dx

θ3 = dy3 − F (x, y0, y1, y2, y3)dx

is a 0-adapted coframe. Consequently, paths in P are locally equivalent to
the solutions of the fourth-order ODE

y′′′′ = F (x, y, y′, y′′, y′′′).(3)

Proof. The structure equations (1) enable us to apply the Goursat normal
form theorem [1] to system J . This gives J = {θ0, θ1, θ2}, in terms of the
forms defined here. Since I = {θ0, θ1}, then dx /∈ L⊥, and so there exists
some function F such that dy3 − F (x, y0, y1, y2, y3)dx = 0 along the paths
in U . �
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The set of 0-adapted coframes (σ, θ0, θ1, θ2, θ3) for given contact path
geometry forms a principal bundle B0 over P , with ten-dimensional structure
group G0 ⊂ GL(5, R) consisting of matrices of the form

a ∗ ∗ 0 0
0 b 0 0 0
0 ∗ a−1b 0 0
0 ∗ ∗ a−2b 0
0 ∗ ∗ ∗ a−3b

 .

(The stars indicate arbitrary entries.) This is precisely the G-structure that
Fels associates to a fourth-order ODE up to contact transformation (cf. [4],
Lemma 3.1). Since the path geometry can be recovered uniquely from the
G-structure, we will treat the two notions as synonymous.

2. Variational and sub-Riemannian path geometries.

The goal of Cartan’s method of equivalence [5] is, for a given G-structure,
to find a sub-bundle, with reduced structure group, on which there exists a
unique connection. Like the Levi-Civita connection in Riemannian geome-
try, this is typically obtained by fixing the value of all or part of the torsion
of the connection. Then, invariants may be extracted from the remaining
torsion or the curvature of the connection.

We begin with Fels’ result for G0-structures of coframes satisfying (1).
This gives a reduction of structure to the subgroup G1 ⊂ G0 consisting of
matrices of the form

a 0 0 0 0
0 b 0 0 0
0 0 a−1b 0 0
0 0 0 a−2b 0
0 0 0 0 a−3b

 · exp


0 0 0 0 0
0 0 0 0 0
0 c 0 0 0
0 0 4

3c 0 0
0 0 0 c 0

 .

In terms of path geometry, the result is:

Theorem 1 (Fels [4]). Let B0 ↘ P define a contact path geometry. Then
there is a sub-bundle B1 with three-dimensional structure group G1, on which
there exists a unique equivariant connection satisfying the following structure
equations:

dσ = α ∧ σ + θ0 ∧ (T1θ1 + T2θ2 + T3θ3) + θ1 ∧ (T4θ2 + T5θ3)(4a)

dθ0 = β ∧ θ0 + σ ∧ θ1(4b)

dθ1 = (β − α) ∧ θ1 + γ ∧ θ0 + σ ∧ θ2(4c)

dθ2 = (β − 2α) ∧ θ2 + 4
3γ ∧ θ1 + σ ∧ θ3(4d)

dθ3 = (β − 3α) ∧ θ3 + γ ∧ θ2 + σ ∧ (I0θ0 + I1θ1)(4e)
+ T6θ0 ∧ θ1 + T7θ0 ∧ θ2 + T8θ1 ∧ θ2.
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[The one-forms α, β, γ are connection forms, and I0, I1, T1, . . . T8 are compo-
nents of the torsion of the connection.]

Moreover, assuming P is locally defined by a fourth-order ODE (3), solu-
tions of that ODE are critical curves for a second-order Lagrangian if and
only if the relative invariants I1 and T5 both vanish identically on B1. In
that case, T8 also vanishes.

The essence of Fels’ proof of the second statement is exhibiting a two-form
on B1,

ω = m(θ0 ∧ θ3 − θ1 ∧ θ2),

where m is a nonzero function, such that ω is closed and G1-invariant. (In
fact, d log m = 3α−2β, and, as Fels notes, the structure equations imply that
that one-form is closed in the variational case.) It then follows that ω is the
exterior derivative of the Poincaré-Cartan form associated to a Lagrangian
on the space of 2-jets.

We will speak of a path geometry for which I1, T5, T8 vanish identically
as being variational.

Example 1. Consider the second-order Lagrangian
∫

e−3y′′
dx, for which

the Euler-Lagrangian equations are, up to multiple,

y′′′′ − 3(y′′′)2 = 0.

The coframe (2) gives a section of the bundle B0 defining the correspond-
ing G0-structure on J3(R, R). This coframe may be modified to give the
following section of the reduced structure B1:

θ0 = dy0 − y1dx(5)
θ1 = dy1 − y2dx

θ2 = dy2 − y3dx− y3θ1 + 3
10y2

3θ0

θ3 = dy3 − 3y3dy2 − 3
10y2

3θ1 + 6
5y3

3θ0

σ = dx + θ1 − 3
5y3θ0.

Of course, the torsion satisfies I1 = T5 = T8 = 0, but one may also compute4

that T2 = 12
5 y3, T3 = 3

5 and T4 = −1 along this section of B1.

4In order to evaluate the torsion components along a given section of B1, one must
determine the values of the connection forms in terms of the given coframe. To do this,
begin with the dθ0 equation (4b), which determines β modulo θ0. One may set β = β0+bθ0,
where β0 is any form satisfying (4b) and b is not yet determined. Then (4c) determines α
and γ modulo θ0, θ1. In fact, one may set

α = α0 + aθ0 + zθ1

γ = γ0 − aθ1 + cθ0.

Now (4a) determines z while (4d), (4e) determine a, b and c.
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Example 2 (sub-Riemannian geometry). Let Z be the five-manifold of
Proposition 1.1. It is easy to verify that the 1-forms given there, when
rounded out by σ = ω1−xω3, form a 0-adapted coframe for the correspond-
ing contact path geometry. We may adapt the coframe to obtain a section
of the reduced bundle B1 ↘ Z:

θ0 = ω3(6)

θ1 = ω2

θ2 = φ− xω1 + Aω3

θ3 = dx− a1ω
1 − (a2 + A)ω2 + Bω3

σ = ω1 − 3
5
xω3

with

A =
1
10
(
a2 + 3x2 − 3K

)
B =

1
10

(s2 − 3k1 − 6a1x− 21b1),

where K is the scalar curvature, and the bi, si and ki are defined on N by

da1 ≡ 2a2φ + (s1 + b2)ω1 + (s2 + b1)ω2

da2 ≡ −2a1φ + (s2 − b1)ω1 + (b2 − s1)ω2

dK ≡ k1ω
1 + k2ω

2

 mod ω3.

Again, one may compute that I1 = T5 = T8 = 0, confirming that the path
geometry is variational, while T2 = 0, T3 = 3

5 , and T4 = −1 for this coframe.

The fact that we obtained the same values for T3 and T4 as those from a
general second-order Lagrangian hints at further relations among the torsion
components. One uncovers one of these by deriving the refined structure
equations:

Proposition 2.1. Let B1 be the canonical G1-structure for a variational
path geometry. Then there exist functions U1, U2 on B1 such that the con-
nection forms satisfy

dα = 2
3dβ(7)

dβ = σ ∧ γ − τ ∧ θ1 − 3ν ∧ θ0

dγ ≡ γ ∧ α− τ ∧ θ2 − ν ∧ θ1 mod θ0

where

τ = T1θ1 + T2θ2 + T3θ3

ν = U1θ1 + U2θ2 − T2θ3 + T7σ.
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The torsion components satisfy T3 = −3
5T4 and

dT1 ≡ T1(2α− 2β)− 4
3T2γ − 2U1σ mod θ0, θ1, θ2, θ3(8)

dT2 ≡ T2(3α− 2β)− 2
5T4γ − (T1 + 2U2)σ mod θ0, θ1, θ2, θ3(9)

dT4 ≡ T4(4α− 2β)− 5
3T2σ mod θ0, θ1, θ2.(10)

The above equations indicate that T4 is a relative invariant on B1, i.e.,
it varies along the fibres only by scaling. Moreover, they indicate that the
quadratic form g = σ2 − T4θ

2
1 is well-defined, up to multiple and modulo

θ0, on N . For, suppose v is a vector field on B1 which is annihilated by
σ, θ0, θ1, θ2. Then computing the Lie derivative of g gives

Lv(g) = 2σ ◦ (v dσ)− 2T4θ1 ◦ (v dθ1)− (v dT4)θ2
1

≡ 2(v α)
[
σ2 − T4θ

2
1

]
mod θ0.

Example 2 shows that, if the contact path geometry comes from a sub-
Riemannian metric, then this quadratic form must coincide, up to multiple,
with the metric. Matters being so, we will say that a variational geometry
is nondegenerate if T4 6= 0 everywhere,5 and definite if T4 is negative every-
where. Assuming the latter is the case, then we may normalize T2 and T4

to have the same values as in Example 2.

Proposition 2.2. Let B1 be the canonical G1-structure for a definite vari-
ational path geometry. Then there is a sub-bundle B2 ⊂ B1 on which

T2 = 0 and T4 = −1.

On B2 there exist smooth functions W0,W1,W2, G0, G1, G2, G3, and H such
that

β = 2α + W0θ0 + W1θ1 + W2θ2(11)

γ = Hσ − 3(G0θ0 + G1θ1 + G2θ2 + G3θ3).(12)

Proof. Structure equations (9) and (10) show that we may first pass to the
sub-bundle where T4 = −1 and then move along the fibres in a direction dual
to γ to pass to the sub-bundle where T2 = 0. Once there, these equations
show that β−2α and γ restrict to have the above form. Of course, (9) shows
that 2

5H = T1 + 2U2. �

5Suppose a variational path structure has T3 and T4 identically zero; the refined struc-
ture equations show that T2 = 0 also. Recall that the system which restricts to be zero
along the fibres of ρ : P → M3 is spanned by σ, θ0, θ1. Since dσ ≡ T1θ0 ∧ θ1 mod σ,
vectors that are in the kernel of σ push down to give a well-defined plane field on M .
These planes intersect the contact planes in a distinguished family of contact directions,
which are null lines with respect to g.
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On B2, the structure equations (4) take the form

dσ = α ∧ σ + θ0 ∧ (T1θ1 + 3
5θ3)− θ1 ∧ θ2(13)

dθ0 = 2α ∧ θ0 + σ ∧ θ1

dθ1 = (β − α) ∧ θ1 + γ ∧ θ0 + σ ∧ θ2

dθ2 = (β − 2α) ∧ θ2 + 4
3γ ∧ θ1 + σ ∧ θ3

dθ3 = (β − 3α) ∧ θ3 + γ ∧ θ2 + I0σ ∧ θ0 + T6θ0 ∧ θ1 + T7θ0 ∧ θ2

with β given by (11).
It’s clear that the fibres of B2 are one-dimensional (with α as the only

independent connection form), and the structure group of B2 is simply R∗.
A element λ 6= 0 of this group acts on sections of B2 by

gλ · (σ, θ0, θ1, θ2, θ3) = (λσ, λ2θ0, λθ1, θ2, λ
−1θ3).

Structure equations (7) show that g∗λα = α, g∗λβ = β, and g∗λ(γ) = λ−1γ.
Then the action on the new torsion is clearly

gλ · (W0,W1,W2) = (λ−2W0, λ
−1W1,W2),

gλ · (H,G0, G1, G2, G3) = (λ−2H,λ−3G0, λ
−2G1, λ

−1G2, G3).

In particular, W2, G3, and the ratios G1 : W0 and G2 : W1 are invariant
under the scaling action.

We should expect this scaling to be present, since two sub-Riemannian
metrics which differ by a constant factor have the same geodesics and hence
define the same path geometry. For purposes of constructing a specific
metric, we will need to choose a section of B2. Since 3α − 2β is closed,
integrals of this one-form comprise a canonical codimension-one foliation of
B2 which is transverse to fibres and invariant under the scaling action.

Definition 2.3. A section of B2 along which

3α− 2β = 0(14)

will be called a canonical section of B2, or a canonical coframe on P . It
follows from (11) that

α = −2(W0θ0 + W1θ1 + W2θ2)(15)

along a canonical section.

One can check that the coframing constructed in Example 2 is a canonical
coframe. Since such coframings are unique up to scale, it follows that if a
path geometry comes from a sub-Riemannian metric, then in terms of a
canonical coframe that metric must be g = σ2 + (θ1)2.

Proposition 2.4. Let P be a definite variational path geometry for contact
manifold M3 and (σ, θ0, θ1, θ2, θ3) a canonical coframe on P . Then g =
σ2 +(θ1)2 gives a well-defined metric on the contact planes of M if and only
if W2 is identically zero on P .
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Proof. Let v be any vector field on P tangent to the fibres of the projection
ρ : P → M . Since v is annihilated by θ0, θ1 and σ,

Lv(g) ≡ (v α)(σ)2 + (v (β − α))(θ1)2 mod θ0

≡ −W2(v θ2)
(
2(σ)2 + (θ1)2

)
.

�

Although the coframe (5) is not a section of B2, it can be adjusted so
that T2 = 0, whereupon we see that W2 is nonzero for Example 1.

For the rest of this section we will assume that W2 is identically zero. It
remains to be seen if the given paths on M3—which are projections of the
integral curves of the line field L—are the geodesics of the sub-Riemannian
metric we have constructed. To investigate this further, we will need the
torsion identities

G3 = 0, G2 = W1,

which result from computing d(dθ1) = 0 using the structure equations (13)
and equations (12),(14) and (15) with W2 = 0.

Remark. One might wonder if other identities hold among the remaining
torsion coefficients G0, G1, H, I0, T1, T6, T7, W0, W1 as a result of our
assumption that W2 = 0. However, no further identities arise, and this
is proved by showing that the exterior differential system defining a G-
structure satisfying the structure equations on B2 with W2 = 0 is involutive.

Theorem 2. Let P be a definite variational path geometry with W2 identi-
cally zero, and let (σ, θ0, θ1, θ2, θ3) be a fixed canonical coframe on P . Then
the paths in P project to be geodesics in M for the sub-Riemannian metric
of Proposition 2.4 if and only if G1 = 2W0 identically on P .

Proof. Let N be the quotient of P by the foliation by integral curves of the
system I(1) = {σ, θ0, θ1, θ2}. Each contact curve in M has a unique lift to
N as an integral curve of I = {θ0, θ1}. Clearly, arclength is measured along
these lifts by the integral of σ modulo I. However, the form σ on P does
not descend to be well-defined on N , as shown by

dσ = α ∧ σ + θ0 ∧ (T1θ1 + T3θ3) + T4θ1 ∧ θ2

≡ 3
5θ0 ∧ θ3 mod Λ2I(1).

Computing d2θ0 = 0 shows that

dW1 ≡ (G1 −W0)σ + 1
5θ3 mod I,(16)

and this, together with dθ0 ≡ 0 mod Λ2I(1), shows that the 1-form

σ̃ = σ + 3W1θ0

is well-defined on N .
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Now arclength with respect to the metric may be measured on the integral
curves of I by the Lagrangian

∫
σ̃. We will apply the Griffiths formalism

[7] to investigate which of these are geodesics for g. Then, we will try to
find conditions under which these curves coincide with the projections of
the paths in P under π : P → N .

Let ξ = σ̃ + xθ0 + yθ1 on Y = N ×R2. Then one finds that the two-form
dξ is of full rank on Y , except where y = 0. Accordingly, let ξ = σ̃ + xθ0 on
Z = N × R. Now one computes that

dξ ≡ (dx + (3G1 −W0)σ) ∧ θ0 + (θ2 + (x + 5W1)σ) ∧ θ1 mod θ0 ∧ θ1.
(17)

Let K be the rank four Pfaffian system on Z spanned by the four one-forms
on the right in (17):

K = {θ0, θ1, θ2 + (x + 5W1)σ, dx + (3G1 −W0)σ}.
According to the Griffiths formalism, integral curves of K project to be

extremal curves for
∫

σ̃ on N . These coincide with the projections of the
paths in P if and only if, in a neighbourhood U of each point of P , there
is a local diffeomorphism ϕ : U → Z such that ϕ∗K coincides with L⊥ =
{θ0, θ1, θ2, θ3}, the Pfaffian system on P which defines the paths. (The
diffeomorphism would follow from the identification of paths with geodesics
on N .) The form ϕ∗(θ2 + (x + 5W1)σ) belongs in L⊥ if and only if ϕ∗x =
−5W1. Then, by (16),

ϕ∗(dx + (3G1 −W0)σ) ≡ (4W0 − 2G1)σ mod L⊥,

showing that ϕ∗K = L⊥ if and only if G1 = 2W0. �

3. More examples.

The results of the previous section may be surprising. For, one could reason
that, once a path geometry is known to be variational, it must arise from a
second-order Lagrangian, of the form∫

L(x, y, y′, y′′)dx,

satisfying the nondegeneracy condition ∂2L/∂(y′′)2 6= 0. Then L is of the
form

L(x, y, y′, y′′) =
√

E + Fy′′ + G(y′′)2,
for some functions E,F, G of x, y, y′, if and only if L, as a function of y′′,
satisfies a certain third-order ODE. In other words, it seems like only one
extra condition must be satisfied in order for the Lagrangian to be length
with respect to a sub-Riemannian metric. Instead, we find that two scalar
conditions (in addition to the Fels variational condition) must hold in order
for the metric to be well-defined and in order for its extremals to coincide
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with the given paths. (The reader should note that the above remark about
involutivity implies that the condition G1 = 2W0 is independent from W2 =
0.) It would be interesting to find examples of variational path geometries
(equivalently, variational fourth-order ODE) which are nondegenerate, and
for which W2 = 0, but the extremals of the associated metric do not coincide
with the given paths.

Fels [4] calculates values for relative invariants I1 and T5 for a general
fourth-order ODE (3):

T5 =
1
6

∂3F

∂y3
3

,

I1 =
∂F

∂y1
+

1
2

∂F

∂y2

∂F

∂y3
+

1
8

(
∂F

∂y3

)3

− d

dx

(
∂F

∂y2
+

3
8

(
∂F

∂y3

)2
)

+
1
2

d2

dx2

∂F

∂y3
.

(Here, we use the shorthand yk for dky/dxk, and the total derivative d/dx is
computed using the ODE.) So, the right-hand side of a variational fourth-
order ODE must be at most quadratic in y3. In particular, all linear fourth-
order ODEs are variational. However, T4 = 0 for all of these, and so they
are degenerate in the sense defined earlier.

Consider the class of nonlinear equations defined by

y′′′′ = f(x, y, y1, y2)y2
3.(18)

The Fels conditions I1 = T5 = 0 imply that such an equation is variational
if and only if f does not depend on y, and is of the form

f(x, y1, y2) = g0(q, r) + x g1(q, r), q = y2, r = y1 − xy2(19)

for functions g0 and g1 that satisfy
∂g1

∂q
+

∂g0

∂r
= 0.(20)

Using the same adapted coframe as Fels, we calculate that

T4 = −1
9(f2 + 3fq).

To obtain nondegenerate examples, we will confine ourselves to functions f
for which T4 6= 0. As in Proposition 2.2, we modify the coframe so as to get
T2 = 0 and T4 = −1. After computing the new connection forms, we find
that W2 = 0 if and only if

9fqq + 18ffq + 4f3 = 0.(21)

This equation, when taken together with the partial differential equations
for f implied by the I1 = 0, leads to two other second-order equations for f
and three third-order equations, forming a Frobenius system whose solutions
depend on five constants of integration.

However, for these examples the solutions of the variational fourth-order
ODE (18) are never the geodesics of the canonical sub-Riemannian metric
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given by Proposition 2.4. For, with (21) and its consequences taken into
account, we find that W0 is independent of y3, but G1 is a cubic polynomial
in y3 with leading coefficient (f2 + 3fq)3/2. Thus, G1 = 2W0 cannot hold,
because of our nondegeneracy condition.

Acknowledgements. I am grateful to Ian Anderson and Mark Fels, and to
the referee, for valuable comments and suggestions. Most of the calculations
in this paper have been made using Maple V and Maple 6.
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