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The aim of this paper is to discuss some applications of
the relation between Seiberg-Witten theory and two natural
norms defined on the first cohomology group of a closed 3-
manifold N — the Alexander and the Thurston norm. We
will start by giving a “new” proof, applying SW theory, of
McMullen’s inequality between these two norms, and then
use these norms to study two problems related to symplectic
4-manifolds of the form S1 ×N . First we will prove that — as
long as N is irreducible — the unit balls of the Thurston and
Alexander norms are related in a way that is similar to the
case of fibered 3-manifolds, supporting the conjecture that N
has to be fibered over S1. Second, we will provide the first
example of a 2-cohomology class on a symplectic manifold (of
the form S1 × N) that lies in the positive cone and satisfies
Taubes’ “more constraints”, but cannot be represented by a
symplectic form, disproving a conjecture of Li and Liu (Li-Liu,
2001, Section 4.1).

1. Introduction.

It has been proven, in [McM], that two natural (semi) norms defined on the
first cohomology group of a 3-manifold, namely the Alexander norm ‖ · ‖A,
defined from the Alexander polynomial of the manifold, and the Thurston
norm ‖·‖T , defined in terms of the minimal genus of the representatives of the
Poincaré dual two dimensional homology class, satisfy a relation expressed
in the following:

Theorem 1.1 (McMullen). Let N be a compact, connected, oriented 3-
manifold (eventually with boundary a union of tori); then the Alexander
and Thurston norm satisfy

‖ · ‖A ≤ ‖ · ‖T +

 (1 + b3(N))div(·) if b1(N) = 1

0 if b1(N) > 1,
(1)

where div(·) denotes the divisibility of an element in H1(N,Z).
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This inequality, applied to the particular case where the three manifold is
the exterior of a knot K, reduces to the well-known fact that the degree of
the Alexander polynomial of the knot (i.e., the difference between highest
and lowest power) is bounded from above by twice the genus of the knot,
i.e., the lowest value of the genus of a Seifert surface of the knot.

These two norms turn out to be strictly related to the 3-dimensional
Seiberg-Witten theory.

The proof of Theorem 1.1 given in [McM] is purely topological, but it is
suggested the existence of a proof based on SW theory. (It appears that the
first one to observe this has been D. Kotschick; P. Kronheimer previously
proved the inequality in the case of N obtained as 0-surgery of a knot, in
[K2]; the first detailed proof of the general case appeared in a preprint of
the author ([V]), on which this paper is partly based.)

Our first aim will be to write the two norms in terms of SW basic and
monopole classes for N . This allows, as mentioned, an alternative proof of
Theorem 1.1, that we will work out for the case, for us more interesting, of
a closed manifold with b1(N) > 1.

Then we will use these results to study symplectic 4-manifolds of the form
S1 ×N , for an irreducible N . We will prove the following:

Theorem 1.2. Let N be an irreducible 3-manifold with b1(N) > 1 such that
S1 ×N admits a symplectic structure ω; then there exists a face FT of the
unit ball of the Thurston norm contained in a face FA of the unit ball of the
Alexander norm.

This quite peculiar property is satisfied by fibered 3-manifolds, and sup-
ports the conjecture that a 3-manifold N such that S1 ×N admits a sym-
plectic structure must in fact be fibered.

Theorems 1.1 and 1.2 hold true also in the case of b1(N) = 1. It is not
surprising that the proof is technically quite longer, due to the chamber
structure of the SW invariants in that case. We will omit this case here,
referring the interest reader to [V], where it is treated in detail.

We will then address the problem of determining the constraints for a
cohomology class α on a symplectic 4-manifold to be represented by a sym-
plectic form ω. It is clear that such an α must have positive square, and its
pairing with the SW basic classes must satisfy the constraints determined in
[T2]. Li-Liu have conjectured in [LL]1 that these are sufficient conditions.
We will prove the following:

Theorem 1.3. There exists a symplectic 4-manifold of the form S1×N and
a cohomology class α of positive square satisfying Taubes’ “more constraints”
which can not be represented by a symplectic form.

1Added in proof: The conjecture appears in the preliminary version of [LL] (see
http://www.arxiv.org/abs/math.SG/0012048v1).

http://www.arxiv.org/abs/math.SG/0012048v1
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Hence, Li-Liu conjecture is false.

2. Alexander and Thurston norms.

We start by briefly recalling the definition of Alexander and Thurston norms
on the first cohomology group of a closed, oriented 3-manifold N . Denote by
F the free abelian group F := H1(N,Z)/Tor; by definition, rk(F ) = b1(N).
The Alexander polynomial of N is an element of the group ring Z[F ], i.e., a
finite sum

∆N =
∑

i

ait
i(2)

where i = (i1, . . . , ib1(N)) is a multi-index of cardinality b1(N), t = (t1, . . . ,
tb1(N)) with {ti} a basis of F and ai are integer coefficients. The Alexander
polynomial is well-defined up to multiplication by units of Z[F ]. For any
element φ ∈ H1(N ; Z) we define the norm

‖φ‖A := maxij φ(ti · t−j),(3)

where the indexes run over all i, j such that ai, aj are nonzero. It is clear
that this definition is unaffected by the indeterminacy in the Alexander
polynomial and does not depend on the coefficients.

The Thurston norm, described in [Th2], is defined as follows: For any
Riemann surface Σ embedded in N denote

χ−(Σ) =
∑

Σi|g(Σi)≥1

(−χ(Σi)),(4)

where Σ is the disjoint union of the Σi; we then define the norm

‖ϕ‖T = min{χ−(Σ)|Σ ↪→ N,PD[Σ] = φ}.(5)

It is not difficult to verify that both norms are linear on rays and satisfy
the triangle inequality. It is possible to continuously extend these norms
to cohomology with real coefficients. The unit ball of these norms is then
a finite, convex (possibly noncompact) polyhedron. In particular, the unit
ball of the Alexander norm is by construction dual (up to a factor 2) to the
Newton polyhedron of ∆N .

3. Basic classes and monopole classes.

In this section we will discuss the way the Alexander and Thurston norms are
related to Seiberg-Witten theory. Essentially the relation between Alexan-
der norm and SW theory will be deduced from Meng-Taubes proof of the
equivalence of a SW invariant of a 3-manifold and the Alexander polynomial
of the manifold. The relation of Thurston norm and SW theory, instead,
has been analyzed in [KM].



172 STEFANO VIDUSSI

We start with a brief review of SW theory in dimension three, in order
to have a formulation which is the suitable for our purposes. Let (N, g)
be a smooth, closed, oriented, riemannian three dimensional manifold. We
will assume that b1(N) > 1. We equip N with the canonical homology
orientation induced by a basis of F . Once N is endowed with a spinc-
structure PN , i.e., a U(1)-lifting of the SO(3) frame bundle, we can consider
the three dimensional SW equations

FA = q(ψ)− iη, ∂/Aψ = 0,(6)

where A is a connection on the determinant bundle of the spinc-structure,
q(·) is an Ω2(N ; iR)-valued bilinear form on the sections of the spinor bundle
associated to PN , η is a perturbation term that lives in Ω2(N ; R)∩ker d, and
∂/A is the Dirac operator that acts on spinors. These equations are invariant
under the gauge group of those automorphisms of PN which act trivially
on the frame bundle. This group acts freely away from reducible couples,
that we can remove suitably choosing good perturbations. It is possible to
prove (see e.g., [MT]), using standard techniques, that choosing a generic
nonexact perturbation the moduli space of solutions of Equation (6), modulo
gauge equivalence, is a 0-dimensional compact, oriented, smooth manifold;
under change of the metric and perturbation (as b1 > 1) different moduli
spaces are moreover cobordant. We denote by M(PN , g, η) the moduli space
of solutions of Equations (6), omitting the arguments whenever unnecessary.

We define the SW invariant for PN as the algebraic sum of the oriented
points of M(PN , g, η) for η a good perturbation. We have the following
definition:

Definition 3.1. Let c ∈ H2(N ; Z) be an integral cohomology class that
arises as first Chern class of a spinc-structure PN such that the invariant
SW(PN ) is nonzero. Then c is called a basic class of N .

It is quite clear from this definition that the SW equations for a basic
class admit a solution for any metric and a generic perturbation. Moreover,
as the compactness of the equations implies that non-emptiness is an open
condition, also the unperturbed equations have a solution for any metric,
i.e., M(PN , g, 0) 6= ∅ (note that this space can be nonsmooth). This makes
it natural to introduce the:

Definition 3.2 (Kronheimer-Mrowka). Let c ∈ H2(N ; Z) an integral coho-
mology class that arises as Chern class of a spinc-structure PN such that
M(PN , g, 0) 6= ∅ for any metric g. Then c is called a monopole class.

From the previous observation, the set of monopole classes, that we denote
by C(N), contains all the basic classes.

We now introduce, following ref. [MT], an element in Z[[F ]], defined from
the family of SW invariants of the spinc-structures.
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The set S of spinc-structures on N is an affine H2(N ; Z). There is a
natural way to define a map from S to F , constructed as follows: Fix a ref-
erence spinc-structure QN , that we choose to be the product structure. Any
other structure PN differs from it by the action of an element of H2(N,Z).
Consider now the composed map

H2(N,Z) PD−→ H1(N,Z) π−→ F.(7)

Using this map we can construct a map s which goes from S to F . The fiber
of this map is given by the order of the torsion of H1(N ; Z), that we will
denote now on by ord(N). Note that twice this map gives, up to torsion, the
Poincaré dual of the Chern classes of PN . Consider for any ti ∈ F the set
s−1(ti) ∈ S. These are the spinc-structures that have the same real Chern
class. Define now

SW(ti) :=
∑

s−1(ti)

SW(PN );(8)

we can now define from this the function

SW(N) =
∑

i

SW(ti)ti ∈ Z[[F ]].(9)

Well-known facts of SW theory are that the number of spinc-structures for
which unperturbed SW equations admit solutions is bounded, and that the
invariant SW(ti) is symmetric under the natural involution of F . These
observations, together with the definition of the function SW, yield the fact
that SW(N) is a symmetric element of Z[F ].

The previous definition, in the case where ord(N) = 1, is a simple refor-
mulation of SW theory. In the other cases, instead, they define a kind
of “average” over all structures which have the same real Chern class.
We can introduce a new definition that is quite practical for treating the
information on spinc-structures contained in the SW functions of Equa-
tion (9). For any element γ ∈ H2(N,Z), we denote by γF its projection to
H2(N,Z)/Tor(= FPD).

Definition 3.3. Let c ∈ H2(N,Z)/Tor be a cohomology class such that∑
cF
1 (PN )=c

SW(PN ) 6= 0.(10)

Then c is called an a-basic class (where the “a” stands for averaged).

We have the following inclusions:

A(N) = (a-basic classes) ⊂ (basic classes)F ⊂ (monopole classes)F(11)

= C(N)F .

We want to relate now a-basic classes with the SW function SW(N): Let c
be an a-basic class; then the sum appearing in Equation (10) coincides with
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SW(ti) where ti is defined by the relation t2i = PD(c), and the invariant
SW(ti) is nonzero.

4. Relation between the norms.

Our aim now is to relate a-basic classes of N with its Alexander polynomial,
and then to the Alexander norm. In this section we will give a proof of the
following:

Proposition 4.1. Let N be a closed three manifold with b1(N) > 1; then
the Alexander norm of an element φ ∈ H1(N ; Z) is given by

‖φ‖A = maxA(N)(c · φ)(12)

where the maximum is taken over all a-basic classes of N .

Proof. The basic ingredient for the proof is provided by the theorem of
Meng and Taubes which identifies the SW function with the (sign-refined)
Reidemeister-Franz torsion introduced by Milnor. This is related, on its
own, to the (sign-refined) symmetrized Alexander polynomial, denoted by
∆s

N . More precisely, we have:

Lemma 4.2 (Meng-Taubes, Turaev). Let N be a closed three manifold
equipped with its canonical homology orientation, with b1(N) > 1; then we
have, in Z[F ],

SW(N) = ∆s
N .(13)

From this relation, considering the definitions in Equations (2) and (9), we
have SW(ti) = ai and, by Definition 3.3, a-basic classes ci ∈ A(N) are twice
the Poincaré duals of elements of F with nonvanishing invariant SW(ti), i.e.,

ci ∈ H2(N ; Z)/Tor is a-basic ⇐⇒ ai 6= 0 where t2i = PD(ci).(14)

The use of the relations of Equation (13) allows us to write the Alexander
norm in terms of a-basic classes: We can write

‖φ‖A = maxijφ(ti · t−j) = maxA(N)(c · φ).(15)

The latter equality comes as follows: For any fixed couple i, j with nonzero
coefficient we have

φ(ti · t−j) = φ(ti)− φ(tj) ≤ maxij(|φ(t2i)|, |φ(t2j)|) ≤ maxk|φ(t2k)|(16)

where k ranges among all indexes with nonzero coefficient. Being ∆s
N sym-

metric, equality in Equation (16) is attained for some choice of index with
j = −i = ±k. By Equation (14), we can thus write φ(t2k) = (ck · φ) (and
remove the absolute value). This completes the proof of our statement. �
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The content of Proposition 4.1 is the good one for our purpose, because of
the results of [KM] on the relations between monopole classes and Thurston
norm: We have now all we need to prove Theorem 1.1.

First, we observe that we can restrict the proof to the case of an irreducible
manifold. In fact, the SW polynomial vanishes for the connected sum of
manifolds with b1 > 0, and the set of a-basic classes of a manifold is preserved
for connected sum with a rational homology sphere (the SW polynomial gets
multiplied by the order of the torsion of the rational homology sphere).

For irreducible manifolds we have now the equality expressed in:

Theorem 4.3 (Kronheimer-Mrowka). Let N be a manifold as above: Then
the Thurston norm of a class φ ∈ H1(N,Z) is given by

‖φ‖T = maxC(N)(c · φ).(17)

Putting together the inclusion A(N) ⊂ C(N)F , Theorem 4.3 and Propo-
sition 4.1, we deduce the inequality (1) for any closed three manifold (for
the sole purpose of proving inequality 1.1, it is sufficient at this point to
prove an inequality in Equation (17) for all basic classes, as in [A]).

Remark. Equation (15) states that the unit ball of the Alexander norm, up
to a factor, is dual to the Newton polyhedron of SW(N). Equation (17), in
light of the content of [KM] (see also [K2]) states that the Thurston unit ball
is dual, up to the same factor, to the polyhedron of “SWF(N)”, an element
of Z[F ] that can be constructed from the Seiberg-Witten-Floer invariants of
N (still lacking a rigorous treatment). This answers a longstanding question
of Fried in [F].

5. Symplectic S1 × N .

In this section we will use the Alexander and Thurston norm to study the
following conjecture:

Conjecture 5.1 (Taubes). Let N be a 3-manifold such that S1×N admits
a symplectic structure ω. Then N admits a fibration over S1.

We will assume again that b1(N) > 1. Under this condition manifolds that
fiber over S1 are irreducible, and it is known that for any class φ ∈ H1(N,Z)
representing a fibration we have ‖φ‖A = ‖φ‖T (see e.g., [McM]). Fibered
classes are known to satisfy the following condition (see [Th2]): The integral
points laying in the cone over a (top dimensional) face of the Thurston unit
sphere have the property of being all fibered, or none does. This implies in
particular that a fibered face of the unit ball of Thurston norm is contained
in a face of the unit ball of the Alexander norm.

We would like to prove that the latter condition holds for any N such that
S1×N is symplectic. We will be able to do so under the further assumption



176 STEFANO VIDUSSI

that N is irreducible; in view of the results of [McC], this is a reasonable
assumption. Our proof adapts to the case of b1 > 1 the strategy of [K1].

We observe that, as simplecticity is an open condition, there is no re-
striction (see [D]) in assuming that the symplectic form ω on S1 × N is
the reduction of an integer class of H2(S1 × N,Z). There is a cone, in
H2(S1×N,R), of cohomology classes that can be represented by symplectic
forms, and in this cone the set of classes which are in the image of the co-
homology with rational coefficients is dense. We will be interested to have
cohomology classes that lie in the image of the cohomology with integral co-
efficients, and eventually pass to sufficiently high multiples of the symplectic
form: We will implicitly assume this whenever necessary.

We want to recall now some general results that we will apply to our case.
The first is the Donaldson theorem on the existence of symplectic subman-
ifolds ([D]). This theorem assures that there exist a connected symplectic
submanifold H ⊂ S1 ×N such that

[H] = PD[ω] = [S1]× γ + τ ∈ H2(S1 ×N,Z)(18)

where γ ∈ H1(N,Z), τ ∈ H2(N,Z) and γ · τ > 0 (for sake of notation
we will denote all products, both on N and on S1 × N , with a dot, the
distinction being clear from the context). Denote φ = PD(τ) ∈ H1(N,Z);
as a consequence of the previous discussion, the φ’s associated to symplectic
forms as in the relation of Equation (18) define a cone in H1(N,Z).

The second result is that the spinc-structures on S1 ×N with nontrivial
SW invariants must be pull backs of spinc-structures on N (to prove this you
can use, e.g., the adjunction inequality); moreover there is an identification
between the moduli spaces for a spinc-structure PN on N and the moduli
space for the pull-back structure on S1×N (that we will usually denote with
the same symbol), once a suitable correspondence of the perturbation terms
is set (see [OT]). This allows the identification, up to a sign determined
by the choice of homology orientations, of the SW invariants associated to
these moduli spaces.

The third point concerns spinc-structures on a symplectic four manifold
(M,ω) with canonical bundle K. There exist, in that case, a canonical
spinc-structure that decomposes as C⊕K−1 (and has first Chern class equal
to −K). Any other spinc-structure can be written as E ⊕ (K−1 ⊗ E) for
an E ∈ H2(M,Z). There are some constraints on spinc-structures with
nonvanishing invariants that arises from Taubes’ work (see [T1], [T2]). In
the case of b+(M) > 1 the canonical spinc-structure has SW invariant ±1
and for any other structure Ei⊕(K−1⊗Ei) with nonzero invariants we have
K · ω ≥ Ei · ω ≥ 0. Equality implies, respectively, Ei = C or Ei = K.
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This inequality translates, for the basic classes κi := det(Ei⊕(K−1⊗Ei)),
in the relation

K · ω ≥ |κi · ω|,(19)

with equality only for the case κi = ±K. Let’s apply these results to S1×N .
First, the canonical class and all other basic classes are pull backs: There
exists a preferred line bundle K ∈ H2(N,Z) (for sake of simplicity, we use
the same notation on N) and a preferred spinc-structure on N of the form
C ⊕ K−1 with SW invariant ±1 such that any other spinc-structure on N
appears as Ei⊕ (K−1⊗Ei) for Ei ∈ H2(N,Z). The structures with nonzero
invariants must satisfy K ·φ ≥ Ei ·φ ≥ 0, the equalities implying respectively
Ei = C or Ei = K. This translates to a constraint, for the basic classes of
N , which has the form

K · φ ≥ |κi · φ|,(20)

with equality only for the case κi = ±K.
Using this it is straightforward to prove the following:

Proposition 5.2. Let (S1×N,ω) be a symplectic manifold with b1(N) > 1,
and denote by φ ∈ H1(N,Z) the Künneth component of [ω]; then ‖φ‖A =
K · φ. Moreover, φ lies in the cone over a top dimensional face of the unit
ball of the Alexander norm, dual to the vertex K of the Newton polyhedron
of ∆N .

Proof. The maximum of κi ·φ for κi basic is attained for and only for K. We
want to use this property to evaluate the Alexander norm, in the form ex-
pressed in Proposition 4.1. To do this we need only to prove thatK (or, more
precisely, its image KF in H2(N,Z)/Tor) is an a-basic class. But no other
basic class κi can coincide up to torsion with K without violating Equa-
tion (20), so that the sum of Equation (10), namely

∑
cF
1 (PN )=KF SW(PN ),

contains only one nonzero term, that term being equal to 1. This means
that KF is an a-basic class. We can conclude, following Proposition 4.1,
that ‖φ‖A = K ·φ. The rest of the proposition is an obvious consequence of
what was previously stated. �

We will use Proposition 5.2 to write the genus of the symplectic subman-
ifold H of Equation (18), in conjunction with the adjunction inequalities
for manifolds of type S1 × N that are contained in [K1]. These apply to
irreducible manifolds N which do not have a basis of H2(N,Z) composed
of tori. Leaving aside this totally degenerate case, for which the equality of
Alexander and Thurston norm is trivial, we have the following:

Proposition 5.3. Let (S1 × N,ω) be a symplectic manifold with N irre-
ducible, b1(N) > 1, and denote by φ ∈ H1(N,Z) the Künneth component of
[ω]: Then ‖φ‖A = ‖φ‖T .
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Proof. The adjunction inequality for embedded submanifolds of S1 × N of
[K1] can be written in the form

χ−(H) ≥ H ·H + ‖φ‖T = 2γ · τ + ‖φ‖T .(21)

As H is symplectic, the adjunction formula for symplectic submanifolds
gives

χ−(H) = H ·H +K ·H = 2γ · τ + ‖φ‖A.(22)

These formulae are compatible with the content of Equation (1.1) if and
only if ‖φ‖A = ‖φ‖T . �

We can somehow strengthen this result. By Equation (1.1) the unit ball
of the Thurston norm is contained in the unit ball of the Alexander norm;
it is clear that extending the Alexander norm to real coefficients, and using
the denseness of H1(N,Q), the equality stated in Proposition 5.3 continues
to hold in an open cone of H1(N,R) determined by the cone of classes of
H2(S1×N,R) admitting a symplectic representative (the norm is a contin-
uous function). Therefore a (top dimensional) face FT of the unit ball of the
Thurston norm (containing φ/‖φ‖T ) intersects a face FA of the unit ball of
the Alexander norm (the face dual to K); but this implies that the entire
FT is contained in FA.

FA
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Figure 1. Alexander unit ball and Thurston unit ball for
a 3-manifold such that S1 ×N is symplectic.

Figure 1 shows a possible case of the relation between the norms for N
as described.

This observation completes the proof of Theorem 1.2.
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6. Representability of a cohomology class by a symplectic form.

A classical problem of symplectic topology is to determine necessary and suf-
ficient conditions for a 2-cohomology class α on an even-dimensional closed,
smooth, oriented manifold M admitting an almost complex structure with
canonical class K, to be represented by a symplectic form. This problem
merges with the general problem of the existence of any symplectic struc-
ture on M . Necessary conditions arise from the very definition of symplectic
form; in particular, if M has dimension 4, we need α ∈ P, where

P = {β ∈ H2(M,R)|β · β > 0}.(23)

An early conjecture, in [Th1], speculated that every almost complex man-
ifold with nonempty P admitted a symplectic structure. Since then, other
constraints have been identified. In particular, more refined conditions arise
from Taubes’ constraints on SW basic classes: As mentioned, we must have
SW(K) = ±1, and the class α must satisfy the conditions of Equation (19).
We denote by T the cone composed of elements of P satisfying these con-
straints, i.e.,

T := {α ∈ P|K · α ≥ |κi · α|},(24)

with strict inequality when κi 6= ±K.
It is well-known that satisfying Taubes’ constraints is not a sufficient

condition for α to be represented by a symplectic form. In fact, as discussed
in [KMT], if we consider the manifold X#Σ where X is symplectic and Σ
is an homology 4-sphere admitting a nontrivial cover, and the cohomology
class αω on X#Σ induced by a symplectic form ω on X under the natural
isomorphism H2(X,R) = H2(X#Σ,R), we have identity of the Seiberg-
Witten polynomials SWX = SWX#Σ and αω lies in TX#Σ, but cannot be
represented by a symplectic form for the simple reason that X#Σ itself does
not admit symplectic structures (it has a cover with trivial SW polynomial).
There is another class of potential, more refined, examples of couples (M,α)
satisfying these constraints with α not representable by a symplectic form.
These are knot surgery manifolds homotopic to a K3 surface (see [FS] for
the definition) obtained from a knot K: It is commonly conjectured that
whenever K is not a fibered knot, M can not be symplectic, but it is easy to
find nonfibered knots such that Taubes’ constraints are satisfied for a class
α.

In both the previous cases, the absence of a symplectic form representing
α has to be attributed, in some sense, to the manifold M (which does not
admit tout court symplectic structures) and not to the cohomology class
itself. We can ask about the situation for manifolds known to be symplectic.
In particular, it has been conjectured (see [LL], Section 4) that if we assume
that X is a symplectic manifold, the cone T coincides with the “symplectic
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cone”

W := {α ∈ P|α is represented by a symplectic form}.(25)

The conjecture gives a possible answer to the following problem, outlined in
the beginning of this section, namely:

Question. Let M be a symplectic manifold. Determine the cone, in
H2(M,R), represented by symplectic forms.

Some partial answer to this question are known. For example, Geiges
proved in [G] that for T 2-bundles over T 2, all classes in the positive cone
are represented by symplectic forms (we remark that all these classes satisfy
Taubes’ constraints, as the canonical class is trivial); it is interesting also to
compare with the result of Gromov for the case of open manifolds, where
any form in the positive cone lies in W.

Concerning this Question, we have the following result:

Theorem 6.1. There exist symplectic manifolds, of the form S1 ×N3, on
which there are cohomology classes of positive square satisfying Taubes’ con-
strains but which can not be represented by symplectic forms, i.e., the strict
inclusion W ⊂ T holds true. In particular, the conjecture of [LL] is false.

Proof. The proof is based on the following assumption, that will be proved in
the next section (Theorem 7.5): There exists a family of fibered 3-manifolds,
whose generic component is denoted by N , with H1(N,Z) = Z2, such that
the fibered face FT of the Thurston unit ball is strictly contained in the
face FA of the Alexander unit ball. Assuming this, we proceed as follows.
Denote by V the (nonempty) cone, in H1(N,R), over FA \ F T . Choose a
φ ∈ V. We claim that we can define an a class ψ ∈ H2(N,R) such that the
cohomology class α ∈ H2(S1 ×N,R) with Künneth decomposition

α = φ ∧ [dt] + ψ(26)

has positive square and satisfies Taubes’ constraints, i.e., α ∈ T . This is
achieved in the following way. We have α · α = 2φ · ψ: Identify H2(N,R) =
Hom (H1(N,R),R); to get a positive square, we can choose ψ to be any
element of the cone Hom (φ,R+). We observed in Section 5 that the basic
classes on S1 × N are pull-back of basic classes on N ; the choice of ψ is
therefore irrelevant for the constraints of Equation (24) and α belongs to T
if and only if φ satisfies the condition (on H∗(N,R)) K · φ ≥ |κi · φ| with
equality only for the case κi = ±K. But this condition is equivalent to the
condition that φ lies in the cone over FA, as FA is, by definition, the face
dual to K, i.e., the elements lying in the cone over FA have maximal pairing,
among all basic classes, with and only with K.

To complete the proof, we need to show now that α can not be represented
by a symplectic form. By Proposition 5.3 (and the following comments,
if we want to work with cohomology with real coefficients), if α admits
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a symplectic representative, then its Künneth component φ should have
the same Alexander and Thurston norm, something we excluded choosing
φ ∈ V. �

Note that proceeding as above we can without difficulty choose the class
α to lie in the image of cohomology with integer coefficients.

Remarks.
1. The symplectic manifold discussed in Theorem 6.1 is not simply con-

nected, but we believe that there exist simply connected examples. In par-
ticular, we expect that the link surgery manifolds obtained using a link with
fibered face strictly contained in a face of the Alexander norm (as the one
we will discuss in the next section), are possible examples. The difficulty
in proving such result arises from the difficulty of proving the analogue of
Proposition 5.3 (see Section 7 of [K2] for a discussion of this interesting
problem).

2. The failure of Li-Liu conjecture, as expressed in the examples of Theo-
rem 6.1, is due to the mismatch between the convex hull of basic classes and
the convex hull of monopole classes, as the latter determines the extension
of the fibered cone of H1(N,R). It is coincevable to improve the conjecture,
at least for symplectic manifolds of the form S1 ×N , by reformulating the
definition of the cone T as

T := {α ∈ P|K · α ≥ |κi · α| for any monopole class κi},(27)

with strict inequality when κi 6= ±K. In that case, as follows from the
results of [Th2], the conjecture would hold true assuming the validity of a
strict version of Conjecture 5.1, which takes the form:

Conjecture 6.2. Let N be a 3-manifold such that S1 ×N admits a sym-
plectic structure ω; then the Künneth component of [ω] in H1(N,R) can be
represented by a nondegenerate 1-form (i.e., it lies in a fibered cone).

7. Construction of the three manifolds.

In this section we will justify the assumption made in the proof of Theo-
rem 6.1, namely the existence a family of closed, fibered 3-manifolds with the
property that FT is strictly contained in FA. Our construction will be based
on the existence of a noteworthy 2-component link, exhibited by Dunfield
in [Du], which has the same property. We will need the following result:

Proposition 7.1 (Dunfield). There exists a 2-component oriented link D =
D1 ∪D2 ⊂ S3 with Alexander polynomial

∆D(t1, t2) = (t1 − 1)(t2 − 1)(28)
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(written in terms of the homology classes of the meridians to the two compo-
nents) which has a fibered face FT strictly contained in a face FA, dual to
the vertex t1t−1

2 of the dual polyhedron.

(In Dunfield’s paper, the Alexander polynomial and the norms are dis-
cussed in terms of an homology basis different from ours, but it is easy to
rewrite them in terms of the standard homology basis for the link exterior,
as above.)

We don’t know the exact shape of the Thurston unit ball, but for our pur-
pose it is enough to know the result contained in the previous Proposition.
Denote ND = S3 \ ν(D1 ∪D2):
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Figure 2. Alexander unit ball and Thurston unit ball for
ND — the dotted regions are qualitative.

Figure 2 represents, in the space H1(ND,R) with basis vectors the dual
basis τi, the unit ball of the Alexander norm, and a part of the unit ball of
the Thurston norm.

Let now K1, K2 be a couple of fibered knots of genus g(Ki) > 0 and let
∆Ki(t) be their Alexander polynomials. Next, define the closed manifold

N(K1,K2) = ND ∪

(
2∐

i=1

S3 \ νKi

)
,(29)

where on the boundary tori the gluing map is defined to be the orienta-
tion reversing diffeomorphism which identifies the basis (µ(Di), λ(Di)) with
(µ(Ki),−λ(Ki)). To interpret this, notice that each knot exterior is an ho-
mology solid torus, so that this operation appears as an homology Dehn
filling for ND, with surgery coefficient 0. The reason of the choice of this
surgery curve appears evident from the fact (for a proof, see [EN], Section 3)
that the minimal genus Seifert surface in ND representing an homology class
Poincaré dual to a class (m1,m2) ∈ H1(ND,Z) intersects the boundary
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torus Ti in mi copies of the longitude of each link component (note that
lk(D1, D2) = ∆D(1, 1) = 0). Each minimal genus Seifert surface of ND has
therefore a natural capping in N(K1,K2), given by the union of mi copies
of the fiber of S3 \ νKi. In particular, if (m1,m2) is a fibered class, this
fibration extends to a fibration of N(K1,K2) through the fibrations

S3 \ νKi −→ S1 (·)mi

−→ S1(30)

of the knots’ exteriors. This proves, in particular, that N(K1,K2) is ir-
reducible. As the linking number of D is zero, H1(N(K1,K2),Z) = Z2,
canonically identified with H1(ND,Z).

It is natural to guess that, for any class (m1,m2) ∈ H1(ND,Z), the surface
constructed above is the minimal genus representative for the cohomology
class Poincaré dual to (m1,m2) ∈ H1(N(K1,K2),Z). This is confirmed by
the following:

Lemma 7.2 (Eisenbud-Neumann, Prop. 3.5). If M is a compact irreducible
3-manifold and m ∈ H1(M), then the Thurston norm ‖m‖T is the sum of
the norms of the restrictions of m to the Jaco-Shalen-Johannson components
of M .

As a consequence of this Lemma, denoting with the symbol ‖ · ‖T̂ the
norm on the closed manifold, we have the following:

Corollary 7.3. The Thurston norm ‖(m1,m2)‖T̂ of an element (m1,m2) ∈
H1(N(K1,K2),Z) is given by

‖(m1,m2)‖T̂ = ‖(m1,m2)‖T + |m1|(2g(K1)− 1) + |m2|(2g(K2)− 1)(31)

where ‖(m1,m2)‖T is the Thurston norm of the corresponding element of
ND.

Proof. This follows from Lemma 7.2, together with the observation that the
class (m1,m2) on the closed manifold restricts to the element with same
coordinates in ND and to the classes mi ∈ H1(S3 \ νKi,Z), which have
Thurston norm ‖mi‖T = |mi|(2g(Ki) − 1), by definition of genus of a knot
and linearity on rays. �

We want to study now the Alexander norm of the manifold N(K1,K2);
in order to do this we need a gluing formula for the Alexander polynomial
(or the SW invariant) along tori. We have the following:

Lemma 7.4 (Gluing formula). Let N(K1,K2) = ND ∪ (
∐2

i=1 S
3 \ νKi) be

defined as above: Then the Alexander polynomials of the manifolds are re-
lated by the formula

∆N(K1,K2)(t1, t2) = ∆ND
(t1, t2)

∆K1(t1)
t1 − 1

∆K2(t2)
t2 − 1

= ∆K1(t1)∆K2(t2).(32)
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Therefore, the Alexander norm ‖ · ‖Â on N(K1,K2) is given by

‖(m1,m2)‖Â = |m1|2g(K1) + |m2|2g(K2)(33)

= ‖(m1,m2)‖A + |m1|(2g(K1)− 1) + |m2|(2g(K2)− 1).

Proof. It is known (see [MT], [Tu]) that the Milnor torsion is multiplicative
by gluing along tori, with suitable identification of the variables; this torsion
coincides with the Alexander polynomial for manifolds having b1 > 1 and it
is equal to the Alexander polynomial ∆K(t) divided by (t− 1) for the case
of a knot. Remembering Proposition 7.1, Equation (32) above follows. The
relation on the Alexander norm is then an easy corollary of this formula, as
the degree of the Alexander polynomial of a fibered knot equals twice its
genus. �

This Lemma says, in particular, that the unit ball of the Alexander norm
for ND and N(K1,K2) are conformally equivalent (see Figure 3). We are
ready to prove:

Theorem 7.5. There exist a family of fibered closed 3-manifolds N with
H1(N,Z) = Z2 such that a fibered face of the Thurston unit ball is strictly
contained in the corresponding face of the Alexander unit ball.

Proof. Our family is given by N(K1,K2) for any choice of the fibered knots
Ki. We observed before that each fibration of ND in FT extends to a fi-
bration of N(K1,K2), defining a fibered face FT̂ of the Thurston unit ball
for N(K1,K2). This face will be contained in FÂ, one of the four faces of
the Alexander unit ball (having the same cone as FA). This face is dual to
the vertex t

2g(K1)
1 t

−2g(K2)
2 (square of a vertex of the Newton polyhedron of

the symmetrized Alexander polynomial). If a class (m1,m2) ∈ H1(ND,Z)
lies in the cone over FA \ F T (in particular ‖m1,m2‖A < ‖m1,m2‖T ), then
the corresponding class on the closed manifold has Alexander norm strictly
smaller than the Thurston norm, from Equations (31) and (33), i.e., FT̂ is
strictly contained in FÂ. From this the statement follows. �

Figure 3 describes the Thurston and Alexander norm for a particular choice
of g(Ki).

We want to outline a second proof of the same statement, based on the
fact that a class on a closed three manifold is fibered if and only if all the re-
strictions to each JSJ component are fibered (see [EN], Theorem 4.2): If the
Thurston norm on the closed manifold coincided with the Alexander norm
on a larger cone than the one on ND, then there would be fibered classes on
N(K1,K2) which restrict, on ND, to nonfibered ones (as mentioned above,
all integral points laying on a face of the unit ball of the Thurston norm
containing at least one fibration are fibered).

We finish this section pointing out that, although the link D above is
the only example worked out in detail, fibered links with the properties of
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Figure 3. Alexander unit ball and Thurston unit ball for
N(K1,K2) with g(K1) = 2, g(K2) = 4 — the dotted regions
are qualitative.

Proposition 7.1 are likely to be “frequent” (compare the discussion in [Du]).
From these examples, other closed 3-manifolds can be constructed.
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