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In this paper we show that every central simple algebra A
over Qp, generated by a multiplicative semigroup S ⊂ A with
the property that the minimal polynomial of every element
in S splits over Qp, is isomorphic to Mn(Qp). If, in addition,
S ⊂ A∗ is a compact group, then it contains a commutative
normal subgroup of finite index.

1. Introduction.

In this paper we consider the following problem. Let k < K be fields.
Suppose S ⊂ Mn(K) is an absolutely irreducible multiplicative semigroup
with the property that the spectrum of every a ∈ S is contained in k. Does
it follow that S is simultaneously realizable in Mn(k), that is, does there
exist a p ∈ GLn(K) such that pSp−1 ⊂ Mn(k)? The overfield K plays
no essential role in this situation. Consider the k-algebra A generated by
S. It is easy to see that it is a central simple algebra over k (see [7]). If
one can show that A is isomorphic to Mn(k), then this isomorphism can be
extended to an inner isomorphism of Mn(K) by Skolem-Noether theorem.
So we consider the more intrinsic version of the question above. Suppose
A is a central simple algebra over k and S ⊂ A a multiplicative semigroup
that generates A as a k-vector space and has the property that the minimal
polynomial of every element in S splits over k. Does it follow A ' Mn(k)? If
we exclude the case when the Brauer group of k is trivial, then the question
has no apparent answer. If S is a finite subgroup of A∗ and char (k) = 0,
then the answer is affirmative by Brauer’s theorem on splitting fields (see
[3, Thm. 41.1]).

The general semigroup case was considered for some particular fields. In
[7] it is shown that the answer is affirmative in the special case k = R with
no additional assumptions on S (see also [9] for some related results). In
this paper we consider the case k = Qp for every rational prime number p.

The proof proceeds in two steps. First we consider the special case when
S is a compact subgroup of A∗. The crucial part in this case is the fact that
the Lie algebra of S is commutative. This however is not true if k is a general
p-adic field (see the example at the end of the paper). The second step is to
reduce the problem from arbitrary semigroup with the desired property to
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the compact group case. Although we state this result for k = Qp only, the
reader can easily verify that this reduction works for any p-adic field.

2. The results.

We start with a simple observation that holds true for any field k. Let µn(k)
denote the group of n-th roots of unity in k.

Proposition 1. Let A be a central simple algebra over a field k. Suppose A
is spanned over k by a center-by-finite group S ⊂ A∗ with the property that
the minimal polynomial of every s ∈ S splits over k. Then A ' Mn(k).

Proof. We assume with no loss of generality that k∗ < S and let r denote
the exponent of the finite group S/k∗. The conditions of the proposition
imply that every element a ∈ S is a scalar multiple of an element b ∈ S
where br = 1. Now, let a, b ∈ S be two elements of order dividing r. Their
product c = ab may be of order greater than r but c = αd, α ∈ k∗, d ∈ S,
dr = 1. Applying the reduced norm we see that

αnr = nr(cr) = nr((ab)r) = nr(ar)nr(br) = 1

where n is the reduced degree of A over k. Thus we have shown that

S1 = {αb;α ∈ µnr(k), b ∈ S, br = 1}
is a subgroup of S of bounded period which clearly spans A. By a well-
known result by Burnside this implies S1 is finite (the reduced trace on A is
nondegenerate and it takes only finitely many values on S1).

Suppose now char (k) = 0. If m is the exponent of S1, then it is easy
to see that k contains a primitive m-th root of unity so we can apply the
Brauer’s theorem on splitting fields and the proof is complete in this case.
If char (k) 6= 0, then the claim follows from ([4], Proof of Corollary 7.11, p.
148).

It should be mentioned that there is an alternative but less elementary
way to prove this result by using Schur’s theory of projective representations
of finite groups. Observe also that in the particular case when char (k) = 0
and the only roots of unity in k are ±1 (e.g., k = R, Q2, Q3) S1 is of exponent
2, therefore commutative and A ' k.

In what follows we will need a slight generalization of the previous propo-
sition. We shall also use repeatedly the following fact. If one wants to show
the triviality of a central simple algebra A in the Brauer group of k, then it
suffices to consider the central simple algebra eAe where e ∈ A ia a nonzero
idempotent. The proof may be found in [5].

Corollary 2. Let A be a central simple algebra over a field k. Suppose A
is spanned over k by a group S ⊂ A∗ which contains an abelian subgroup of
finite index and has the property that the minimal polynomial of every s ∈ S
splits over k. Then A ' Mn(k).
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Proof. Let S1 denote the abelian subgroup of finite index in S. Observe that
S1 has a subgroup that is both normal and of finite index in S (the kernel of
the action of S on the set of left cosets S/S1) so there is no harm in assuming
that S1 is normal in S. Let B be the k-algebra generated by S1. By Clifford’s
theorem (see [3]) B is semisimple and since it is commutative it is isomorphic
to a direct sum of m copies of k for some m. Let {e1, . . . , em} be the set
of minimal orthogonal idempotents in B upon which S acts transitively by
conjugation and set C = CS(e1) the centralizer of e1 in S. It is clear that
given a ∈ S we have e1ae1 6= 0 precisely when a ∈ C. So the central simple
algebra e1Ae1 is spanned by a center-by-finite group Ce1 (a homomorphic
image of C) which obviously has the property that the minimal polynomial
of every element in Ce1 splits over k and the claim follows by the previous
proposition.

From now on we suppose, unless stated otherwise, that k = Qp, i.e., k is
a non-archimedian locally compact field that contains Q as a dense subfield.
We fix an absolute value |·| on k and let ok denote the ring of p-adic integers.
For most of the facts concerning algebraic groups we refer the reader to [2].

Theorem 3. Let A be a central simple algebra over k. Suppose A is spanned
over k by a compact group S ⊂ A∗ with the property that the minimal poly-
nomial of every element in S splits over k. Then A ' Mn(k) and S contains
a commutative normal subgroup of finite index.

Proof. Let G be the Zariski closure of S in A∗. Then G is an algebraic
group defined over k. The absolute irreducibility of S clearly implies that
the connected component of the unit G0, if not trivial, is a reductive group
defined over k. If G0 is trivial, then S is a finite group and the theorem
follows, therefore we assume that G0 is not trivial. Being reductive, it is
an almost direct product of its central torus T and a semisimple group
H = (G0, G0) where both T and H are defined over k.

We want to show that H is trivial so we assume the contrary. Now
the group S1 = S ∩ G0 is also compact, therefore it is a Lie group over
k by Cartan’s theorem (see [12]). Its Zariski closure is precisely G0. We
know, that the Zariski closure of (S1, S1) is H and consequently it is the
Zariski closure of S2 = S ∩ H. This latter group is also compact and we
let La(S2) denote its Lie algebra in the sense of [12]. By [8, Prop. 3.4]
La(S2) is a Lie ideal in La(H(k)) = L(H)(k). But this is a semisimple Lie
algebra which, together with Zariski density and compactness of S2, implies
La(S2) = L(H)(k). To see this assume L(H)(k) = La(S2)⊕ V where V 6= 0
is the unique ideal in L(H)(k), complementary to La(S2). Consider the
restriction to V of the adjoint representation of H(k). The conditions imply
that S2 is mapped to a discrete compact group, therefore finite, but on the
other hand Zariski dense in a nontrivial semisimple group, a contradiction.
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Since La(S2) = L(H)(k) the group S2 contains a subgroup that is open
in H(k). But every semisimple group H over a p-adic field k contains a
maximal k-torus that is anisotropic over k (see [8, Thm. 6.21]) and it follows
that there are elements arbitrarily close to identity in H(k) that cannot be
diagonalized over k and again we have a contradiction. Therefore H is trivial
and subsequently S1 is an abelian normal subgroup of finite index in S and
the claim follows by Corollary 2.

Remark 4. If the field k in the previous theorem were a general p-adic field
one could still infer that S2 is a Lie group over Qp, Qp < k. But in this
case its Lie algebra La(S2), which need not be trivial (see the example at
the end of the paper), is just a Qp-subalgebra in L(H)(k). In fact the same
argument as above shows that it is never a nontrivial ideal in L(H)(k).

Keeping the notation of the previous theorem we also have the following
corollary.

Corollary 5. The exponent of the finite group S/S1 divides the number of
roots of unity in k and the same is true for G/G0.

Proof. The statement is obvious if S1 is trivial so we assume the contrary.
Let m denote the number of roots of unity in k. Now the first assertion
follows by observing that given a ∈ S the power am belongs to domain of
convergence of the log series. Therefore we have am = exp(b), b ∈ La(S) =
La(S1) and am ∈ S1 by the definition of S1. The second assertion follows
immediately from Zariski density of S in G.

Theorem 6. Let A be a central simple algebra over k. Suppose A is spanned
over k by a multiplicative semigroup S ⊂ A with the property that the min-
imal polynomial of every element in S splits over k. Then A is isomorphic
to Mn(k).

Proof. Observe that we can view A as matrices over some finite complete
extension K of k . The semigroup S is then an absolutely irreducible matrix
semigroup in Mn(K) with the property that the spectrum of every a ∈ S is
contained in k. This property is preserved under multiplication by scalars
in k, but also under norm closure, which follows from the continuity of
spectrum, a consequence of Krasner’s Lemma (see [6]). So we may assume
that S is a closed subset of A (and Mn(K)) and S = kS = {λs;λ ∈ k, a ∈ S}.
Now let r be the minimum of the ranks of the nonzero elements in S. We
claim that there is a rank r element a ∈ S that is not a nilpotent. Assume the
contrary. Let b ∈ S have rank r. Then the semigroup SbS is a semigroup of
nilpotents and by Levitzky’s theorem (see also [1]) it generates a nontrivial
nilpotent ideal in A but A is simple, hence the contradiction. Next we claim
that there is an idempotent e ∈ S with rank r. Let a ∈ S be a nonnilpotent
element of this minimal rank. By dividing it with an appropriate element
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of k∗ we may assume that all the eigenvalues lie in the unit ball and that
some (say m) have absolute value 1. By replacing a with some power of
it we may further assume that all the eigenvalues with absolute value 1
belong to 1 + pok, where p is the characteristic of the residue class field.
Let a = as + an be the Jordan decomposition of a with ak

n = 0 for some k.
Consider the sequence

apn
=

k−1∑
j=0

(
pn

j

)
apn−j

s aj
n

for n large enough. It is easy to see that this sequence converges to an
idempotent e ∈ S of rank m, so m = r by minimality of rank. Consider the
semigroup eSe. It clearly satisfies the conditions of S and it generates the
central simple k-algebra eAe. The theorem will be proved provided we show
eAe ' Mr(k).

Replacing eAe for A we see that one can assume that S ⊂ A is a closed
semigroup in which every nonzero element is invertible and all the eigen-
values of an element in S have equal absolute value. Consider the set
S1 = {a ∈ S; |nr(a)| = 1} which is clearly also a closed semigroup in A.
Observe that a ∈ S belongs to S1 precisely when all its eigenvalues lie in o∗k
and so every element of S1 is integral over ok. Since S1 generates A as a
vector space over k we have to show that S1 is a compact group and then
apply the previous theorem.

Consider the ok algebra Γ ⊆ A, generated by S1. Then by [1] every
element of Γ is integral over ok. By [10, Thm. 10.3] Γ is an ok-order in
A and therefore contained in a maximal ok-order ∆. The latter is compact
and so is S1 ⊂ ∆. The only idempotent in the compact semigroup S1 is
the identity, so by [11, Thm. 3.5] S1 is a compact group and the proof is
complete.

As a corollary we obtain the following result which is already implicit in
[9].

Corollary 7. Let A be a central simple algebra over Q. Assume A is
spanned by a multiplicative semigroup S ⊂ A with the property that the min-
imal polynomial of every element in S splits over Q. Then A is isomorphic
to Mn(Q).

Proof. By the Hasse-Brauer-Albert-Noether theorem [10, Thm. 32.11] it
suffices to show that AP = A ⊗ QP is trivial in the Brauer group Br(QP )
for every prime P . If P is finite, then QP = Qp for some rational prime p and
we apply the previous theorem for the image of S under natural embedding.
Since there is only one infinite prime P over Q, namely QP = R, we also
have that AP is trivial in this case by the product formula.
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3. Some examples and remarks.

Example 8. As our first example we take the group of matrices S ⊂ M2(k),
generated by S1 = {diag (α2, β2);α, β ∈ o∗k} and t, where t is the matrix of
the transposition of the standard basis of k2. An easy computation shows
that this is indeed a compact irreducible group with the desired property.
This example can easily be generalized to matrices of order 2n.

The next example shows that, although there are good reasons to believe
that both the theorems of this article hold for any p-adic field k, the struc-
ture of the compact group S with the desired properties can be much more
complicated in this general case.

Example 9. Let k be a p-adic field and n a fixed number. Then there
exists a finite extension field l > k with the property that every polynomial
of degree less or equal to n in k[X] splits over l (see [8, Prop. 6.13]). Let
A be a central simple algebra of reduced degree n over k and ∆ ⊂ A a
maximal order in A. Let S be the image of ∆∗ under natural embedding
A → A⊗k l ' Mn(l), a 7→ a⊗ 1. Clearly S is compact, it spans Mn(l) and
the minimal polynomial of every s ∈ S splits over l.

We conclude with a remark and some open questions.

Remark 10. Let k be either Qp or R. It is an interesting question whether
there exists an absolutely irreducible group S ⊂ GLn(k) such that the spec-
tra of its elements lie in k and such that the Zariski closure of S is semisimple.
A similar argument as in the proof of Theorem 3 shows that such a group is
necessarily discrete and, consequently, its Zariski closure not k-anisotropic.
It is known (see [13]) that SL2(k) contains a free Zariski dense subgroup
S and one can check easily that the spectra of all its elements under any
k-representation of SL2 lie in k. It is an open question what are the nec-
essary and sufficient conditions on a semisimple group (for instance being
k-split) in order for it to be the Zariski closure of a group S with the desired
property.
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