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Examples are given to show that some compact contractible
4-manifolds can be knotted in the 4-sphere. It is then proved
that any finitely presented perfect group with a balanced
presentation is a knot group for an embedding of some con-
tractible 4-manifold in S*.

1. Introduction.

A construction will here be described that can produce a compact con-
tractible 4-manifold M embedded piecewise linearly (or smoothly) in S*
with the fundamental group of its complement being nontrivial. Then, an-
other embedding of M in S* will be produced which has simply connected
complement. Several examples of this will be given. Of course, the con-
struction emphasizes that contractible spaces do not behave entirely as do
single points. It is important to note that these embeddings are piecewise
linear or smooth; they are certainly not wild. The famous construction of
the Alexander wild horned sphere gives a wild embedding of a 3-ball in S°
that has its complement not simply connected. However the boundary of a
contractible compact 3-manifold is just a 2-sphere, so by the piecewise lin-
ear 3-dimensional Schonflies theorem, if such a manifold can be embedded
piecewise linearly in S3, each of the manifold and its complement must be a
3-ball.

Recall the general definition of knotting, when all maps and spaces are in
the piecewise linear category: A polyhedron X knots in a polyhedron Y if
there are two embeddings, eg and e; of X in Y, that are homotopic but not
ambient isotopic. The embeddings are ambient isotopic if there exist home-
omorphisms F; : Y — Y, for each t € [0,1], such that (y,t) — (Fi(y),t)
defines a piecewise linear homeomorphism from Y x [0, 1] to itself, Fy is the
identity and Fieyp = e;. Thus to be ambient isotopic the complements of the
images of the two embeddings must certainly be homeomorphic. The knot-
ting phenomenon explores the possibility of moving between embeddings
along a path of embeddings as opposed to moving along a path of maps.
The examples given here are of contractible 4-manifolds that can knot in
S* for, just as in classical knot theory, the fundamental group of comple-
ments is used to show embeddings are not ambient isotopic. Examples of
knots usually rely on the entwining of some nontrivial cycle, but here there
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is none. In fact, in higher dimensions, if X and Y are piecewise linear man-
ifolds with dim Y — dim X > 3, there are theorems of Hudson [4] that assert
that there is no knotting of X in Y provided these spaces are sufficiently
highly connected.

It should be noted that when M is a contractible 4-manifold, piecewise
linearly contained in S4, the Alexander duality theorem implies that S*— M
has the same homology as a point. Thus 7(S* — M) is a perfect group
in contrast to the situation of classical knot theory. It will be proved in
Theorem 3 that for any finitely presented perfect group with a balanced
presentation (that is, a presentation with the same number of generators as
relators) there are embeddings ey and e; of some contractible 4-manifold M
into S so that 71(S* —e; M) is the given group and 7 (S* — egM) is trivial.

The author is grateful to Simon Norton for making a helpful remark and
to Charles Livingston for a correction. Livingston has extended the method
of this paper to obtain, for certain contractible 4-manifolds, infinitely many
knots in S4.

2. Examples of the embedding construction.

The theorem that now follows is really an example describing the main
simple idea of the construction of this paper. The second theorem amplifies
it to more general circumstances.

Theorem 1. There are two piecewise linear (or smooth) embeddings, eg
and e1, of a certain compact contractible 4-manifold M into S* such that
7r1(S4 — e1 M) is nontrivial and S* — egM is contractible.

Proof. Firstly, construct a compact 4-manifold X by adding three 1-handles
and three 2-handles onto a 4-ball in the following way. The handles are to
be chosen so that m1(X) has the presentation

(a,b,c: b7 e72be, ¢ ra2ca®, a1 %ab?),
where based loops encircling the three 1-handles represent a, b and ¢, and
the attaching circles of the three 2-handles give the three relators. This

situation is shown in Figure 1 in the notation common in considerations of
the ‘Kirby calculus’ (see [2] for example).

The diagram of Figure 1 shows curves in the 3-sphere, the boundary of
the 4-ball. Open regular neighbourhoods, of three standard disjoint discs in
the 4-ball, are to be removed from the 4-ball to create a ball with the three
1-handles added. The boundaries of these discs are the circles, decorated
with dots, labeled a, b and c¢. That this is in order can be checked as
follows. A ball with 1-handles added can be changed back to a ball by
adding 2-handles to cancel the 1-handles; removing those 2-handles consists
of removing neighbourhoods of the discs that are the co-cores of the 2-
handles. Thus a 4-ball, with 1-handles added, is the same as a 4-ball from
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Figure 2.

which standard 2-handles have been removed. A 1-handle can be regarded
as D' x D3 with D! x * being the attaching sphere and * x D> being the
belt sphere (where each « is a base point). In Figure 1 a belt sphere consists
of the union of a disc spanning a dotted circle, less a regular neighbourhood
of that circle, and a disc in the boundary of the 2-handle that has been
removed. Meridians encircling the three dotted circles represent generators,
to be called a, b and ¢, of the fundamental group of the ball with 1-handles,
and a based closed curve represents a word, in a, b and ¢, corresponding to
its signed intersections with the three belt spheres. In this way the curves
shown, labeled a, 3 and v, represent b~'c2bc3, ¢ ta"2ca® and a~'b2ab’.
Thus adding 2-handles, with these curves as attaching spheres (choose the
zero framings), gives the 4-manifold X with the required presentation for
m1(X). It has been shown by Rapaport [6] that this is the presentation of
a nontrivial group. There are, of course, very many ways that attaching
curves can be chosen for the 2-handles in order to achieve this presentation
(and the choice will be explored further in Theorem 3), but the one shown is
about the simplest and is the one that will now be considered. The situation
is shown schematically in Figure 2.
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The manifold X is a 4-ball, B; say, with 2-handles removed and 2-handles
added. Regard this 4-ball as being contained in S* and consider the com-
plementary 4-ball By. The 2-handles removed from B; can be thought of
as added to Bs. The other 2-handles, that were added to B;, were added
with zero framing along unknotted, unlinked curves (labeled «, # and =),
so they can be regarded as standard 2-handles removed from Bs. Thus the
closure of S* — X is the 4-ball By with three 2-handles removed (creating
added 1-handles) and three 2-handles added and this is to be the required
4-manifold M. The situation for M is again represented by Figure 1, except
that now the dots should be removed from the curves labeled a, b and ¢ and
placed on those labeled «, 8 and «. However, the a-curve bounds a disc
that meets only the c-curve; there are similar discs for the 5- and ~-curves.
The words in «, 8 and ~, coming from the intersections of the a, b and ¢
curves with these discs, make it clear that (M) is presented by

(a, B,y a®a™2, B3B72 4372

which, very obviously, presents the trivial group. Thus M is simply con-
nected. A count of the handles shows that the Euler characteristic of M is
1, hence Hy(M) = 0. Furthermore H,(M) = 0 for r > 2, as there are no r-
handles for r > 2, and so, by the Hurewicz isomorphism theorem, M has all
homotopy groups trivial and hence is contractible. Note that m;(OM) # {1},
as otherwise 71(X) = m1(S*) by the Van Kampen theorem. Hence M is not
a 4-ball. The inclusion of M, as so defined in S*, is the embedding e;.

The above presentation given for w1 (M) coming from the handle structure
of M is almost trivial. It certainly reduces to the trivial presentation by
Andrews-Curtis moves (see below). Any such M has the property that
M x [0,1] & B® where B® is a 5-ball. To show that in this instance, it is
necessary only to realise that M x [0, 1] has the same handle structure as does
M. The extra dimension means that, when a 2-handle is attached (to the
boundary of a 5-manifold) only the homotopy class of the attaching map is
significant (a homotopy of attaching circles can be changed to an isotopy by
using the fourth dimension to prevent the circles from crossing each other).
Now let ey be the inclusion of M x {0} in the 4-sphere 9(M x [0, 1]). The
complement of M x {0} in this sphere is (OM x [0,1]) UM x {1} and this
is just another copy of the contractible manifold M.

For a second example consider {(a,b: ab?ab™!, a*ba='b), a presentation
of the perfect group G of 120 elements that is the fundamental group of
the Poincaré homology 3-sphere. The method of the proof of Theorem 1
constructs a 4-manifold X C S* with 71(X) 2 G and with the fundamental
group of the corresponding M presented by (a, 3 : o233, a~1372). Again
this easily reduces to the trivial presentation by Andrews-Curtis moves so
that M x I is a 5-ball.
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The above construction works easily for the presentations

(@1,a9, ..., Qm i T1,T2, ..oy )
R |
for every m > 4 Whe? ri = a; a;,

1aia?+l for i = 1,2,...m modulo m,
and also when r; = a; "a;, _flaia;)’ '+ 1- These are known to be presentations of
infinite groups (see [3] and [5]).

Note that (a,b : a='b~2ab> b= 'a"2ba®) is a presentation of the trivial
group. If M is constructed from this presentation for X it is not clear
whether the embedding of M is in any sense knotted.

3. A reminder of Andrews-Curtis moves.

The above proof makes a brief mention of the Andrews-Curtis moves. These
moves are elementary changes that can be made to a group presentation that
do not alter the group that is presented. The moves are also called ‘extended
Nielsen transformations’ in [1], they are called ‘Q-transformations’ in [6] and
they are sometimes also called ‘Markov operations’. The permitted changes
to a presentation (a1, a2, ..., Gy : T1,72,...,r,) are the following moves and
the inverses of these moves:

(i) Change 7; to riaja-_l or ria;

J
(ii) Change 7; to a cyclic permutation of r;.
(iii) Change r; to r; .
(iv) Change r; to ryr; where j # i.
v) Add a new generator a,,+1 and a new relator a,,+1w where w is a word

in a,az,...,an.

aj.

These are precisely the moves that can easily be imitated on a 5-manifold
comprised of 0-handles, 1-handles and 2-handles only. If the handles of
such a 5-manifold correspond to a presentation of the trivial group that
can be reduced to the trivial presentation (that is, the empty presentation)
by the above moves and their inverses, then it is shown in [1] that the
manifold is the 5-ball. It is this result that is used in the above proof. The
Andrews-Curtis conjecture [1] is that any presentation of the trivial group be
reducible to the trivial presentation by the above moves and their inverses.
This is popularly thought to be false, (a,b : a=~'b~2ab3 b~ ta"2ba®) being
one of many proposed counter-examples. The truth of the Andrews-Curtis
conjecture would imply the truth of another conjecture that asserts that any
5-dimensional regular neighbourhood of a contractible 2-complex be a 5-ball
(such a neighbourhood is known to be unique).

4. Arbitrary finitely presented perfect groups.

A few simple remarks lead up to an elementary, but possibly surprising,
little lemma about finitely presented perfect groups and presentations of
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the trivial group. Suppose that an abelian group F is freely generated as an
abelian group (with additive notation) by the generators ej, ea, ..., €,. The
quotient of £ by the subgroup generated by the n elements { Z;”Zl aije; -
i=1,2,... ,n} is said to be presented by the nxm integer matrix A = {a;;}.
When m = n the quotient is the trivial group if and only if A is unimodular,
that is, det A = +1. A presentation P of any group (in multiplicative
notation) leads at once to a presentation of the abelianisation of that group,
by just deciding that all symbols commute. It is then sensible in each relator
to assemble together all occurrences of a generator and its inverse, cancelling
where possible, to obtain from the resulting exponents in each relator a
presentation matrix A of the abelianisation of the group. The following
lemma considers such things in the reverse order, showing that, if A presents
the trivial abelian group, then P can be chosen to present the trivial group.

Lemma 2. Suppose that A is a unimodular n X n matrix of integers. Then
there exists a presentation P of the trivial group that has A as its abelianised
presentation matriz. Furthermore, P is equivalent to the trivial presentation
by Andrews-Curtis mowves.

Proof. Starting from the identity n x n matrix, the unimodular matrix A
can be created by a sequence of row operations in which either a row is
multiplied by —1 or a row is added to another row. These moves can be
mimicked by changes to a presentation (a1, asg,...,a, : 71,72,...,7,) of the
trivial group, where initially r; = a; for each 4. If the ith row of the matrix
is multiplied by —1, change r; to r;” L. if row 7 is added to row j then change
rj to ;7. At each stage the presentation is of the trivial group and at each
stage the matrix is the corresponding presentation matrix of the abelianised
group. Of course the moves used on the presentation are all Andrews-Curtis
moves.

Theorem 3. Let G be any finitely presented perfect group having a balanced
presentation. Then there is a compact contractible 4-manifold M contained
in S* such that w1 (S* — M) = G and M x I is a 5-ball (so that, if G is non-
trivial, there is a distinct second embedding of M in S* having contractible
complement).

Proof. Let (ay,a9,...,a, : T1,T2,...,7,) be a presentation P of G. The
construction proceeds as in the proof of Theorem 1. Remove from the 4-
ball B* neighbourhoods of n standard disjoint spanning discs to create a
ball with n 1-handles added. The boundaries of the discs form a set of n
unlinked simple closed (‘dotted’) curves in B* = S3, which are labeled
ai,as, ..., a,. In the following way construct, as the boundaries of disjoint
discs Dy, D, ..., D, contained in S3, simple closed curves ai,aq, ..., oy,
corresponding to rq,79,...,T,, which are to be the attaching circles for n
2-handles. Begin with small, disjoint, oriented discs A1, Ao, ..., A, in the
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complement of a1 Uag U ---U a,. For each letter agﬂ in the word 71 take a
small meridian disc of the curve a;, oriented according to the exponent on
the letter, and to construct Di, join the boundaries of these meridian discs
by thin bands to the boundary of A1, in the order around dA; specified by
r1. The discs Do, ..., D, are constructed similarly from ro,...,r, and there
is no difficulty in ensuring that the D; are embedded and mutually disjoint.
As in Theorem 1, form a 4-manifold X C S* by adding n 2-handles
with zero framing along aj, a9, ..., a, to the ball with n 1-handles. Then
7m1(X) = G. The key point to note now is that the meridian discs described
above (for all the D; together) can be taken in any order around a;. Differ-
ent choices of order probably give different manifolds X and M, where again
M is the closure of S? — X. Also note that the given presentation of G' can
be amended by the insertion of any number of copies of a;a; L for any 4, into
any r; without changing G nor the presentation matrix A of the (trivial)
abelianisation of G coming from that presentation. Now 71 (M) has a pre-
sentation IT of the form (aj,aq,...,an : p1,p2,...,pn) where the relators
record in order the occurrence of the meridian discs around aq,as,...,ay
(each signed intersection of a; with a meridian disc contained in D; produc-
ing an Oz;tl entry in p;). The abelian presentation matrix coming from II is
the transpose of A; it is certainly unimodular. Thus using Lemma 2, the
ordering along the a; of those meridional discs making up each D; can be
chosen, after inserting any necessary pairs of discs corresponding to a;a; L
so that, with respect to the new choice, II becomes a presentation of the
trivial group. Again from Lemma 2, II is equivalent by Andrews-Curtis
moves to the trivial presentation and so M x I is a 5-ball.
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