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We show that, given a weak compactness condition which
is always satisfied when the underlying space does not contain
an isomorphic copy of c0, all the operators in the weakly closed
algebra generated by the real and imaginary parts of a fam-
ily of commuting scalar-type spectral operators on a Banach
space will again be scalar-type spectral operators, provided
that (and this is a necessary condition with even only two op-
erators) the Boolean algebra of projections generated by their
resolutions of the identity is uniformly bounded.

1. Introduction.

The problem we address, raised by Dunford [8] in 1954, is to find conditions
under which the sum and product of a pair of commuting scalar-type spectral
operators on a Banach space is also a scalar-type spectral operator.

Two difficulties arise when working on an arbitrary Banach space, as op-
posed to a Hilbert space: the unit ball of the algebra of bounded linear
operators need not be weakly compact; and the Boolean algebra gener-
ated by two uniformly bounded Boolean algebras of projections need not be
bounded [15].

In view of this we must restrict ourselves to the case where the Boolean
algebra generated by the resolutions of the identities is uniformly bounded.

Previous treatments of this problem [to show that the sum of two com-
muting scalar-type spectral operators is a scalar-type spectral operator] have
focussed on identifying the resolution of the identity of the sum [11, 16, 20].
These methods have worked essentially only when X contains no copy of c0.
However, this is precisely the case when one can exploit Grothendieck’s
theorem on the automatic weak compactness of linear mappings from a C∗-
algebra into X, and prove somewhat more: that all operators in the weakly
closed involutory algebra generated by them are scalar-type spectral oper-
ators. An advantage of this approach is that one does not have to identify
the resolutions of the identity of the sums, or products, or limits, directly.
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2. C∗-algebras on Banach spaces.

The properties of scalar-type spectral operators and the involutory algebras
they generate seem best explained in the context of numerical range, of
hermitian operators, and of C∗-algebras. For the sake of completeness, and
the convenience of the reader, we present a résumé of the key results.

Consider a complex Banach space X; write L(X) for the Banach algebra
of bounded linear operators on X, endowed with the operator norm.

We write A1 for the unit ball of a subset A of a normed space.
We write 〈x, x′〉 for the value of the functional x′ in X ′ at x in X. Let ωωω

be the linear span of the functionals ωx,x′ : L(X) → C : T 7→ 〈Tx, x′〉. Let
Π be the set {

(x, x′) ∈ X ×X ′ :
〈
x, x′

〉
= ‖x‖ =

∥∥x′∥∥ = 1
}

and let ωωωΠ be the set of functionals

{ωx,x′ : (x, x′) ∈ Π}.
The strong operator topology and weak operator topology on L(X) are

of paramount importance: important here too are the BWO topology and
BSO topology, the strongest topologies coinciding with the weak and strong
topologies on bounded subsets of L(X) — see [9, VI, 9].

The ultraweak operator topology on L(X) is the topology generated by
the seminorms T 7→ |

∑
n 〈Txn, x′n〉| where {xn} and {x′n} range over pairs

of sequences in X and X ′ subject to
∑

n ‖xn‖ ‖x′n‖ < ∞. The ultrastrong
operator topology on L(H) is the topology generated by the seminorms T 7→{∑

n ‖Txn‖2
} 1

2 where {xn} ranges over sequences for which
∑

n ‖xn‖2 < ∞.
The BWO topology coincides with the ultraweak topology, the BSO topol-

ogy with the ultrastrong topology, on L(H), when H is a Hilbert space.
The (spatial ) numerical range V (T ) of an operator T is defined to be

V (T ) ∆=
{ 〈

Tx, x′
〉

: (x, x′) ∈ Π
}
.

An operator R on X is hermitian if its numerical range is real i.e., if
V (R) ⊂ R; equivalently, if {

‖exp(irR)‖ : r ∈ R
}

is bounded. The set of hermitian operators is closed in the norm, strong
and weak operator topologies.

The following result is crucial:

Theorem 2.1 (Vidav-Palmer Theorem). Suppose that A is a unital subal-
gebra of L(X) [the unit being the identity operator on X]. Let H be the
set of hermitian elements of A. Then A = H + iH if and only if A is a
pre-C∗-algebra under the operator norm and the natural involution

∗ : A → A : R + iJ 7→ R− iJ (R, J ∈ H).
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It then follows that B ∆= A is a C∗-algebra on X, containing the identity
IX on X. (See [3, §38] for a discussion of these topics.)

When B is a C∗-algebra on X the family ωωωΠ is a separating family of
states on B.

We shall use the following terminology: a von Neumann algebra is a
weakly closed C∗-algebra of operators on a Hilbert space, while a W∗-algebra
is a C∗-algebra which has a realisation as a von Neumann algebra [equiva-
lently, is a dual space of a Banach space].

Unital *-isomorphisms of C∗-algebras are isometric.

Theorem 2.2 (BWO Closure Theorem). Suppose that B is a C∗-algebra on
X and that its unit ball B1 is relatively weakly compact. Then the BWO
closure of B,

B˜ ∆=
∞⋃

n=1

nB1
w
,

is a W∗-algebra; and (B )̃1 = B1
w. Moreover, any faithful representation of

B˜ as a concrete von Neumann algebra is BWO bicontinuous.

The proof [24] rests on the fact that, by the identity of comparable com-
pact Hausdorff topologies, the weak topology on B1

w is the weak topology
induced by the states ωωωΠ.

It remains open, in general, to decide whether B˜= Bw.

2.1. Commutative C∗-algebras on X. The remaining results in this sec-
tion apply to any commutative unital C∗-subalgebra B of L(X), and in
particular to any algebra generated by a Boolean algebra of (hermitian)
projections: see §3.

The operators in a commutative C∗-subalgebra of L(X) are called normal
(sometimes strongly normal). Abstractly, they enjoy all the properties of
normal operators on Hilbert spaces.

Let Λ be the maximal ideal space of B and Θ the inverse Gelfand map

Θ : C(Λ) → B

which is a unital isometric *-isomorphism: Θ is also called the functional
calculus for B.

On restricting Θ to the C∗-subalgebra generated by I, T (for any T ∈ B)
we obtain a functional calculus for a (strongly) normal T : a unital isometric
*-isomorphism

ΘT : C(sp(T )) → B
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such that

ΘT (z 7→ 1) = I

ΘT (z 7→ z) = T

ΘT (z 7→ z) = T ∗

‖ΘT (f)‖ = ‖f‖sp(T )

(
f ∈ C(sp(T ))

)
.

The following two lemmas demonstrate how to some extent normal oper-
ators on a Banach space mimic normal operators on a Hilbert space:

Lemma 2.3. Let B be a commutative C∗-algebra on X and let H be the set
of hermitian elements of B. Suppose that H

K ∈ H and 0 ≤ H ≤ K. Then

‖Hx‖ ≤ ‖Kx‖
(
x ∈ X

)
.

For any ε > 0 the operator L = H/(K + εI) is defined in H, and, by
the functional calculus, 0 ≤ L ≤ 1; so ‖L‖ ≤ 1. It follows that ‖Hx‖ =
‖L(K + εI)x‖ ≤ ‖(K + εI)x‖. Now let ε → 0.

The next result, originally due to Palmer [18, Lemma 2.7], helps us extend
the C∗ structure from B to C ∆= Bw. The following short proof is taken from
[4]:

Lemma 2.4. For all B ∈ B and x ∈ X we have

‖Bx‖ = ‖B∗x‖ .

Proof. For ε > 0 the functional calculus gives∥∥B −B2(B∗B + εI)−1B∗∥∥ =
∥∥εB(B∗B + εI)−1

∥∥ ≤ √
ε/2,

and ∥∥B2(B∗B + εI)−1
∥∥ ≤ 1.

Thus, for any x ∈ X,

‖Bx‖ = lim
ε→0

∥∥B2(B∗B + εI)−1B∗x
∥∥ ≤ ‖B∗x‖ ,

and then ‖B∗x‖ ≤ ‖B∗∗x‖ = ‖Bx‖ . �

The weak closure of a commutative C∗-algebra on X is also a C∗-algebra
on X.

Theorem 2.5. Let B be a commutative C∗-algebra on X and let H be the
set of hermitian elements of B. Let Hw be the weak operator topology closure
of H, and Bw the weak operator topology closure of B. Then

Bw = Hw + iHw

and so Bw is a C∗-algebra. Moreover,
(
Bw)

1
= B1

w. Hence B˜= Bw.
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Proof. First note that the weak and strong closures coincide for H and B
(they are both convex sets). Now Lemma 2.4 shows that Bs = Hs + iHs, so
Bw is a C∗-algebra.

Consider H ∈ (Hw)1. Then K =
(
I − [I − H2]

1
2

)
/H ∈ Hw, and H =

2K/(I + K2). Take a net Kα in H converging strongly to K: put Hα =
2Kα/(I + K2

α). Then

Hα −H = 2(I + K2
α)−1 (Kα −K) (I + K2)−1 +

1
2
Hα(K −Kα)H

so H ∈ H1
w. By the Russo-Dye Theorem [3, §38] we have (Bw)1 ⊆ B1

w. �

Corollary 2.6. If, further, the unit ball of B is relatively weakly compact,
then Bw is a W∗-algebra and any faithful representation of Bw as a concrete
von Neumann algebra on a Hilbert space is BWO bicontinuous (that is,
weakly bicontinuous on bounded sets).

Proof. Use Theorem 2.2. �

Remark 2.7. We show later (§4) that any such faithful representation is
also BSO bicontinuous (that is, strongly bicontinuous on bounded sets).
The proof (maybe the result) depends on being able to represent Bw by a
spectral measure: and the presence of c0 as a subspace of X seems to be the
natural obstruction to this: see §6 below.

3. Boolean algebras of projections & the algebras they generate.

Let X be a complex Banach space, and E a bounded Boolean algebra of
projections on X:

I ∈ E ⊆ L(X)
E ∈ E =⇒ E2 = E

E ∈ E =⇒ I − E ∈ E
E, F ∈ E =⇒ EF = FE ∈ E

‖E‖ ≤ KE (E ∈ E)

for some constant KE . Write aco E for the absolutely convex hull of E in
L(X).

It can be shown (see [6, 5.4]) that then

S =

{∑
finite

λjEj : |λj | ≤ 1, Ej ∈ E , EjEk = 0 (j 6= k)

}
is a bounded multiplicative semigroup of operators on X. If we define

‖x‖E = sup
{
‖Sx‖ : S ∈ S

}
(x ∈ X)
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we obtain a norm ‖·‖E on X, equivalent to the original norm on X, with
respect to which each element of E is hermitian. Thus, without loss of
generality,

we shall assume that all elements of E are hermitian.

Remark 3.1. By Sinclair’s Theorem ‖E‖ = 1 for any nonzero hermitian
projection.

Theorem 3.2. Let E be a Boolean algebra of hermitian projections on a
complex Banach space X. Then A, the linear span of E, is the *-algebra
generated by E: A is a commutative unital algebra, and A = H+ iH, where
H is the set of hermitian elements of A. So B,

∆= A, is a commutative
C∗-algebra on X.

Proof. Immediate from the Vidav-Palmer Theorem (Theorem 2.1). �

Lemma 3.3. Let S ∈ A and suppose that −I ≤ S ≤ I. Then

S ∈ 2 aco E .

Proof. Suppose first that 0 ≤ S ≤ I. Write S in E-step-form as S =
M∑

j=1
λjEj , where the Ej are pairwise disjoint. Then 0 ≤ λj ≤ 1. Arrange

the λj in descending order: then ‖S‖ = λ1. Define λM+1 = 0 and use Abel
summation —

S =
M∑

j=1

λjEj =
M∑

j=1

(λj − λj+1)

(
j∑

h=1

Eh

)
∈ aco E .

If −I ≤ S ≤ I, split S into its positive and negative parts. �

Theorem 3.4. Let E be a Boolean algebra of hermitian projections on a
complex Banach space X, and let B be the C∗-algebra it generates. Let B1

be the closed unit ball of B. Then

B1 ⊆ 4 aco E .

Proof. Consider an element B ∈ B such that ‖B‖ < 1. Given ε > 0 we can
find S = R + iJ in A such that ‖B −R− iJ‖ ≤ min{ε, 1 − ‖B‖}. Now
‖R‖
‖J‖ ≤ 1, so that, by Lemma 3.3, R

J ∈ 2 aco E . �

Corollary 3.5. The following are equivalent:
1) B1 is relatively weakly compact.
2) aco E is relatively weakly compact.
3) E is relatively weakly compact.

Proof. Use the Krein-Šmulian Theorem. �
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We can now state the main theorem of this section.

Theorem 3.6. Let E be a relatively weakly compact Boolean algebra of her-
mitian projections on a complex Banach space X, and let B be the C∗-algebra
generated by E. Then Bw is a W∗-algebra and any faithful representation of
Bw as a concrete von Neumann algebra on a Hilbert space is BWO bicon-
tinuous (that is, weakly bicontinuous on bounded sets).

Proof. This follows from Corollary 3.5 and Theorem 2.2. �

4. σ-complete Boolean algebras of projections & spectral
measures.

The fundamental results on Boolean algebras of projections on a Banach
space were developed by Bade and are to be found in [10, XVII]. Much
interesting material on this topic is also to be found in [21].

Following [10] we say that an abstract Boolean algebra E is (σ-)complete
if each (countable) subset of E has a supremum and infimum in E .
E , a Boolean algebra of projections on X, is (σ-)complete on X if each

(countable) subset F of E has a supremum and infimum in E such that(∨
F
)

X = lin{F X : F ∈ F},
(∧

F
)

X =
⋂

F∈F
F X.

It has been shown that E is (σ-)complete on X if and only if every bounded
monotone (sequence) net in E converges strongly to a limit [10, XVII.3.4].
In this case E must be bounded [10, XVII.3.3].

On Hilbert space. On a Hilbert space H the following two facts are
classical. We sketch their (elementary) proofs for the convenience of the
reader.

Fact 4.1. Any monotone net of hermitian projections on H has a supre-
mum, to which it converges strongly.

Proof. Let
(
Eα

)
α∈A

be such a net. The generalized Cauchy-Schwarz in-
equality

〈
P 2ξ, ξ

〉
≤ 〈Pξ, ξ〉

〈
P 3ξ, ξ

〉
, which holds for any positive operator

P on H and any element ξ ∈ H, shows that the net
(
Eα

)
α∈A

is strongly
Cauchy. Also, its limit must be the supremum. �

Fact 4.2. Suppose that
(
Eα

)
α∈A

is a net of hermitian projections that con-
verges weakly to a projection E. Then it converges strongly.

Proof. This is immediate from the calculation

‖(E − Eα) ξ‖2 =
〈
(E − Eα)2 ξ, ξ

〉
=
〈
E2ξ, ξ

〉
− 〈EEα ξ, ξ〉 − 〈EαE ξ, ξ〉+

〈
E2

αξ, ξ
〉

→
〈
(E − E2) ξ, ξ

〉
= 0.

�
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It follows that on a Hilbert space every Boolean algebra E of hermitian
projections can be extended to a complete one; that Es is the smallest such
complete extension; and that Es = Ew

⋂
{projections on H}.

On a Banach space the situation is more delicate. It has been shown that
if E is σ-complete on X then Es is complete on X [10, XVII.3.23], and that
the family of projections in Ew coincides with Es. See Corollary 4.10 below
for a proof [independent of Bade’s original methods].

We shall require the following result, proposed as an exercise in [9]:

Lemma 4.3. If S ⊂ L(X) then S is relatively compact in the weak operator
topology if and only if the sets S x are relatively weakly compact for all x ∈ X.

Proof. See [9, VI.9.2]. �

4.1. Spectral measures. Let Σ be a σ-algebra of subsets of a set Ω and
Γ a total subset of X ′. A spectral measure of class (Σ, Γ) is a Boolean
algebra homomorphism σ 7→ E(σ) from Σ into L(X) such that 〈E(σ)x, x′〉
is countably additive for each x ∈ X and x′ ∈ Γ: by the Banach-Orlicz-Pettis
theorem any spectral measure of class X ′ is strongly countably additive.

A σ-complete Boolean algebra of projections E on X can be identified
with the range of a spectral measure of class X ′ on the Borel sets of the
Stone space of E ([5, Chapter I]): then each vector measure E x is strongly
countably additive.

Lemma 4.4. If µ is a strongly countably additive vector measure with values
in X then aco{µ(σ) : σ ∈ Σ} is relatively weakly compact.

Proof. Essentially this is a result of Bartle, Dunford and Schwartz [1, 2.3]:
see also [5, I.2.7 & I.5.3]. �

Corollary 4.5. If E is σ-complete then the set aco w(Ex) is weakly compact
for each x ∈ X.

Theorem 4.6. Let E be a σ-complete Boolean algebra of hermitian projec-
tions. Then C, ∆= Bw, the commutative C∗-algebra generated by E in the
weak operator topology, is a W∗-algebra, and C1 = B1

w ⊆ 4 aco w E. Fur-
thermore, any faithful representation of C as a von Neumann algebra on a
Hilbert space is weakly bicontinuous on bounded sets.

Proof. aco w(Ex) is weakly compact for each x ∈ X (Corollary 4.5) so aco(E)
is relatively weakly compact, by Lemma 4.3. Apply Theorem 3.6. �

Theorem 4.7. Let B be a commutative C∗-algebra on X such that B1 is
relatively weakly compact. Let C = Bw

. Then there is a representing spectral
measure E(·) defined on the Borel sets of the Gelfand space Λ of C such that

Θ(f) =
∫

Λ
f(λ)E(dλ) (f ∈ C(Λ)).
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Proof. Let π : C → L(H) be a BWO continuous representation of C as a
concrete W∗-algebra. Let Ẽ(·) be a representing spectral measure for π(C):

π ◦Θ(f) =
∫

Λ
f(λ)Ẽ(dλ) (f ∈ C(Λ)).

Now define E(·) = π−1Ẽ(·): this yields a spectral measure on X
[
E(·) is

weakly countably additive, and so, by the Banach-Orlicz-Pettis theorem,
strongly countably additive

]
: and then

Θ(f) =
∫

Λ
f(λ)E(dλ) (f ∈ C(Λ)).

�

It is immediate that for a bounded net
(
Tα

)
α∈A

of operators on a Hilbert
space we have (

Tα

)
α∈A

→strongly 0 ⇐⇒
(
T ∗αTα

)
α∈A

→weakly 0.

A similar result holds for normal operators on a Banach space provided
that they belong to a common W∗-algebra.

Theorem 4.8. Let C be a commutative W∗-algebra on X. Suppose that(
Sα

)
α∈A

is a bounded net in C. Then(
Sα

)
α∈A

→strongly 0 ⇐⇒
(
S∗αSα

)
α∈A

→weakly 0.

Proof. Clearly Sα →strongly 0 implies that S∗αSα →strongly 0 , whence S∗αSα

→weakly 0.
Let E(·) be the representing spectral measure for C guaranteed by Theo-

rem 4.7.
Suppose that S∗αSα →weakly 0. Let fα = Θ−1Sα. Then

lim
α

〈
S∗αSαx, x′

〉
= lim

α

∫
Λ
|fα|2

〈
E(dλ)x, x′

〉
(x ∈ X, x′ ∈ X ′).

Therefore lim
α

fα = 0 in var 〈E(·)x, x′〉 measure and lim
α

∫
Λ fα 〈E(dλ)x, x′〉 =

0. For fixed x ∈ X the set {〈E(·)x, x′〉 : ‖x′‖ ≤ 1} is a relatively weakly
compact set of measures [9, IV.10.2]: hence lim

α

∫
Λ fα 〈E(dλ)x, x′〉 = 0 uni-

formly for ‖x′‖ ≤ 1 [14, Théorème 2]. Therefore lim
α

∫
Λ fαE(dλ)x = 0; that

is, Sα →strongly 0. �

Corollary 4.9. Let C be a commutative W∗-algebra on X. Then any faith-
ful concrete representation of C as a von Neumann algebra is weakly and
strongly bicontinuous on bounded sets.

Corollary 4.10. Let E be a σ-complete Boolean algebra of hermitian pro-
jections, and let

(
Eα

)
α∈A

be a monotone net of hermitian projections in
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the commutative W∗-algebra C generated on X by E. Then
(
Eα

)
α∈A

con-
verges strongly to a projection in C. So Es is complete on X. What is more,
Es = Ew

⋂
{projections in C}.

Proof. This follows immediately from the known results on Hilbert spaces
and from the strong bicontinuity of faithful representations guaranteed by
the theorem. �

The next corollary complements [23, Theorem 5] and [12, Theorems 1,
2].

Corollary 4.11. Let E be a bounded Boolean algebra of projections on a
Banach space X and suppose that E is relatively weakly compact. Then E
has a (σ-)complete extension contained in Es.

Remark 4.12. This happens automatically when X 6⊃ c0 (see §6).

Corollary 4.13 ([10, XVII.3.7]). Let E be a complete bounded Boolean al-
gebra of projections on a Banach space X. Then E is strongly closed.

Remark 4.14. The results of [7] overlap with ours.

5. Spectral operators.

An operator T ∈ L(X) is prespectral of class Γ if there is a spectral measure
E(·) of class (Σp, Γ) (here Σp is the family of Borel subsets of the complex
plane) such that for all σ ∈ Σp:

T E(σ) = E(σ) T,(1)

sp(T
∣∣E(σ)X) ⊆ σ.(2)

The spectral measure E(·) is called a resolution of the identity of class Γ for
T . If, further, T =

∫
sp(T ) λE(dλ), then T is a scalar-type operator of class

Γ.

Remark 5.1. Given a scalar-type spectral operator T =
∫
sp(T ) λE(dλ) we

can define its real part < T =
∫
sp(T ) < λ E(dλ), and its imaginary part

= T =
∫
sp(T ) = λ E(dλ). By the (closed) *-algebra generated by T we mean

the (closed) algebra generated by < T and = T .

An operator T ∈ L(X) is a spectral operator if it is prespectral of class X ′:
that is, if there is a spectral measure E(·) of class X ′ satisfying Conditions
(1) and (2) above, and if also

E(·) is strongly countably additive on Σp.

An important property of spectral operators is that if T is spectral and
S commutes with T , then S commutes with the resolution of the identity
of T [6, Theorem 6.6].

Scalar-type spectral operators have been characterised as follows:
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Theorem 5.2 ([17] & [22, Theorem]). The operator T ∈ L(X) is a scalar-
type spectral operator if and only if it satisfies the following two conditions:

(1) T has a functional calculus, and
(2) for every x ∈ X the map Θx : C(sp(T )) → X : f 7→ Θ(f)x is weakly

compact.

Note that by Lemma 4.3 Property (2) is equivalent to:
(2′) The functional calculus Θ : C(sp(T )) → L(X) is weakly compact in the

sense that Θ
({

f ∈ C(sp(T )) : ‖f‖sp(T ) ≤ 1
})

is relatively compact in
the weak operator topology of L(X).

6. In the absence of c0.

The following theorem goes back to Grothendieck, Bartle-Dunford-Schwartz,
and others. See [5, VI, Notes] for an interesting discussion of its genesis and
development.

Theorem 6.1. If B is a C∗-algebra, if Θ : B → X is a bounded operator,
and X does not contain a subspace isomorphic to c0, then Θ is a weakly
compact mapping.

Remarks on the proof. A stronger version of this theorem, where B may be
any complete Jordan algebra of operators, not necessarily commutative, can
be found in [25, Theorem 2]. That proof relies on James’s characterisation
of weakly compact sets and the Bessaga-Pe lczyński result that X contains no
copy of c0 if and only if all series

∑
n xn in X with

∑
n |〈xn, x′〉| convergent

for all x′ ∈ X ′ are unconditionally norm convergent.

Corollary 6.2. Let T be a normal operator on a Banach space X that does
not contain a subspace isomorphic to c0. Then T is a scalar-type spectral
operator.

Proof. T has a functional calculus (see §2) which, by the theorem, is weakly
compact. Apply Theorem 6.1. �

We can now present a theorem which is stronger than any other known
to us in this area.

Theorem 6.3. Let E be a bounded Boolean algebra of hermitian projec-
tions on a Banach space X and suppose that X does not contain a subspace
isomorphic to c0. Then the weakly closed algebra Bw generated by E is a
W∗-algebra and any faithful representation of Bw as a concrete von Neu-
mann algebra on a Hilbert space is BWO and BSO bicontinuous. Moreover,
every operator in Bw is a scalar-type spectral operator.

Proof. Theorem 6.1 shows that E is relatively weakly compact. The result
follows from Theorem 3.6, Corollary 4.9, and Corollary 6.2. �
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Corollary 6.4. Let T be a commuting family of scalar-type spectral oper-
ators on a Banach space X that does not contain a subspace isomorphic
to c0. Suppose that the Boolean algebra generated by the resolutions of the
identity of T for each T ∈ T is uniformly bounded. Then every operator in
the weakly closed *-algebra generated by T is a scalar-type spectral operator.

It has recently been shown [13, Theorem 2.5] that on a Banach lattice the
Boolean algebra generated by two commuting bounded Boolean algebras of
projections is itself bounded. Hence:

Corollary 6.5. Let X be a complex Banach lattice not containing a copy of
c0, and let T be a finite commuting family of scalar-type spectral operators
on X. Then every operator in the weakly closed *-algebra generated by T is
a scalar-type spectral operator.

c0 as the natural obstruction. If X contains c0 then there is a strongly
closed bounded Boolean algebra F of projections on X that is not complete
[12, Theorem 2]. Then the weakly closed algebra generated by F cannot
have relatively weakly compact unit ball, and there can be no BWO bicon-
tinuous faithful representation of this algebra on a Hilbert space.

7. Boolean algebras with countable basis.

As remarked above, c0 seems to be the natural essential obstruction to ex-
tending the results of the previous section. It is of course conceivable that
closer analysis will lead to a proof that the sum and product of a pair of
commuting scalar-type spectral operators must be scalar-type spectral op-
erators so long as the Boolean algebra generated by their resolutions of the
identity is bounded.

We shall say that a Boolean algebra E has a countable basis if it contains
a countable orthogonal subfamily F =

(
Fm

)
m∈N such that every E ∈ E can

be written as the strong sum of a subset of this family. Note that then

I =
∞∑

m=1
Fm, the sum being strongly convergent.

Lemma 7.1. Let C be a commutative C∗-algebra on X and
(
Fm

)
m∈N a

countable family of positive elements of C such that
∞∑

m=1
Fm converges in the

strong topology. Let Cm be any sequence in C for which 0 ≤ Cm ≤ I (∀m).
Then

∞∑
m=1

CmFm

converges strongly.
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Proof. Note that 0 ≤ CmFm ≤ Fm (∀m). Then, for M < N ,

0 ≤
N∑

m=M+1

CmFm ≤
N∑

m=M+1

Fm;

so, by Lemma 2.3, the sequence
(
CmFm

)
m=∈N is a strongly Cauchy sequence,

and hence strongly convergent. �

The following theorem generalises [13, Theorem 3.6]:

Theorem 7.2. Suppose that E(1) and E(2) are two commuting σ-complete
Boolean algebras of projections on X and that the Boolean algebra E gener-
ated by E(1) and E(2) is bounded. Assume, further, that E(2) has a countable
basis F =

(
Fm

)
m∈N. Then E has a σ-complete extension, and hence a

complete extension.

Proof. As remarked in §3 we may, and shall, assume that all the elements of
E(1) and E(2) are hermitian. Let C be the weakly closed C∗-algebra generated
by E .

For each sequence of projections
(
E

(1)
m

)
m∈N taken from E(1) we can, by

Lemma 7.1, define E =
∞∑

m=1
E

(1)
m Fm ∈ C. Each such E is a hermitian pro-

jection in C so has norm ≤ 1.
Consider

G ∆=

{ ∞∑
m=1

E(1)
m Fm : E(1)

m ∈ E(1)

}
.

It is clear that Fm ∈ G (∀m), so E(2) ⊆ G. Note also that for any
E(1) ∈ E(1) we have E(1) =

∑
m E(1)Fm, so E(1) ∈ G. Thus E(1) ∨ E(2) ⊆ G.

It is clear that G is closed under products. Further, for any

E =
∞∑

m=1

E(1)
m Fm ∈ G

we have

I − E =
∞∑

m=1

[
I − E(1)

m

]
Fm ∈ G,

and so G is a Boolean algebra of hermitian projections on X.
Note that for any such E ∈ G we have EFm = E

(1)
m Fm (∀m): thus any

element of G, which can be written, though not in a unique manner, as an
(orthogonal) sum

E =
∞∑

m=1

E(1)
m Fm,

satisfies
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E =
∞∑

m=1

E(1)
m Fm =

∞∑
m=1

EFm.

Now consider a sequence
(
Eh

)
h∈N of pairwise orthogonal projections in G:

Eh =
∞∑

m=1

E
(1)
h,mFm =

∞∑
m=1

EhFm.

For each k and m define

Gk,m
∆=

k∨
h=1

E
(1)
h,m ∈ E(1)

and then define

Gm
∆=

∞∨
k=1

Gk,m =
∞∨

h=1

E
(1)
h,m ∈ E(1).

Note that for each k and m

Gk,mFm =
k∨

h=1

E
(1)
h,mFm =

k∑
h=1

E
(1)
h,mFm =

(
k∑

h=1

Eh

)
Fm.

Suppose that x ∈ X and ε > 0. Then there exists an M such that∥∥∥∥∥x−
M∑

m=1

Fm x

∥∥∥∥∥ < ε

and so we can find N such that for 1 ≤ m ≤ M and k ≥ N

‖(Gm −Gk,m)x‖ < ε/M.

Suppose that j < k: then 0 ≤
k∑

h=j+1

Eh ≤ I, and so, by Lemma 2.3,∥∥∥∥∥∥
 k∑

h=j+1

Eh

x

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
 k∑

h=j+1

Eh

(x−
M∑

m=1

Fm x

)∥∥∥∥∥∥
+

M∑
m=1

∥∥∥∥∥∥
 k∑

h=j+1

Eh

Fmx

∥∥∥∥∥∥
≤

∥∥∥∥∥x−
M∑

m=1

Fm x

∥∥∥∥∥+
M∑

m=1

‖(Gk,m −Gj,m) Fm x‖

≤

∥∥∥∥∥x−
M∑

m=1

Fm x

∥∥∥∥∥+
M∑

m=1

‖(Gk,m −Gj,m) x‖

≤ ε + ε = 2ε.
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This shows that G is σ-complete. Then Es is complete (Corollary 4.10).
�

From this we obtain the following results.

Theorem 7.3. Let E(1) and E(2) be two commuting σ-complete Boolean al-
gebras of hermitian projections on X. Suppose that the Boolean algebra E
generated by E(1) and E(2) is bounded, and that E(2) has a countable basis.
Then the weakly closed *-algebra C generated by E is a W∗-algebra.

Corollary 7.4 (Extension of [13, 3.6]). Let X be a Banach space and T1,
T2 be commuting scalar-type spectral operators on X with resolutions of the
identity E(1), E(2) such that E(1) ∨ E(1) is bounded. Suppose further that one
of these operators has countable spectrum. Then all operators in the weakly
closed *-algebra generated by T1 and T2 are scalar-type spectral operators.
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