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We study the following open question: If a ring R is the
sum of two subrings A and B both satisfying a polynomial
identity, does R itself satisfy a polynomial identity? We give
a positive answer to this question in case R satisfies a special
“mixed” identity or (AB)k ⊆ A for some k ≥ 1 or A or B is
a Lie ideal. Our approach is based on a comparative analysis
of the sequences of codimensions of the three rings and their
asymptotics. As a reward we obtain a bound on the degree
of a polynomial identity satisfied by R as a function of the
degree of an identity satisfied by A and B.

1. Introduction.

Let R be a ring and suppose that A and B are two subrings of R such that
R = A + B is their sum. Here we consider the following open question:

If both A and B satisfy a polynomial identity (i.e., PI-rings), does R itself
satisfy a polynomial identity ?

The answer to this question is known to be positive in several cases. The
first result that can be read in this setting is due to Kegel [K]. He showed
that if A and B are both nilpotent rings (so, they satisfy an identity of the
type x1x2 . . . xn ≡ 0) then the same conclusion holds in R. Bahturin and
Giambruno in [BG] proved that if A and B are commutative rings then
R satisfies the identity [x1, x2][x3, x4] ≡ 0, where [x, y] = xy − yx is the
Lie bracket. This result was later generalized by Beidar and Mikhalev in
[BM]. They proved that if both, A and B satisfy an identity of the form
[x1, x2] . . . [x2n−1, x2n] ≡ 0 for some n ≥ 2, then R is a PI-ring. By extending
Kegel’s result, Kepczyk and Puczylowski in [KP1] showed that if A and B
are nil of bounded exponent (so, they satisfy an identity of the form xn ≡ 0)
then so is R. This result was later pushed further in [KP2] by proving that
if one of the two subrings is nil of bounded exponent and the other is PI,
then R is PI.

To our knowledge these are the only results proved so far which hold
without any further assumption on the structure of the ring R (or A or B).

On the other hand, in [Ro1] Rowen proved that if A and B are both right
(left) ideals of R, then an identity on both A and B forces R to be a PI-ring.
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This result was later extended in [KP3] where the authors proved that the
same conclusion holds if one requires that only A or B is a one-sided ideal.
In case the ring R is semiprime, the also showed that if A is nil PI and B is
PI then R is PI.

We remark that, except for some results about semiprime rings, only in
[K] and [BG] an explicit identity of R was exhibited. In all the other cases
proved so far, the authors have shown the existence of an identity for R
without providing any information on its explicit form or on its degree (as
a function of the degrees of an identity of A and B). The reason for such
failure is essentially the following: Most of these results use a reduction
technique to the prime case where structure theory can be applied through
the Martindale ring of quotients. Such reduction makes essentially use of
the so called “Amitsur’s trick” (see [Ro2]) which allows to pass from the
semiprime case to the general case but gives no information on the degree
of the identities so far found.

In this paper we answer this question in some special cases. Let R =
A + B, where A and B are subrings satisfying a polynomial identity.

We prove that if for some k ≥ 1, either (AB)k ⊆ A or (BA)k ⊆ A, then
R is PI. As a corollary we obtain the case when A is a one-sided ideal or the
case when AB = BA and Bk ⊆ A. Moreover, R is still PI if either A or B
is a Lie ideal of R. We shall remark that this last result can also be derived
from a theorem on special Lie algebras.

One can also consider, in a natural fashion, “mixed” identities or semi-
identities for R, i.e., polynomials in two distinct sets of variables

f(y1, . . . , yn, z1, . . . , zm)

that vanish when we evaluate the yi’s into elements of A and the zi’s into
elements of B. We prove that R is a PI-ring provided R satisfies a k-special
semi-identity i.e., an identity of the type f(y1, . . . , yk, z1, . . . , zk), for some
k ≥ 1 where only one monomial of the type yσ(1)zτ(1) . . . yσ(k)zτ(k) appears
with nonzero coefficient, for all σ, τ ∈ Sk.

In all these results, we obtain an explicit function giving the degree of an
identity for R in terms of the degree of an identity of A and B. Through
this function, an explicit identity for R can be constructed as it has been
shown by Regev in [R2]. More precisely, suppose that A and B satisfy an
identity of degree d and one of the above hypotheses holds. Then we prove
that R satisfies an identity of degree d′ where d′ is the least integer greater
than aa where a has the following value: a = 8e(d− 1)4, if A or B is a Lie
ideal; a = 8e(kd(d− 1)− 1)2(d− 1)2, if (AB)k ⊆ A; a = 8e(d− 1)4, if A is a
one-sided ideal; a = 8ek(d− 1)2, if R satisfies a k-special mixed identity of
degree k (here e is the basis of the natural logarithms).

Our technique is based on a combinatorial approach to the problem using
the sequence of codimensions of a ring. This sequence was introduced and
exploited by Regev in [R1]. He proved, through this method, that the
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tensor product of two PI-rings is a PI-ring. In this paper we follow that
approach and we attach to each of the rings R, A and B its codimension
sequence and through the study of the relations among these sequences and
their asymptotic behaviour we are able to prove our results. Unfortunately
our approach does not solve the problem in its generality. We feel that one
needs a better understanding through a deeper and throughout analysis of
the sequences of codimensions and their relations.

2. Preliminaries.

Throughout we shall assume that all rings are algebras over a fixed field F.
We make this assumption in order to simplify the notation. On the other
hand it is easily verified that our results are still valid for general rings if
one assumes that all polynomials have integer coefficients and that A and B
satisfy an identity which is a monic polynomial. To this end we recall that
by a theorem of Amitsur (see [Ro2]), if a ring satisfies an identity which is
proper for all its homomorphic images, then it satisfies an identity of the
type (Stk)l, for some k, l, where Stk is the standard polynomial of degree k.

Let X = {x1, x2, . . . } be a countable set and let F 〈X〉 be the free algebra
on X over F. Recall that a polynomial f(x1, . . . , xn) is an identity for the
algebra R if f(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R (in this case we write
f ≡ 0 on R). In case R satisfies a nontrivial identity f , i.e., f 6= 0, we say
that R is a PI-algebra.

In general one defines

Id(R) = {f ∈ F 〈X〉 | f ≡ 0 on R},
the set of polynomial identities of R. Id(R) has a structure of T-ideal of
F 〈X〉 i.e., an ideal invariant under all endomorphisms of F 〈X〉; it is obvious
that R is a PI-algebra if and only if Id(R) 6= 0.

Recall that a polynomial f(x1, . . . , xn) is multilinear if each variable xi,
i = 1, . . . , n, appears in every monomial of f with degree one. Multilinear
polynomials are important; in fact it is well-known that if R satisfies an
identity of degree d then it satisfies a multilinear identity of degree ≤ d.

For every n ≥ 1 we define

Vn = SpanF {xσ(1) . . . xσ(n) | σ ∈ Sn}
where Sn is the symmetric group of degree n. Vn is the space of multilinear
polynomials in x1, . . . , xn. Since dimF Vn = n!, from the above observation
we easily get the following:

Remark 2.1. The algebra R satisfies a polynomial identity if and only if
there exists n ≥ 1 such that

dimF
Vn

Vn ∩ Id(R)
< n!
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The above remark, though trivial, will be essential not only in the proof
of the existence of an identity for R but also for the explicit computation of
the corresponding degree.

3. The basic reduction.

From now on we shall assume that R is an F -algebra such that R = A + B
for suitable subalgebras A and B. We shall also assume that A and B are
PI-algebras. For the sake of simplicity let us denote by d the degree of an
identity satisfied by A and B.

Our first aim is to relate the valuations of polynomials in A, B to those
in R. To this end, we introduce two new countable sets Y = {y1, y2, . . . }
and Z = {z1, z2, . . . }. Then, we let F 〈Y ∪Z〉 be the free algebra on the set
Y ∪ Z over F. We relate F 〈Y ∪ Z〉 to F 〈X〉 by assuming that xi = yi + zi,
i = 1, 2, . . . .

We can now define the notion of s-identity (or semi-identity) of R. A
polynomial f(y1, . . . , yn, z1, . . . , zm) ∈ F 〈Y ∪ Z〉 is an s-identity of R if
f(a1, . . . , an, b1, . . . , bm) = 0 for all a1, . . . , an ∈ A, b1, . . . , bm ∈ B. Accord-
ingly one defines

Ids(R) = {f ∈ F 〈Y ∪ Z〉 | f is an s-identity of R},
the ideal of s-identities of R. It is clear that Ids(R) is an ideal invariant
under all endomorphisms of F 〈Y ∪Z〉 that leave F 〈Y 〉 and F 〈Z〉 invariant.
Also Id(R), Id(A), Id(B) ⊆ Ids(R).

Now we need the notion of multilinear polynomial in F 〈Y ∪ Z〉. To this
end, we give the same degree one to the variables yi and zi for all i = 1, 2, . . . .
Then

Wn = SpanF {wσ(1) . . . wσ(n) | σ ∈ Sn, wi = yi or zi, for all i = 1, . . . , n}
is the space of multilinear polynomials in y1, z1, . . . , yn, zn. It is clear that
dimF Wn = 2nn! and

Vn ⊆ Wn.

Since
Vn

Vn ∩ Id(R)
=

Vn

Vn ∩ (Wn ∩ Ids(R))
∼=

Vn + (Wn ∩ Ids(R))
Wn ∩ Ids(R)

⊆ Wn

Wn ∩ Ids(R)
,

we have the following:

Lemma 3.1. dimF
Vn

Vn ∩ Id(R)
≤ dimF

Wn

Wn ∩ Ids(R)
.

At the light of Remark 2.1, we can now make the following reduction.
Recall that R satisfies an identity of degree n if and only if dimF

Vn
Vn∩Id(R) <

n!

Remark 3.2. If there exists n ≥ 1 such that dimF
Wn

Wn ∩ Ids(R)
< n!, then

R is a PI-algebra and satisfies an identity of degree n.
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The spaces Wn are still too large for our computations. Hence we next
make one further reduction.

Let t ≥ 0 and fix integers 1 ≤ r1 ≤ · · · ≤ rt ≤ n. Then define

Vr1,...,rt = SpanF {wσ(1) . . . wσ(n) | σ ∈ Sn, wi = yi, for i ∈ {r1, . . . , rt},
wj = zj , for j 6∈ {r1, . . . , rt}}.

Clearly
Wn =

⊕
1≤r1≤···≤rt≤n

Vr1,...,rt .

Also, it is easy to see that Wn∩Ids(R) =
⊕

1≤r1≤···≤rt≤n(Vr1,...,rt∩Ids(R)).
It follows that

dimF
Wn

Wn ∩ Ids(R)
=

∑
1≤r1≤···≤rt≤n

dimF
Vr1,...,rt

Vr1,...,rt ∩ Ids(R)
.

Write for simplicity V1,...,t = Vt,n−t and notice that for all 1 ≤ r1 ≤ · · · ≤
rt ≤ n, Vr1,...,rt

∼= Vt,n−t and Vr1,...,rt ∩ Ids(R) ∼= Vt,n−t ∩ Ids(R). Since for

every t = 0, . . . , n, there exist
(

n
t

)
subspaces Vr1,...,rt isomorphic to Vt,n−t,

we get:

Lemma 3.3. dimF
Wn

Wn ∩ Ids(R)
=

n∑
t=0

(n

t

)
dimF

Vt,n−t

Vt,n−t ∩ Ids(R)
.

We can now prove the final reduction.

Remark 3.4. In order to prove that R is a PI-algebra, it is enough to prove
that there exists n ≥ 1 such that for all t = 0, 1, . . . , n,

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
<

n!
2n

.

In this case R satisfies an identity of degree n.

Proof. Suppose dimF
Vt,n−t

Vt,n−t∩Ids(R) < n!
2n . Then, by the previous lemma,

dimF
Wn

Wn ∩ Ids(R)
<

n∑
t=0

(
n
t

)
n!
2n

= 2n n!
2n

= n!

and we are done by Remark 3.2. �

4. Ordering monomials.

Let 1 ≤ d ≤ n. Recall (see [R2]) that a permutation σ ∈ Sn is called d-bad
if there exist 1 ≤ k1 < · · · < kd ≤ n such that σ(k1) > · · · > σ(kd). We say
that σ is d-good if it is not d-bad. The d-good permutations are quite spare
in Sn; in fact, as a consequence of a theorem of Dilworth one can prove the
following:
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Lemma 4.1 ([R2, Theorem 1.8]). In Sn the number of d-good permuta-
tions is ≤ (d−1)2n

(d−1)! .

The d-good permutations were used in PI-theory for finding a bound to
dimF

Vn
Vn∩Id(C) for a PI-algebra C.

We say that a monomial xσ(1) . . . xσ(n) is d-good if the corresponding
permutation σ is d-good. The result is the following:

Theorem 4.2 ([R2, Theorem 1.3]). Let C be an algebra satisfying an iden-
tity of degree d. Then every monomial in Vn can be written (mod. Id(C)) as
a linear combination of d-good monomials. Hence dimF

Vn
Vn∩Id(C) ≤

(d−1)2n

(d−1)! .

Next step is to generalize the above theorem by adapting it to our situ-
ation R = A + B. Recall that we are assuming throughout that A and B
satisfy an identity of degree d. In order to simplify the notation, we make
the following:

Definition 4.3. Let t ≥ 0 and write w ∈ Vt,n−t in the following form:

w = w1yσ(1) . . . yσ(i1)w2yσ(i1+1) . . . yσ(i2)w3 . . . wryσ(ir−1+1) . . . yσ(ir)wr+1

where w1, . . . , wr+1 are (eventually trivial) monomials in the variables zi.
If the permutation σ is d-good (d-bad) we say that w is d-y-good (d-y-bad
resp.).

Recall that an additive subgroup U of a ring R is a Lie ideal of R if for
all u ∈ U, r ∈ R, we have that [u, r] ∈ U .

Lemma 4.4. Let A be a Lie ideal of R. Then, for all t = 0, 1, . . . , n, Vt,n−t

is spanned (mod. Ids(R)) by all d-y-good monomials.

Proof. Suppose that the conclusion of the lemma is false. We first order the
monomials of Vt,n−t according to the left lexicographic order of the variables
yi. Then, among all monomials which do not satisfy the conclusion of the
lemma, we pick a smallest one (in the given order). Let such monomial be

w = w1yσ(1) . . . yσ(i1)w2 . . . wryσ(ir−1+1) . . . yσ(ir)wr+1.

In the monomial w we first make the formal substitution

yσ(is)ws+1 = yσ(is) + ws+1yσ(is)

for s = 1, . . . , r, where yσ(is) = [yσ(is), ws+1]. Since A ia a Lie ideal of R,
the elements yσ(is) evaluate to elements of A. It follows that we can write w
as a linear combination of monomials in the variables yi, yi, zi where either
some monomial wi has been absorbed in a yi or it has been moved to the
left past some yi.

A repeated application of this process allows us to write w as a linear
combination of monomials of the type

w′ = w′
1y

′
σ(1) . . . y′σ(i1)y

′
σ(i1+1) . . . y′σ(i2) . . . y′σ(ir)
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where y′j = [yj , wu1 , . . . , wus ] for some u1, . . . , us, s ≥ 0 and w′
1 is a monomial

in the variables zi. Note that in our terminology the Lie commutators are
left normed i.e., [x1, . . . , xn] = [[x1, x2], . . . , xn]. Also, in each monomial w′,
the permutation of the indices of the variables y′i is still σ.

Since the conclusion of the lemma does not hold for the monomial w,
then in particular σ is a d-bad permutation. It follows that there exist
1 ≤ j1 < · · · < jd ≤ t such that σ(j1) > · · · > σ(jd). Write

w′ = ay′′1y′′2 . . . y′′d

where a = w′
1y

′
σ(1) . . . y′σ(j1−1) and

y′′1 = y′σ(j1) . . . y′σ(j2−1), . . . , y′′d = y′σ(jd) . . . y′σ(ir).

Let f(y1, . . . , yd) =
∑

τ∈Sd
ατyτ(1) . . . yτ(d) be a multilinear identity of

degree d satisfied by A. We may clearly assume that α1 = 1. Since A is
a subring and a Lie ideal of R, then the polynomials y′′1 , . . . , y′′d evaluate
to elements of A. It follows that f(y′′1 , . . . , y′′d) is an s-identity of R. Hence
f(y′′1 , . . . , y′′d) ∈ Ids(R) ∩ Vt,n−t.

Write

w′ = ay′′1 . . . y′′d ≡ −
∑

aατy
′′
τ(1) . . . y′′τ(d) (mod. Ids(R)).(1)

By the definition of y′′1 , . . . , y′′d , since σ is d-bad, it follows that each monomial
ay′′τ(1) . . . y′′τ(d), to the right-hand side of (1), is smaller that ay′′1y′′2 . . . y′′d (in
the left lexicographic order of the y′′i ’ s).

If we now recall the definition of the yi’s and we open up all the brack-
ets, we obtain that w′ and, so, the original monomial w, can be written
(mod. Ids(R)) as a linear combination of monomials (in the variables yi and
zi) which are smaller than w in the left lexicographic order of the yi’s. By
the minimality of w, it follows that the lemma holds for such monomials.
Hence each of them can be written as a linear combination (mod. Ids(R))
of monomials which are d-y-good. But then the same conclusion holds for
w and this is a contradiction. �

Lemma 4.5. Suppose that for some k ≥ 1, (AB)k ⊆ A. Then, for all
t = 0, 1, . . . , n, Vt,n−t is spanned (mod. Ids(R)) by all kd(d−1)-y-good mono-
mials.

Proof. Suppose that the conclusion of the lemma is false and take, as before,
a monomial w which does not satisfy the conclusion of the lemma and is
smallest in the order of the yi’s. Let

w = w1yσ(1) . . . yσ(i1)w2 . . . wryσ(ir−1+1) . . . yσ(ir)wr+1.

By the choice of w, in particular, σ is kd(d− 1)-bad and let 1 ≤ j1 < · · · <
jkd(d−1) ≤ t be such that σ(j1) > · · · > σ(jkd(d−1)). Suppose first that we
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can write
w = uyσ(jm)a1yσ(jm+1)a2 . . . adyσ(jm+d−1)v

for some m ∈ {1, 2, . . . , kd(d− 1)− d + 1}, where a1, . . . , ad are monomials
in the only variables yi and u and v are suitable monomials.

In this case set yσ(jm)a1 = y′1, yσ(jm+1)a2 = y′2, . . . , yσ(jm+d−1)v = y′d.
Then

w = uy′1y
′
2 . . . y′d.

If f(y1, . . . , yd) is the multilinear identity of degree d satisfied by A, then
f(y′1, . . . , y

′
d) is still an identity of A and, by applying it as in the previous

lemma, we can write

w ≡ −
∑
τ∈Sd

ατuy′τ(1) . . . y′τ(d) (mod. Ids(R))(2)

for some ατ ∈ F. But each monomial on the right-hand side of (2) is smaller
than w in the order of the variables yi; hence we get, by the minimality of
w, that each of them can be written (mod. Ids(R)) as a linear combination
of kd(d− 1)-y-good monomials. But then the same conclusion holds for w,
a contradiction.

Hence we may assume that for any d indices jm < jm+1 < · · · < jm+d−1

(of the sequence giving the kd(d − 1)-y-badness of w), in the monomial w,
at least one variable zi appears between the variables yσ(jm) and yσ(jm+d−1).

Let us write w in the form

w = a0yσ(jp1 )a1yσ(jp2 )a2 . . . yσ(jpd
)ad

where p1 = 1, a0, a1, . . . , ad are monomials in the variables yi and zi and
yσ(jpm )am evaluates to either (AB)kA or (AB)k, for all m = 1, . . . , d. In
order for this decomposition to hold, we have to show that pd ≤ kd(d− 1).
In fact, by the assumption made above, in w, at least one variable zi appears
between two variables yσ(jm) and yσ(jm+d−1). Hence, for i = 1, . . . , d− 1,

pi+1 − pi ≤ k(d− 1),

but then, pd = 1+(p2−p1)+ · · ·+(pd−pd−1) ≤ kd(d−1) as claimed. Write
now

w = a0y
′
1y

′
2 . . . y′d

where y′1 = yσ(jp1 )a1, . . . , y
′
d = yσ(jpd

)ad and let f(y1, . . . , yd) be the identity
of A. Recall that y′i = yσ(jpi )

ai evaluates to (AB)kA or (AB)k and both
these sets lie in A by hypothesis. Hence f(y′1, . . . , y

′
d) is an s-identity of R

and f(y′1, . . . , y
′
d) ∈ Ids(R) ∩ Vt,n−t.

Through the identity f(y′1, . . . , y
′
d) we can now rearrange (mod. Ids(R))

the variables y′i in w and, as above, this leads to a contradiction due to the
minimality of w. �
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Corollary 4.6. If A is a one-sided ideal of R then, for all t = 0, 1, . . . , n,
Vt,n−t is spanned (mod. Ids(R)) by all d-y-good monomials.

Proof. From the previous lemma we get that Vt,n−t is spanned by the d(d−
1)-y-good monomials. We next show that this result can be improved as
claimed in the conclusion of the corollary. Suppose A is a one-sided ideal of
R.

As in the previous lemma we take w smallest in the order of the yi’s for
which the conclusion does not hold. We take 1 ≤ j1 < · · · < jd ≤ t such
that σ(j1) > · · · > σ(jd).

Then we write
w = ay′1y

′
2 . . . y′d

where a = w1yσ(1) . . . yσ(j1−1)w
′
1 and

y′1 = yσ(j1) . . . yσ(j2−1)w
′
2, . . . , y

′
d = w1yσ(jd) . . . wr+1

with w′
1, w

′
2, . . . eventually trivial monomials in the variables zi. Since A

is a right ideal of R, the monomials y′1, . . . , y
′
d evaluate to elements of A.

Hence they can be rearranged (mod. Ids(R)) using the identity of A. This
completes the proof as in the previous lemmas. �

5. Mixed identities.

In this section we examine the case when R further satisfies a semi-identity
f ∈ Ids(R) of a special type. It is clear, by the standard multilinearization
process, that if R satisfies a nontrivial semi-identity of degree m, then it
also satisfies a multilinear one of degree ≤ m. If {i1, . . . , ik} is a subset of
{1, . . . , n} we denote by Sk(i1, . . . , ik) the subgroup of Sn of all permutations
fixing {1, . . . , n}\{i1, . . . , ik}. Also, in order to simplify the notation, we
write the variables zt+1, . . . , zn of Vt,n−t as z1, . . . , zn−t, respectively. We
now make the formal definition.

Definition 5.1. Let f(y1, . . . , yk, z1, . . . , zk) ∈ F 〈Y ∪ Z〉 be a multilinear
polynomial. We say that f is k-special if

f(y1, . . . , yk, z1, . . . , zk) = y1z1 . . . ykzk +
∑

σ∈S2k
σ 6∈T

ασwσ(1) . . . wσ(2k)

for some ασ ∈ F, where, for i = 1, . . . k, w2i = zi, w2i−1 = yi and T =
Sk(1, 3, . . . , 2k − 1)× Sk(2, 4, . . . , 2k) ⊆ S2k.

In few words, f is k-special if the only monomial of the type

yσ(1)zτ(1) . . . yσ(k)zτ(k)

appearing in f with nonzero coefficient is y1z1 . . . ykzk.
We next prove that in the presence of a k-special semi-identity for R we

can bound exponentially the dimension of Vt,n−t (mod. Ids(R)). Recall that
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if n ≥ 1 is an integer such that n = r1+ · · ·+rp, ri > 0, then the multinomial

coefficient is defined as
(

n
r1, . . . , rp

)
=

n!
r1! . . . rp!

.

Lemma 5.2. Suppose that R satisfies a k-special semi-identity. Then for
all t = 0, 1, . . . , n,

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
≤ (4k(d− 1)2)n

(d− 1)!
.

Proof. We decompose the space Vt,n−t as follows: Write t = q1 + · · · +
qp, n − t = r1 + · · · + rp where q1 ≥ 0, rp ≥ 0, for p > 1 we have that
q2, . . . , qp, r1, . . . , rp−1 are positive integers and at most one between q1 and
rp can eventually be zero. Then define (q, r) = (q1, . . . , qp, r1, . . . , rp) and

U
(p)
(q,r) = SpanF{yσ(1) . . . yσ(q1)zτ(1) . . . zτ(r1) . . . yσ(q1+···+qp−1+1)

. . . yσ(t)zτ(r1+···+rp−1+1) . . . zτ(n−t) | σ ∈ St, τ ∈ Sn−t}.
We write ⊕

(q,r)

U
(p)
(q,r) = U (p).

Clearly Vt,n−t = ⊕p≥1U
(p).

We claim that for every (q, r) and for every p,

U
(p)
(q,r) ⊆

⊕
s≤2k

U (s).(3)

In fact, suppose the above inclusion is false and pick a subspace U
(p)
(q,r) with

p minimal such that U
(p)
(q,r) is not contained in the right-hand side of (3).

Since p > 2k, every monomial in U
(p)
(q,r) is of the form

v = v1u1 . . . vpup

where v1, . . . , vp are monomials in the variables yi, u1, . . . , up are monomials
in the variables zi and either v1 or up is eventually trivial. Suppose for short
that v1 6= 1. Since, by hypothesis, R satisfies a k-special semi-identity and
A and B are subrings, we get that

v1u1 . . . vkuk ≡
∑

σ∈S2k
σ 6∈T

ασwσ(1) . . . wσ(2k) (mod. Ids(R)),

where w2i = vi and w2i−1 = ui, for i = 1, . . . , k. But then, this says that
(mod. Ids(R)) v is a linear combination of monomials belonging to some
U

(p1)
(s1,r1) with p1 < p. By the minimality of p, U

(p1)
(s1,r1) ⊆

⊕
q≤2k

U (p) and, since

U
(p)
(s,r) ⊆ U

(p1)
(s1,r1), we get a contradiction.
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We now compute dimF U
(p)
(q,r) for every p ≤ 2k. Since both A and B

satisfy an identity of degree d, by Theorem 4.2, any monomial in the only
variables yi (in the only variables zi) can be written (mod. Ids(R)) as a linear
combination of d-good monomials. Moreover, by Lemma 4.1, the number
of d-good monomials in m variables is bounded by (d−1)2m

(d−1)! . Since in every

monomial of U
(p)
(q,r) occur q1 consecutive variables yi, . . . , qp consecutive

variables yi (r1 consecutive variables zi, . . . , rp consecutive variables zi), we
get that U

(p)
(q,r) is spanned (mod. Ids(R)) by at most

(d− 1)2q1

(d− 1)!
. . .

(d− 1)2qp

(d− 1)!
t!

q1! . . . qp!
(d− 1)2r1

(d− 1)!
. . .

(d− 1)2rp

(d− 1)!
(n− t)!
r1! . . . rp!

≤ (d− 1)2n

((d− 1)!)2p−1

(
t

q1, . . . , qp

) (
n− t

r1, . . . , rp

)
monomials.

Recall that if m, m1, . . . ,mp are positive integers such that m = m1+· · ·+

mp, by the multinomial theorem (see [Bi]), we have that
(

m
m1, . . . ,mp

)
≤

pm. Hence, since p ≤ 2k, we get that U
(p)
(q,r) is spanned (mod. Ids(R)) by at

most
(d− 1)2n

(d− 1)!
(2k)t(2k)n−t =

(d− 1)2n(2k)n

(d− 1)!

monomials. Since there are at most 2n spaces U
(p)
(q,r) inside Vt,n−t, the con-

clusion follows. �

6. The main results.

In the next lemma we prove that the results obtained in Lemma 4.4, Lem-
ma 4.5 and Corollary 4.6 allow us to get a suitable upper bound to the
dimension of Vt,n−t (modulo Vt,n−t ∩ Ids(R)).

Lemma 6.1. Let 0 ≤ t ≤ n and suppose that Vt,n−t is spanned (mod.
Ids(R)) by the c-y-good monomials, for some c ≥ 1. Then,

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
≤ 2n(c− 1)2t(d− 1)2(n−t)(t + 1)n−t.

Proof. For t = q1+ · · ·+qp and n−t = r1+ · · ·+rp, let U
(p)
(s,r) be the subspace

of Vt,n−t defined in the proof of the Lemma 5.2.
We shall compute the dimension of the spaces U

(p)
(q,r) and, so, the dimension

of Vt,n−t (mod. Ids(R)), for t = 0, 1, . . . . By hypothesis U
(p)
(q,r) is generated

(mod. Ids(R)) by all c-y-good monomials. By Lemma 4.1 the number of
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such monomials is bounded by (c−1)2t

(c−1)! . On the other hand, by recalling that
B satisfies an identity of degree d, by Theorem 4.2, every monomial in the
only variables zi can be written (mod. Ids(R)) as a linear combination of
d-good monomials. Since in every monomial of U

(p)
(q,r) occur r1 consecutive

zi, . . . , rp consecutive zi, it follows that U
(p)
(s,r) is spanned (mod. Ids(R)) by

at most

(c− 1)2t

(c− 1)!
(n− t)!
r1! . . . rp!

(d− 1)2r1

(d− 1)!
. . .

(d− 1)2rp

(d− 1)!

≤ (c− 1)2t(d− 1)2(n−t)

((c− 1)!(d− 1)!)p−1

(
n− t

r1, . . . , rp

)
≤ (c− 1)2t(d− 1)2(n−t)pn−t

monomials (note that the last inequality holds since by the multinomial

theorem
(

n− t
r1, . . . , rp

)
≤ pn−t).

Recalling that p ≤ t + 1 and that there exist at most 2n subspaces U
(p)
(q,r),

we get the desired conclusion. �

Theorem 6.2. Let R = A + B be a ring which is the sum of two subrings
A and B and suppose that A and B both satisfy an identity of degree d. We
have:

1) If (AB)k ⊆ A, for some k ≥ 1, then R is PI and satisfies an identity
whose degree is the least integer greater than aa where a = 8e(kd(d −
1) − 1)2(d − 1)2; in case A is a one-sided ideal then we can take a =
8e(d− 1)4;

2) if A is a Lie ideal, then R is PI and satisfies an identity whose degree
is the least integer greater than aa where a = 8e(d− 1)4;

3) if R satisfies a k-special semi-identity, for some k ≥ 1, then R is PI
and satisfies an identity whose degree is the least integer greater than
8ek(d− 1)2.

Proof. By Remark 3.4 it is enough to prove that there exists n such that

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
<

n!
2n

,

for all t = 0, . . . , n. The smallest n for which this inequality holds will also
give us the desired degree of an identity for R.

In order to get a bound for this smallest n, we are going to use the well-
known inequality (see, for instance, [FR, p. 105]) that holds for any x ≥ 1:(x

e

)x
<

Γ(x + 1)√
2πx

< Γ(x + 1)
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where Γ(x + 1) is the gamma function (recall that Γ(n + 1) = n! for every
natural number n) and e is the basis of the natural logarithms.

Suppose that Vt,n−t is spanned (mod. Ids(R)) by the c-y-good monomials,
for some c ≥ 1. Then, according to Lemma 6.1, it is enough to find a natural
number n such that

2n(c− 1)2t(d− 1)2(n−t)(t + 1)n−t <
n!
2n

or, in view of the above remark,

(4e)n(c− 1)2t(d− 1)2(n−t)(t + 1)n−t ≤ nn.

If we define a = 8e(c − 1)2(d − 1)2 then, since t + 1 ≤ 2t and t ≤ n, all we
need is n such that

antn−t ≤ nn.

Here we have two possibilities: If t ≤ n/a clearly the inequality holds for
every natural number n ≥ a. If n ≥ t > n/a it is easy to check that the
above inequality still holds for every natural number n ≥ aa.

By Lemma 4.4, in case A is a Lie ideal of R, Vt,n−t is spanned (mod. Ids(R))
by the d-y-good monomials. Hence by what we have just proved, by tak-
ing c = d, it follows that in this case R is PI and it satisfies an identity
of degree the least integer greater than aa where a = 8e(d − 1)4. Simi-
larly, in case (AB)k ⊆ A, by invoking Lemma 4.5 and c = kd(d− 1) above,
we get an identity for R of degree the least integer greater than aa where
a = 8e(kd(d− 1)− 1)2(d− 1)2.

Suppose now that R satisfies a k-special semi-identity. Then, by Lem-
ma 5.2, we know that

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
≤ (4k(d− 1)2)n

(d− 1)!
.

Therefore it is enough to take n ≥ 8ek(d− 1)2 > 8ek(d−1)2

n
√

(d−1)!
. �

One last remark is in order. As the referee has pointed out, the result:
If A and B are PI and one of them is a Lie ideal then R is PI, can also
be proved directly by an application of the theory of special Lie algebras
(see [B, Section 6.3]). In order to see this, regard R as a Lie algebra under
the bracket operation [ , ] and A and B as Lie subalgebras. Since a Lie
subalgebra of an associative PI-algebra is Lie PI ([B, Section 6.3]), both A
and B satisfy a nontrivial identity as Lie algebras. If, say, A is a Lie ideal,
then R/A is isomorphic to B which is Lie PI. Then the Lie algebra R, being
an extension of a PI-ideal A by a PI-quotient algebra B is PI. This clearly
implies that R is PI as an associative algebra.
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Universidade Federal do Rio de Janeiro
Rio de Janeiro
Brazil
E-mail address: bfel@terra.com.br

Dipartimento di Matematica ed Applicazioni
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