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We derive the existence of a specific two-variable p-adic L-
function by means of a method provided by Washington. This
two-variable function is a generalization of the one-variable
p-adic L-function of Kubota and Leopoldt, yielding the one-
variable function when the second variable vanishes.

1. Introduction.

In [5] Kubota and Leopoldt prove the existence of meromorphic functions,
Lp(s;χ), defined over the p-adic number field, that serve as p-adic equivalents
of the Dirichlet L-series. These p-adic L-functions interpolate the values

Lp(1− n;χ) = − 1
n

(
1− χn(p)pn−1

)
Bn,χn ,

whenever n is a positive integer. Here, Bn,χ denotes the nth generalized
Bernoulli number associated with the primitive Dirichlet character χ, and
χn = χω−n, with ω the Teichmüller character. Since the time of that publi-
cation, a number of individuals have derived the existence of these functions
by various means. In particular, Washington [8] derives the functions by
elementary means and expresses them in an explicit form:

Theorem 1. Let F be a positive integral multiple of q and fχ, and let

Lp(s;χ) =
1

s− 1
1
F

F∑
a=1

(a,p)=1

χ(a)〈a〉1−s
∞∑
m=0

(
1− s

m

)(
F

a

)m
Bm.

Then Lp(s;χ) is analytic for s ∈ D when χ 6= 1, and meromorphic for
s ∈ D, with a simple pole at s = 1 having residue 1 − 1/p, when χ = 1.
Furthermore, for each n ∈ Z, n ≥ 1,

Lp(1− n;χ) = − 1
n

(
1− χn(p)pn−1

)
Bn,χn .

Thus, Lp(s;χ) vanishes identically if χ(−1) = −1.
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Recently, a particular two-variable extension, Lp(s, t;χ), of the p-adic
L-functions was produced—one in which interpolating values of the two-
variable functions yield expressions in terms of the generalized Bernoulli
polynomials [3]. For positive integers n, these functions satisfy

Lp(1− n, t;χ) = − 1
n

(
Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

))
,

with the restriction that t ∈ Cp, |t|p ≤ 1. It has been shown that these in-
terpolating values share certain congruence properties with the correspond-
ing interpolating values of the one-variable functions [2]. By applying the
method that Washington used to derive Theorem 1, we obtain Lp(s, t;χ) by
elementary means and express the functions in an explicit form.

Theorem 2. Let F be a positive integral multiple of q and fχ, and let

Lp(s, t;χ) =
1

s− 1
χ(−1)
F

F∑
a=1

(a,p)=1

χ(a)〈a− qt〉1−s
∞∑
m=0

(
1− s

m

)(
F

a− qt

)m
Bm.

Then Lp(s, t;χ) is analytic for t ∈ Cp, |t|p ≤ 1, provided s ∈ D, except s 6= 1
when χ = 1. Also, if t ∈ Cp, |t|p ≤ 1, this function is analytic for s ∈ D
when χ 6= 1, and meromorphic for s ∈ D, with a simple pole at s = 1 having
residue 1− 1/p, when χ = 1. Furthermore, for each n ∈ Z, n ≥ 1,

Lp(1− n, t;χ) = − 1
n

(
Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

))
.

Thus, Lp(s, 0;χ) = Lp(s;χ) for each s ∈ D, with s 6= 1 if χ = 1.

By an analysis of the formula for Lp(s;χ) given in Theorem 1, one can
obtain Diamond’s formula for the value of L′p(0;χ) (see [6, p. 393]):

Theorem 3. Let χ be a primitive Dirichlet character, and let F be a positive
integral multiple of q and fχ. Then

L′p(0;χ) =
F∑

a=1
(a,p)=1

χ1(a)Gp
( a
F

)
− Lp(0;χ) logp(F ).

Here, the function Gp is the Diamond function, and logp is the p-adic
logarithm function of Iwasawa.

Young [9] derives a similar formula for (∂/∂s)Lp(0, t;χ) by means of a
p-adic integral representation of Lp(s, t;χ). However, his work is restricted
to those characters χ such that the conductor of χ1 is not a power of p.
The explicit formula given in Theorem 2 enables one to derive a formula for
(∂/∂s)Lp(0, t;χ), similar to that obtained by Young, but for all primitive
Dirichlet characters χ.
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Theorem 4. Let χ be a primitive Dirichlet character, and let F be a positive
integral multiple of q and fχ. Then for any t ∈ Cp, |t|p ≤ 1,

∂

∂s
Lp(0, t;χ) = χ(−1)

F∑
a=1

(a,p)=1

χ1(a)Gp

(
a− qt

F

)
− Lp(0;χ) logp(F ).

Note that, if χ(−1) = −1, then the function Lp(s;χ) vanishes identically.
However, Lp(s, t;χ) is not identically 0 for any character χ. Thus, Lp(s, t;χ)
provides us with a p-adic L-function that does not vanish identically for
those χ such that χ(−1) = −1. This may prove to be of use in the study of
structures associated with such characters.

2. Preliminaries.

Let χ be a Dirichlet character, defined modulo its conductor fχ. Then
χ(a)φ(fχ) = 1 for any a ∈ Z with (a, fχ) = 1, and χ(a) = 0 otherwise. For
two such characters χ and ψ, having conductors fχ and fψ, respectively, let
χψ denote the primitive character associated to the product of the charac-
ters. The conductor fχψ then divides lcm(fχ, fψ).

The generalized Bernoulli polynomials associated with χ, Bn,χ(t), are
defined by the generating function

fχ∑
a=1

χ(a)xe(a+t)x

efχx − 1
=

∞∑
n=0

Bn,χ(t)
xn

n!
.(1)

The corresponding generalized Bernoulli numbers can then be defined by
Bn,χ = Bn,χ(0). With this definition, the generalized Bernoulli polynomials
are expressed more precisely in terms of the expansion

Bn,χ(t) =
n∑

m=0

(
n

m

)
Bn−m,χt

m,

which is derived from (1).
The classical Bernoulli polynomials, Bn(t), are defined by

xetx

ex − 1
=

∞∑
n=0

Bn(t)
xn

n!
,

and the classical Bernoulli numbers by Bn = Bn(0). This yields the values
B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, . . . , with Bn = 0 for odd n ≥ 3.
The Bernoulli numbers are rational numbers, and the von Staudt-Clausen
theorem states that for even n ≥ 2,

Bn +
∑

p prime
(p−1)|n

1
p
∈ Z.
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Thus, the denominator of each Bn must be square-free. We also have the
relation

Bn(t) =
n∑

m=0

(
n

m

)
Bn−mt

m.(2)

The classical Bernoulli polynomials are related to the generalized Bernoulli
polynomials in that Bn,1(t) = (−1)nBn(−t), where χ = 1 is the unique
character having conductor 1 and satisfying χ(a) = 1 for each a ∈ Z.

Let p be a fixed prime. We will use Zp to represent the p-adic integers,
and Qp the p-adic rationals. Let Cp denote the completion of the algebraic
closure of Qp under the p-adic absolute value | · |p, normalized so that |p|p =
p−1. Fix an embedding of the algebraic closure of Q into Cp. Since each
value of a Dirichlet character χ is either 0 or a root of unity, we may consider
the values of χ as lying in Cp.

Denote q = 4 if p = 2 and q = p otherwise. Let ω denote the Teichmüller
character, having conductor fω = q. For an arbitrary character χ we then
define the character χn = χω−n, where n ∈ Z, in the sense of the product
of characters.

Let 〈a〉 = ω−1(a)a whenever (a, p) = 1. Then 〈a〉 ≡ 1 (mod qZp) for
these values of a. For our purposes, we extend this by defining 〈a + qt〉 =
ω−1(a)(a+ qt) for all a ∈ Z, with (a, p) = 1, and t ∈ Cp such that |t|p ≤ 1.
Then 〈a+ qt〉 = 〈a〉+ qω−1(a)t, so that 〈a+ qt〉 ≡ 1 (mod qZp[t]).

The p-adic logarithm function [4], logp, is the unique function mapping
C×p → Cp that satisfies logp(1 + x) =

∑∞
n=1(−1)n−1xn/n for |x|p < 1,

logp(xy) = logp(x) + logp(y) for all x, y ∈ C×p , and logp(p) = 0. Note that
these conditions imply that this function vanishes at any rational power of
p. The Diamond function [1] is defined by

Gp(x) =
(
x− 1

2

)
logp(x)− x+

∞∑
j=2

Bj
j(j − 1)

x1−j .

The domain of this function is |x|p > 1, with the p-adic convergence of this
sum being for each x in this domain.

Recall that whenever m ∈ Z, m ≥ 0, the power of p that divides m! is
given by the sum

∞∑
j=1

[
m

pj

]
≤ m

p− 1
,

where [x] is the unique integer n satisfying n ≤ x < n + 1. The bound on
this sum then implies that |m!|p ≥ |p|m/(p−1)

p .
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For each n ∈ Z, n ≥ 0, the quantity
(
x
n

)
is defined in like manner as the

binomial coefficients, denoting
(
x
0

)
= 1 and(

x

n

)
=

1
n!
x(x− 1) . . . (x− (n− 1))

for n > 0. Note that each such quantity is a polynomial in x.
Consider the following result from [8] (see also Chapter 5 of [7]):

Lemma 5. Let Aj(X) =
∑∞

n=0 an,jx
n, an,j ∈ Cp, j = 0, 1, . . . , be a se-

quence of power series, each of which converges in a fixed subset D of Cp,
such that:

(1) an,j → an,0 as j →∞ for each n; and
(2) for each s ∈ D and ε > 0, there exists n0 = n0(s, ε) such that

|
∑

n≥n0
an,js

n|p < ε for all j.
Then limj→∞Aj(s) = A0(s) for all s ∈ D.

This lemma is used by Washington to show that each of the functions 〈a〉s
and

∑∞
m=0

(
s
m

)
(F/a)mBm, where F is a multiple of q and fχ, is analytic in

D = {s ∈ Cp : |s − 1|p < |p|1/(p−1)
p |q|−1

p }. This, along with an identity
concerning generalized Bernoulli polynomials, enables the proof of the main
theorem of [8].

By the same means, we derive a similar result for a two-variable p-adic
L-function Lp(s, t;χ). This function is defined for s ∈ D, except s 6= 1 if
χ = 1, and t ∈ Cp, |t|p ≤ 1, and it interpolates the values

Lp(1− n, t;χ) = − 1
n

(
Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

))
,

where n ∈ Z, n ≥ 1. It is related to the one-variable function Lp(s;χ) in
that Lp(s, 0;χ) = Lp(s;χ) for each s in the domain of Lp(s;χ).

3. The two-variable p-adic L-function.

This now brings us to our main result. We will construct our function
Lp(s, t;χ) for s ∈ D, except s 6= 1 if χ = 1, and t ∈ Cp, |t|p ≤ 1, and
in the process derive an explicit formula for this function. Before we begin
this derivation, we need the following result concerning generalized Bernoulli
polynomials:

Lemma 6. Let g be a positive integral multiple of fχ. Then for each n ∈ Z,
n ≥ 0,

Bn,χ(t) = (−1)ngn−1
g−1∑
a=0

χ(−a)Bn
(
a− t

g

)
.

A version of this result appears in Chapter 2 of [4], and can be derived
by a manipulation of the appropriate generating functions.
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Proof of Theorem 2. Let a ∈ Z, (a, p) = 1. For t ∈ Cp, |t|p ≤ 1, the same
argument as that given in the proof of the main theorem of [8] can be
applied to show that each of the functions

∑∞
m=0

(
s
m

)
(F/(a− qt))mBm and

〈a − qt〉s =
∑∞

m=0

(
s
m

)
(〈a − qt〉 − 1)m is analytic for s ∈ D. This method

can also be used to show that the function
∑∞

m=0

(
s
m

)
(F/(a − qt))mBm is

analytic for t ∈ Cp, |t|p < |q|−1
p , whenever s ∈ D. It readily follows that

〈a − qt〉s = 〈a〉s
∑∞

m=0

(
s
m

)
(−a−1qt)m is analytic for t ∈ Cp, |t|p ≤ 1, when

s ∈ D. Thus, since (s− 1)Lp(s, t;χ) is a finite sum of products of these two
functions, it must also be analytic for s ∈ D given t ∈ Cp, |t|p ≤ 1, and for
t ∈ Cp, |t|p ≤ 1, whenever s ∈ D. Note that

lim
s→1

(s− 1)Lp(s, t;χ) =
χ(−1)
F

F∑
a=1

(a,p)=1

χ(a) =
{

1− p−1, if χ = 1,
0, if χ 6= 1.

Thus, our conclusions on when Lp(s, t;χ) is analytic or meromorphic follow.
Now let n ∈ Z, n ≥ 1, and fix t ∈ Cp, |t|p ≤ 1. Since F must be a multiple

of fχn , Lemma 6 implies that

Bn,χn(qt) = (−1)nFn−1
F−1∑
a=0

χn(−a)Bn
(
a− qt

F

)
.

If χn(p) 6= 0, then (p, fχn) = 1, so that F/p is a multiple of fχn . Therefore,

χn(p)pn−1Bn,χn

(
p−1qt

)
= (−1)nχn(p)Fn−1

F/p−1∑
a=0

χn(−a)Bn
(
a− p−1qt

Fp−1

)

= (−1)nFn−1
F−1∑
a=0
p|a

χn(−a)Bn
(
a− qt

F

)
.

The difference of these quantities yields

Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

)
= χ(−1)Fn−1

F∑
a=1

(a,p)=1

χn(a)Bn

(
a− qt

F

)
.

By using (2), we can rewrite the Bernoulli polynomial Bn(t) in this expres-
sion as

Bn

(
a− qt

F

)
= F−n(a− qt)n

n∑
m=0

(
n

m

)(
F

a− qt

)m
Bm.
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Since χn(a) = χ(a)ω−n(a) and ω−1(a)(a− qt) = 〈a− qt〉 for (a, p) = 1 and
t ∈ Cp, |t|p ≤ 1, we obtain

Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

)
=
χ(−1)
F

F∑
a=1

(a,p)=1

χ(a)〈a− qt〉n
∞∑
m=0

(
n

m

)(
F

a− qt

)m
Bm.

Therefore,

− 1
n

(
Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

))
= Lp(1− n, t;χ),

completing the proof. �

Note that the proof of the main theorem of [8] infers the existence of
the factor χ(−1) in the formula for Lp(s;χ). However, since χ(−1) 6= 1
implies that Lp(s;χ) is identically 0, this quantity is not needed in the given
expression. As Lp(s, t;χ) is not identically 0 for any character χ, the factor
χ(−1) is needed in the expression corresponding to this function.

In [7], Washington modifies the derivation of Lp(s;χ) by first defining the
function

Hp(s, a, F ) =
1

s− 1
1
F
〈a〉1−s

∞∑
m=0

(
1− s

m

)(
F

a

)m
Bm,(3)

where s ∈ D, s 6= 1, a ∈ Z with (a, p) = 1, and F is a multiple of q. The
function Lp(s;χ) can then be expressed as the sum

Lp(s;χ) =
F∑

a=1
(a,p)=1

χ(a)Hp(s, a, F ),

provided F is a multiple of both q and fχ. The function Hp(s, a, F ) is
meromorphic for s ∈ D with a simple pole at s = 1, having residue 1/F ,
and it interpolates the values

Hp(1− n, a, F ) = − 1
n
ω−n(a)Fn−1Bn

( a
F

)
,

where n ∈ Z, n ≥ 1.
It is obvious that we can express Lp(s, t;χ) in a similar manner. Using

(3) to define Hp(s, a − qt, F ) for all a ∈ Z, (a, p) = 1, and t ∈ Cp, |t|p ≤ 1,
we obtain

Lp(s, t;χ) = χ(−1)
F∑

a=1
(a,p)=1

χ(a)Hp(s, a− qt, F ).
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From the proof of Theorem 2, it follows that Hp(s, a− qt, F ) is analytic for
t ∈ Cp, |t|p ≤ 1, when s ∈ D, s 6= 1, and meromorphic for s ∈ D, with a
simple pole at s = 1, when t ∈ Cp, |t|p ≤ 1.

4. The value of (∂/∂s)Lp(0, t; χ).

Let us now consider the values of the first partial derivatives of the function
Lp(s, t;χ) at s = 0.

In [3], it is shown that whenever n ∈ Z, n ≥ 1,

∂n

∂tn
Lp(s, t;χ) = n!qn

(
−s
n

)
Lp(s+ n, t;χn)

for all s ∈ D, s 6= 1 if χ = 1, and t ∈ Cp with |t|p ≤ 1. Furthermore, we
have

lim
s→1−n

(
−s
n

)
Lp(s+ n, t;χ) = − 1

n

(
1− χ(p)p−1

)
B0,χ.

Therefore,

∂n

∂tn
Lp(1− n, t;χ) = −(n− 1)!qn

(
1− χn(p)p−1

)
B0,χn .

Since B0,χ = 0 whenever χ 6= 1, this becomes

∂n

∂tn
Lp(1− n, t;χ) =

{
−(n− 1)!qn

(
1− p−1

)
, if χn = 1,

0, if χn 6= 1.

Thus, when n = 1, we have the value of (∂/∂t)Lp(0, t;χ).
The value of (∂/∂s)Lp(0, t;χ) is given in Theorem 4. The proof of this

result follows in much the same manner as the proof of Theorem 3, given in
[6, pp. 393-394].

Proof of Theorem 4. The value of (∂/∂s)Lp(0, t;χ) is the coefficient of s in
the expansion of Lp(s, t;χ) about s = 0. We find this by determining the
constant and linear terms in the corresponding expansions of each of three
functions of s that make up the expression given in Theorem 2.

Expanding 1/(1− s) about s = 0 yields

1
1− s

= 1 + s+ · · · ,

while expanding 〈a− qt〉1−s about s = 0 yields

〈a− qt〉1−s = 〈a− qt〉
(
1− s logp〈a− qt〉+ · · ·

)
.

The expansion of
(
1−s
m

)
about s = 0 is given by(
1− s

m

)
=

(−1)m+1

m(m− 1)
s+ · · · ,
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provided m ≥ 2. Employing these expansions, along with some algebraic
manipulations, we obtain

∂

∂s
Lp(0, t;χ) = χ(−1)

F∑
a=1

(a,p)=1

χ1(a)

((
a− qt

F
− 1

2

)
logp〈a− qt〉 − a− qt

F

+
∞∑
m=2

1
m(m− 1)

(
a− qt

F

)1−m
Bm

)
.

Since ω(a) is a root of unity for (a, p) = 1, we see that logp〈a − qt〉 =
logp(a− qt). Therefore,

∂

∂s
Lp(0, t;χ) = χ(−1)

F∑
a=1

(a,p)=1

χ1(a)
(
F−1 logp(F ) · a+Gp

(
a− qt

F

))
.

By evaluating the sum

F−1
F∑

a=1
(a,p)=1

χ1(a)a = (1− χ1(a))B1,χ1 = −Lp(0;χ),

we obtain the result. �

By means similar to those used in the proof of Theorem 4, one can derive
the following formula for the value of Lp(1, t;χ), whenever χ 6= 1:

Lp(1, t;χ)

=
χ(−1)
F

F∑
a=1

(a,p)=1

χ(a)

(
− logp〈a− qt〉+

∞∑
m=1

(−1)m

m

(
F

a− qt

)m
Bm

)
,

where F is a positive integral multiple of q and fχ. This is a generalization
of a similar formula for Lp(1;χ) (see [6, p. 85]).
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