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We derive the existence of a specific two-variable p-adic L-
function by means of a method provided by Washington. This
two-variable function is a generalization of the one-variable
p-adic L-function of Kubota and Leopoldt, yielding the one-
variable function when the second variable vanishes.

1. Introduction.

In [5] Kubota and Leopoldt prove the existence of meromorphic functions,
Ly(s;x), defined over the p-adic number field, that serve as p-adic equivalents
of the Dirichlet L-series. These p-adic L-functions interpolate the values

1 B
Ly(1=n;x) = = (1 = xn(p)p" ") Buxas

whenever n is a positive integer. Here, B, , denotes the n'™ generalized
Bernoulli number associated with the primitive Dirichlet character y, and
Xn = xw™ ", with w the Teichmiiller character. Since the time of that publi-
cation, a number of individuals have derived the existence of these functions
by various means. In particular, Washington [8] derives the functions by
elementary means and expresses them in an explicit form:

Theorem 1. Let I be a positive integral multiple of ¢ and f,, and let

Lo =1 5 @ S () (E) s

a=1 m=0
(a,p)=1

Then Ly(s;x) is analytic for s € © when x # 1, and meromorphic for
s € D, with a simple pole at s = 1 having residue 1 — 1/p, when x = 1.
Furthermore, for eachn € Z, n > 1,

1 _
Ly(1—n;x) = - (1= xn(@P" ") Buy,-
Thus, Ly(s; x) vanishes identically if x(—1) = —1.
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Recently, a particular two-variable extension, Ly(s,t;x), of the p-adic
L-functions was produced—one in which interpolating values of the two-
variable functions yield expressions in terms of the generalized Bernoulli
polynomials [3]. For positive integers n, these functions satisfy

1
Lp(1 = n,t:X) = =~ (Buxa(at) = Xa(®)P" ™ Bu., (P™'at))

with the restriction that t € C,, |t|, < 1. It has been shown that these in-
terpolating values share certain congruence properties with the correspond-
ing interpolating values of the one-variable functions [2]. By applying the
method that Washington used to derive Theorem 1, we obtain Ly(s,t; x) by
elementary means and express the functions in an explicit form.

Theorem 2. Let F' be a positive integral multiple of ¢ and f,, and let

G o5 (0 ()

:1 m=0
a,p)=1

Then Ly(s,t; x) is analytic fort € C,, |t|, < 1, provided s € D, except s # 1
when x = 1. Also, if t € Cp, |t|, < 1, this function is analytic for s € ©
when x # 1, and meromorphic for s € ®, with a simple pole at s =1 having
residue 1 — 1/p, when x = 1. Furthermore, for eachn € Z, n > 1,

Lp(S, tv X)

1 _ _
Ly(1 =n,t;x) = =~ (Bnxa(at) = Xn(P)P" ™ Buya, (p™'at)) -
Thus, Ly(s,0;x) = Lp(s; x) for each s € ®, with s # 1 if x = 1.

By an analysis of the formula for L,(s;x) given in Theorem 1, one can
obtain Diamond’s formula for the value of L,(0;x) (see [6, p. 393]):

Theorem 3. Let x be a primitive Dirichlet character, and let F' be a positive
integral multiple of q and f,. Then

F

L(0:) = Y- x1(@)Gy (55) = Lpl0:x) log, (F).

a=1
(a,p)=1

Here, the function G) is the Diamond function, and log, is the p-adic
logarithm function of Iwasawa.

Young [9] derives a similar formula for (9/0s)Ly(0,t; x) by means of a
p-adic integral representation of L,(s,t;x). However, his work is restricted
to those characters y such that the conductor of xi is not a power of p.
The explicit formula given in Theorem 2 enables one to derive a formula for
(0/0s)Lp(0,t;x), similar to that obtained by Young, but for all primitive
Dirichlet characters y.
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Theorem 4. Let x be a primitive Dirichlet character, and let F' be a positive
integral multiple of ¢ and f,. Then for any t € Cp, |t|, <1,

F
0.0 =x(-1) 3 (@) (D) L0 og, (7).

Note that, if x(—1) = —1, then the function L,(s; x) vanishes identically.
However, L,(s,t;x) is not identically 0 for any character x. Thus, Ly (s, t; x)
provides us with a p-adic L-function that does not vanish identically for
those y such that y(—1) = —1. This may prove to be of use in the study of
structures associated with such characters.

2. Preliminaries.

Let x be a Dirichlet character, defined modulo its conductor f,. Then
x(a)?Ux) =1 for any a € Z with (a, f) = 1, and x(a) = 0 otherwise. For
two such characters x and 1, having conductors f, and fy, respectively, let
x¥ denote the primitive character associated to the product of the charac-
ters. The conductor fy, then divides lem(fy, fy).

The generalized Bernoulli polynomials associated with x, By y(t), are
defined by the generating function

(a+

(1) erm -

a=1

t—z

The corresponding generalized Bernoulh numbers can then be defined by
By, y = By, (0). With this definition, the generalized Bernoulli polynomials
are expressed more precisely in terms of the expansion

n
n
B = 3 (1) Bt

m=0
which is derived from (1).
The classical Bernoulli polynomials, By, (t), are defined by

xet® > T
et — 1 = Z B”(t)
n=0

and the classical Bernoulli numbers by B,, = B, (0). This yields the values
By=1,B=-1/2, By =1/6, By = —1/30, ..., with B,, = 0 for odd n > 3.
The Bernoulli numbers are rational numbers, and the von Staudt-Clausen
theorem states that for even n > 2,

B+Z

p prime
(p— 1)\n
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Thus, the denominator of each B, must be square-free. We also have the
relation

(2) Ba(t) = znj (Z) By pt™

m=0

The classical Bernoulli polynomials are related to the generalized Bernoulli
polynomials in that B, 1(t) = (—1)"By(—t), where x = 1 is the unique
character having conductor 1 and satisfying x(a) = 1 for each a € Z.

Let p be a fixed prime. We will use Z,, to represent the p-adic integers,
and Q,, the p-adic rationals. Let C, denote the completion of the algebraic
closure of Q, under the p-adic absolute value |- |,, normalized so that |p|, =
p~!. Fix an embedding of the algebraic closure of Q into C,. Since each
value of a Dirichlet character y is either 0 or a root of unity, we may consider
the values of x as lying in C,,.

Denote ¢ = 4 if p = 2 and ¢ = p otherwise. Let w denote the Teichmiiller
character, having conductor f,, = ¢. For an arbitrary character x we then
define the character y, = xw™", where n € Z, in the sense of the product
of characters.

Let (a) = w™!(a)a whenever (a,p) = 1. Then (a) = 1 (mod ¢Z,) for
these values of a. For our purposes, we extend this by defining (a + ¢t) =
w™(a)(a+ qt) for all a € Z, with (a,p) = 1, and t € C,, such that [¢[, < 1.
Then {(a + qt) = {(a) + qw~!(a)t, so that (a + qt) =1 (mod qZ,]t]).

The p-adic logarithm function [4], log,, is the unique function mapping
C; — C, that satisfies log,(1 + ) = >.>7,(—=1)""'z"/n for |z], < 1,
log,,(zy) = log,(x) + log,(y) for all z,y € C, and log,(p) = 0. Note that
these conditions imply that this function vamshes at any rational power of
p. The Diamond function [1] is defined by

Gy(x) = <x— ;) log, ( —:C+Z

j—l

The domain of this function is |z|, > 1, with the p-adic convergence of this
sum being for each x in this domain.

Recall that whenever m € Z, m > 0, the power of p that divides m! is
given by the sum

where [z] is the unique integer n satisfying n < x < n + 1. The bound on

this sum then implies that |m!|, > ’pm/(p—l)_
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For each n € Z, n > 0, the quantity (Z) is defined in like manner as the
binomial coefficients, denoting (g) =1 and

x 1
= —x(z—1)...(z— (n—1
(2) = 2=l (n=1)
for n > 0. Note that each such quantity is a polynomial in z.
Consider the following result from [8] (see also Chapter 5 of [7]):

Lemma 5. Let A;j(X) = Y ana”, anj € Cp, j = 0,1,..., be a se-
quence of power series, each of which converges in a fized subset D of Cp,
such that:
(1) anj — ano as j — oo for each n; and
(2) for each s € D and € > 0, there exists ng = ng(s,e) such that
| D n>ng @n,is" lp < € for all j.
Then lim; .o, Aj(s) = Ao(s) for all s € D.

This lemma is used by Washington to show that each of the functions (a)®
and > "> (nsl)( /a)™ By, where F is a multiple of ¢ and f,, is analytic in
D={seC,:[s—-1|, < ]p|;./(p71)|q|;1}. This, along with an identity
concerning generalized Bernoulli polynomials, enables the proof of the main
theorem of [8].

By the same means, we derive a similar result for a two-variable p-adic
L-function L,(s,t;x). This function is defined for s € D, except s # 1 if
x =1, and t € Cp, |t|, <1, and it interpolates the values

1
Lp(1 = n,t:X) = =~ (Buxa(at) = Xn(®)P" ™' Bu., (P™'at))

where n € Z, n > 1. It is related to the one-variable function Ly(s;x) in
that L,(s,0; x) = Ly(s; x) for each s in the domain of L,(s; x).

3. The two-variable p-adic L-function.

This now brings us to our main result. We will construct our function
Ly(s,t;x) for s € ®, except s # 1if x =1, and t € Cp, |t|, < 1, and
in the process derive an explicit formula for this function. Before we begin
this derivation, we need the following result concerning generalized Bernoulli
polynomials:

Lemma 6. Let g be a positive integral multiple of fy,. Then for eachn € Z,
n >0,

g—1
_ a—t
Baalt) = (=19 3 (=) B ( - ) |

A version of this result appears in Chapter 2 of [4], and can be derived
by a manipulation of the appropriate generating functions.
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Proof of Theorem 2. Let a € Z, (a,p) = 1. For t € C,, |t[, < 1, the same
argument as that given in the proof of the main theorem of [8] can be
applied to show that each of the functions Y v (*)(F/(a — qt))"™ By, and
(a—qt)* =3 o (2)({a—gt) —1)™ is analytic for s € ©. This method
can also be used to show that the function > or_ (°)(F/(a — qt))™ B, is
analytic for t € Cp, |t|, < |g|,!, whenever s € ©. It readily follows that

(a—qt)* = (a)* > () (—a"tgt)™ is analytic for t € Cp, |t[, < 1, when
s € ®. Thus, since (s —1)L,(s,t; x) is a finite sum of products of these two
functions, it must also be analytic for s € © given t € C,, |t|, < 1, and for

t € Cp, |t|p <1, whenever s € ®. Note that

1

F
' . _X(_l) - 1—-p77, ifXZl,
l:n{(s —1)Ly(s,t;x) = F Z x(a) = { 0, if x #1.

a=1
(a,p)=1
Thus, our conclusions on when Ly(s,t; x) is analytic or meromorphic follow.
Now let n € Z, n > 1, and fix t € C,, |t[, < 1. Since F' must be a multiple
of fy,, Lemma 6 implies that

F-1
n pn— a—qt
B (a) = (0P Y sl (S5
a=0
If xn(p) # 0, then (p, fy,,) = 1, so that F'/p is a multiple of f,, . Therefore,

Xn(P)P" ' Bny, (7 'qt)

e a—p gt
_(_1\n n—1 o —
= UG D 0By (“F)

= (-1)"Ft }:Z_:Xn(—a)Bn (“;qt) .
pla

The difference of these quantities yields

F
n— — n— a— qt
Bmxn(qt) - Xn(p)p an,x” (p 1qt) = X(_l)F ! Z Xn(a)Bn <F) .
a=1

(a,p)=1

By using (2), we can rewrite the Bernoulli polynomial B, (t) in this expres-

sion as
a— qt _ " /n F \™
B, =F""(a—qt)" B,,.
(7)o X (0) (52)
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Since xn(a) = x(a)w™(a) and w™t(a)(a — qt) = {a — qt) for (a,p) = 1 and
t € Cp, |t|p < 1, we obtain

Brxn (@) = xn ()" ' Bny,, (0 qt)

X(—l) 4 n > n F m
XS e S (M) () e
(a,p)=1
Therefore,
*% (Bra (@) = Xn(@)P" " By, (p7'at)) = Lp(1 = n,t;X),
completing the proof. 0

Note that the proof of the main theorem of [8] infers the existence of
the factor x(—1) in the formula for L,(s;x). However, since x(—1) # 1
implies that L,(s; x) is identically 0, this quantity is not needed in the given
expression. As L,(s,t;x) is not identically 0 for any character x, the factor
X(—1) is needed in the expression corresponding to this function.

In [7], Washington modifies the derivation of L,(s; x) by first defining the
function

®  san=r@ 3 () (5) B

m=0

where s € ©, s # 1, a € Z with (a,p) = 1, and F is a multiple of q. The
function Ly (s; x) can then be expressed as the sum

F
Ly(s;x) = Z x(a)Hp(s,a, F),

a=1
(a,p)=1

provided F' is a multiple of both ¢ and f,. The function H,(s,a,F) is
meromorphic for s € © with a simple pole at s = 1, having residue 1/F,
and it interpolates the values

1 a
Hy(1 = n,a, F) = ——w™"(a) "' B, (%)
n( n,a, F) nw (a) n\F )
where n € Z, n > 1.

It is obvious that we can express L,(s,t;x) in a similar manner. Using
(3) to define H,(s,a — qt, F') for all a € Z, (a,p) =1, and t € C,, |t], <1,
we obtain

F

Ly(s,t;x) = x(=1) D> x(a)Hy(s,a — qt, F).
a=1
(a,p)=1



38 GLENN J. FOX

From the proof of Theorem 2, it follows that H,(s,a — gt, F') is analytic for
t € Cp, |t|p <1, when s € ©, s # 1, and meromorphic for s € D, with a
simple pole at s =1, when t € C,, |t[, < 1.

4. The value of (8/0s)Ly(0,t;x).

Let us now consider the values of the first partial derivatives of the function
Ly(s,t;x) at s = 0.
In [3], it is shown that whenever n € Z, n > 1,
n

s
o Ly(s,t;x) =nlg (n >Lp(s+n,t;xn)

for all s € ®, s # 1 if x =1, and t € C, with |¢t[, < 1. Furthermore, we
have

i 1
S—E{Iin<n) p(s +n,tx) n ( x(p)p ) 0,x
Therefore,

o |n -1

s b1 =) = =(n = Dlg" (1 = xa(P)p™") Boxo-

Since By, = 0 whenever x # 1, this becomes

" —(n—=Dlg" (1-p), ifx,=1
fle(l_nt;X): (n=1lg" (1-p), ifxn =1,
otn 0, if xp, # 1.

Thus, when n = 1, we have the value of (0/0t)L,(0,t; x).

The value of (0/0s)Ly(0,t;x) is given in Theorem 4. The proof of this
result follows in much the same manner as the proof of Theorem 3, given in
[6, pp. 393-394].

Proof of Theorem 4. The value of (0/0s)L,(0,t;x) is the coefficient of s in
the expansion of Ly(s,t;x) about s = 0. We find this by determining the
constant and linear terms in the corresponding expansions of each of three
functions of s that make up the expression given in Theorem 2.

Expanding 1/(1 — s) about s = 0 yields

=1
11— s + s+ ,

while expanding (a — qt)! =% about s = 0 yields
(a—qt)' ™ =(a—qt) (1—slog,(a—qt)+--).

The expansion of (1;5) about s = 0 is given by
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provided m > 2. Employing these expansions, along with some algebraic
manipulations, we obtain

0 a a—qt 1 a—qt
—L,(0,t; — =1 —qt) —
Ds (0,25 X) ; xi(a (( fa 2) og,(a — qt) 7
a,p)=1
o] 1-m
1 a—qt
B .
+Zm(m—1)< F > m)
m=2
Since w(a) is a root of unity for (a,p) = 1, we see that log,(a — qt) =

log,(a — qt). Therefore,

aasL (0, x) EF: < “Llog,(F)-a+ G, <a;qt>>.

By evaluating the sum

P Z xi(a)a = (1= xi1(a)) Bix, = —Ly(0; x),

(ap) 1

we obtain the result. O

By means similar to those used in the proof of Theorem 4, one can derive
the following formula for the value of L,(1,¢; x), whenever x # 1:

LP(17 tv X)

P — " "
0 e 5 (25 )

a=1 m=1
(a,p)=1

where F' is a positive integral multiple of ¢ and f,. This is a generalization
of a similar formula for L,(1;x) (see [6, p. 85]).
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