Pacific Journal of Mathematics

A METHOD OF WASHINGTON APPLIED TO THE DERIVATION OF A TWO-VARIABLE *p*-ADIC *L*-FUNCTION

GLENN J. FOX

Volume 209 No. 1

March 2003

A METHOD OF WASHINGTON APPLIED TO THE DERIVATION OF A TWO-VARIABLE *p*-ADIC *L*-FUNCTION

GLENN J. FOX

We derive the existence of a specific two-variable p-adic Lfunction by means of a method provided by Washington. This two-variable function is a generalization of the one-variable p-adic L-function of Kubota and Leopoldt, yielding the onevariable function when the second variable vanishes.

1. Introduction.

In [5] Kubota and Leopoldt prove the existence of meromorphic functions, $L_p(s; \chi)$, defined over the *p*-adic number field, that serve as *p*-adic equivalents of the Dirichlet *L*-series. These *p*-adic *L*-functions interpolate the values

$$L_p(1-n;\chi) = -\frac{1}{n} \left(1 - \chi_n(p) p^{n-1} \right) B_{n,\chi_n},$$

whenever n is a positive integer. Here, $B_{n,\chi}$ denotes the n^{th} generalized Bernoulli number associated with the primitive Dirichlet character χ , and $\chi_n = \chi \omega^{-n}$, with ω the Teichmüller character. Since the time of that publication, a number of individuals have derived the existence of these functions by various means. In particular, Washington [8] derives the functions by elementary means and expresses them in an explicit form:

Theorem 1. Let F be a positive integral multiple of q and f_{χ} , and let

$$L_p(s;\chi) = \frac{1}{s-1} \frac{1}{F} \sum_{\substack{a=1\\(a,p)=1}}^{F} \chi(a) \langle a \rangle^{1-s} \sum_{m=0}^{\infty} {\binom{1-s}{m}} \left(\frac{F}{a}\right)^m B_m.$$

Then $L_p(s;\chi)$ is analytic for $s \in \mathfrak{D}$ when $\chi \neq 1$, and meromorphic for $s \in \mathfrak{D}$, with a simple pole at s = 1 having residue 1 - 1/p, when $\chi = 1$. Furthermore, for each $n \in \mathbb{Z}$, $n \geq 1$,

$$L_p(1-n;\chi) = -\frac{1}{n} \left(1 - \chi_n(p) p^{n-1} \right) B_{n,\chi_n}.$$

Thus, $L_p(s; \chi)$ vanishes identically if $\chi(-1) = -1$.

Recently, a particular two-variable extension, $L_p(s,t;\chi)$, of the *p*-adic *L*-functions was produced—one in which interpolating values of the two-variable functions yield expressions in terms of the generalized Bernoulli polynomials [3]. For positive integers *n*, these functions satisfy

$$L_p(1-n,t;\chi) = -\frac{1}{n} \left(B_{n,\chi_n}(qt) - \chi_n(p)p^{n-1}B_{n,\chi_n}(p^{-1}qt) \right)$$

with the restriction that $t \in \mathbf{C}_p$, $|t|_p \leq 1$. It has been shown that these interpolating values share certain congruence properties with the corresponding interpolating values of the one-variable functions [2]. By applying the method that Washington used to derive Theorem 1, we obtain $L_p(s, t; \chi)$ by elementary means and express the functions in an explicit form.

Theorem 2. Let F be a positive integral multiple of q and f_{χ} , and let

$$L_p(s,t;\chi) = \frac{1}{s-1} \frac{\chi(-1)}{F} \sum_{\substack{a=1\\(a,p)=1}}^{F} \chi(a) \langle a-qt \rangle^{1-s} \sum_{m=0}^{\infty} \binom{1-s}{m} \left(\frac{F}{a-qt}\right)^m B_m.$$

Then $L_p(s,t;\chi)$ is analytic for $t \in \mathbf{C}_p$, $|t|_p \leq 1$, provided $s \in \mathfrak{D}$, except $s \neq 1$ when $\chi = 1$. Also, if $t \in \mathbf{C}_p$, $|t|_p \leq 1$, this function is analytic for $s \in \mathfrak{D}$ when $\chi \neq 1$, and meromorphic for $s \in \mathfrak{D}$, with a simple pole at s = 1 having residue 1 - 1/p, when $\chi = 1$. Furthermore, for each $n \in \mathbf{Z}$, $n \geq 1$,

$$L_p(1-n,t;\chi) = -\frac{1}{n} \left(B_{n,\chi_n}(qt) - \chi_n(p) p^{n-1} B_{n,\chi_n}(p^{-1}qt) \right).$$

Thus, $L_p(s,0;\chi) = L_p(s;\chi)$ for each $s \in \mathfrak{D}$, with $s \neq 1$ if $\chi = 1$.

By an analysis of the formula for $L_p(s; \chi)$ given in Theorem 1, one can obtain Diamond's formula for the value of $L'_p(0; \chi)$ (see [6, p. 393]):

Theorem 3. Let χ be a primitive Dirichlet character, and let F be a positive integral multiple of q and f_{χ} . Then

$$L'_{p}(0;\chi) = \sum_{\substack{a=1\\(a,p)=1}}^{F} \chi_{1}(a) G_{p}\left(\frac{a}{F}\right) - L_{p}(0;\chi) \log_{p}(F).$$

Here, the function G_p is the Diamond function, and \log_p is the *p*-adic logarithm function of Iwasawa.

Young [9] derives a similar formula for $(\partial/\partial s)L_p(0,t;\chi)$ by means of a *p*-adic integral representation of $L_p(s,t;\chi)$. However, his work is restricted to those characters χ such that the conductor of χ_1 is not a power of *p*. The explicit formula given in Theorem 2 enables one to derive a formula for $(\partial/\partial s)L_p(0,t;\chi)$, similar to that obtained by Young, but for all primitive Dirichlet characters χ .

Theorem 4. Let χ be a primitive Dirichlet character, and let F be a positive integral multiple of q and f_{χ} . Then for any $t \in \mathbf{C}_p$, $|t|_p \leq 1$,

$$\frac{\partial}{\partial s}L_p(0,t;\chi) = \chi(-1)\sum_{\substack{a=1\\(a,p)=1}}^{F} \chi_1(a)G_p\left(\frac{a-qt}{F}\right) - L_p(0;\chi)\log_p(F).$$

Note that, if $\chi(-1) = -1$, then the function $L_p(s; \chi)$ vanishes identically. However, $L_p(s,t;\chi)$ is not identically 0 for any character χ . Thus, $L_p(s,t;\chi)$ provides us with a *p*-adic *L*-function that does not vanish identically for those χ such that $\chi(-1) = -1$. This may prove to be of use in the study of structures associated with such characters.

2. Preliminaries.

Let χ be a Dirichlet character, defined modulo its conductor f_{χ} . Then $\chi(a)^{\phi(f_{\chi})} = 1$ for any $a \in \mathbb{Z}$ with $(a, f_{\chi}) = 1$, and $\chi(a) = 0$ otherwise. For two such characters χ and ψ , having conductors f_{χ} and f_{ψ} , respectively, let $\chi\psi$ denote the primitive character associated to the product of the characters. The conductor $f_{\chi\psi}$ then divides $\operatorname{lcm}(f_{\chi}, f_{\psi})$.

The generalized Bernoulli polynomials associated with χ , $B_{n,\chi}(t)$, are defined by the generating function

(1)
$$\sum_{a=1}^{f_{\chi}} \frac{\chi(a)x e^{(a+t)x}}{e^{f_{\chi}x} - 1} = \sum_{n=0}^{\infty} B_{n,\chi}(t) \frac{x^n}{n!}.$$

The corresponding generalized Bernoulli numbers can then be defined by $B_{n,\chi} = B_{n,\chi}(0)$. With this definition, the generalized Bernoulli polynomials are expressed more precisely in terms of the expansion

$$B_{n,\chi}(t) = \sum_{m=0}^{n} \binom{n}{m} B_{n-m,\chi} t^{m},$$

which is derived from (1).

The classical Bernoulli polynomials, $B_n(t)$, are defined by

$$\frac{xe^{tx}}{e^x - 1} = \sum_{n=0}^{\infty} B_n(t) \frac{x^n}{n!},$$

and the classical Bernoulli numbers by $B_n = B_n(0)$. This yields the values $B_0 = 1, B_1 = -1/2, B_2 = 1/6, B_4 = -1/30, \ldots$, with $B_n = 0$ for odd $n \ge 3$. The Bernoulli numbers are rational numbers, and the von Staudt-Clausen theorem states that for even $n \ge 2$,

$$B_n + \sum_{\substack{p \text{ prime} \\ (p-1)|n}} \frac{1}{p} \in \mathbf{Z}.$$

Thus, the denominator of each B_n must be square-free. We also have the relation

(2)
$$B_n(t) = \sum_{m=0}^n \binom{n}{m} B_{n-m} t^m.$$

The classical Bernoulli polynomials are related to the generalized Bernoulli polynomials in that $B_{n,1}(t) = (-1)^n B_n(-t)$, where $\chi = 1$ is the unique character having conductor 1 and satisfying $\chi(a) = 1$ for each $a \in \mathbb{Z}$.

Let p be a fixed prime. We will use \mathbf{Z}_p to represent the p-adic integers, and \mathbf{Q}_p the p-adic rationals. Let \mathbf{C}_p denote the completion of the algebraic closure of \mathbf{Q}_p under the p-adic absolute value $|\cdot|_p$, normalized so that $|p|_p = p^{-1}$. Fix an embedding of the algebraic closure of \mathbf{Q} into \mathbf{C}_p . Since each value of a Dirichlet character χ is either 0 or a root of unity, we may consider the values of χ as lying in \mathbf{C}_p .

Denote q = 4 if p = 2 and q = p otherwise. Let ω denote the Teichmüller character, having conductor $f_{\omega} = q$. For an arbitrary character χ we then define the character $\chi_n = \chi \omega^{-n}$, where $n \in \mathbb{Z}$, in the sense of the product of characters.

Let $\langle a \rangle = \omega^{-1}(a)a$ whenever (a, p) = 1. Then $\langle a \rangle \equiv 1 \pmod{q\mathbf{Z}_p}$ for these values of a. For our purposes, we extend this by defining $\langle a + qt \rangle = \omega^{-1}(a)(a+qt)$ for all $a \in \mathbf{Z}$, with (a, p) = 1, and $t \in \mathbf{C}_p$ such that $|t|_p \leq 1$. Then $\langle a + qt \rangle = \langle a \rangle + q\omega^{-1}(a)t$, so that $\langle a + qt \rangle \equiv 1 \pmod{q\mathbf{Z}_p[t]}$.

The *p*-adic logarithm function [4], \log_p , is the unique function mapping $\mathbf{C}_p^{\times} \to \mathbf{C}_p$ that satisfies $\log_p(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^n / n$ for $|x|_p < 1$, $\log_p(xy) = \log_p(x) + \log_p(y)$ for all $x, y \in \mathbf{C}_p^{\times}$, and $\log_p(p) = 0$. Note that these conditions imply that this function vanishes at any rational power of p. The Diamond function [1] is defined by

$$G_p(x) = \left(x - \frac{1}{2}\right) \log_p(x) - x + \sum_{j=2}^{\infty} \frac{B_j}{j(j-1)} x^{1-j}.$$

The domain of this function is $|x|_p > 1$, with the *p*-adic convergence of this sum being for each x in this domain.

Recall that whenever $m \in \mathbf{Z}$, $m \ge 0$, the power of p that divides m! is given by the sum

$$\sum_{j=1}^{\infty} \left[\frac{m}{p^j} \right] \le \frac{m}{p-1},$$

where [x] is the unique integer n satisfying $n \le x < n+1$. The bound on this sum then implies that $|m!|_p \ge |p|_p^{m/(p-1)}$.

For each $n \in \mathbf{Z}$, $n \ge 0$, the quantity $\binom{x}{n}$ is defined in like manner as the binomial coefficients, denoting $\binom{x}{0} = 1$ and

$$\binom{x}{n} = \frac{1}{n!}x(x-1)\dots(x-(n-1))$$

for n > 0. Note that each such quantity is a polynomial in x.

Consider the following result from [8] (see also Chapter 5 of [7]):

Lemma 5. Let $A_j(X) = \sum_{n=0}^{\infty} a_{n,j} x^n$, $a_{n,j} \in \mathbf{C}_p$, $j = 0, 1, \ldots$, be a sequence of power series, each of which converges in a fixed subset D of \mathbf{C}_p , such that:

- (1) $a_{n,j} \rightarrow a_{n,0}$ as $j \rightarrow \infty$ for each n; and
- (2) for each $s \in D$ and $\epsilon > 0$, there exists $n_0 = n_0(s,\epsilon)$ such that $|\sum_{n>n_0} a_{n,j} s^n|_p < \epsilon$ for all j.

Then
$$\lim_{j\to\infty} A_j(s) = A_0(s)$$
 for all $s \in D$.

This lemma is used by Washington to show that each of the functions $\langle a \rangle^s$ and $\sum_{m=0}^{\infty} {s \choose m} (F/a)^m B_m$, where F is a multiple of q and f_{χ} , is analytic in $\mathfrak{D} = \{s \in \mathbf{C}_p : |s-1|_p < |p|_p^{1/(p-1)}|q|_p^{-1}\}$. This, along with an identity concerning generalized Bernoulli polynomials, enables the proof of the main theorem of [8].

By the same means, we derive a similar result for a two-variable *p*-adic *L*-function $L_p(s,t;\chi)$. This function is defined for $s \in \mathfrak{D}$, except $s \neq 1$ if $\chi = 1$, and $t \in \mathbb{C}_p$, $|t|_p \leq 1$, and it interpolates the values

$$L_p(1-n,t;\chi) = -\frac{1}{n} \left(B_{n,\chi_n}(qt) - \chi_n(p) p^{n-1} B_{n,\chi_n}(p^{-1}qt) \right),$$

where $n \in \mathbf{Z}$, $n \geq 1$. It is related to the one-variable function $L_p(s;\chi)$ in that $L_p(s,0;\chi) = L_p(s;\chi)$ for each s in the domain of $L_p(s;\chi)$.

3. The two-variable *p*-adic *L*-function.

This now brings us to our main result. We will construct our function $L_p(s,t;\chi)$ for $s \in \mathfrak{D}$, except $s \neq 1$ if $\chi = 1$, and $t \in \mathbf{C}_p$, $|t|_p \leq 1$, and in the process derive an explicit formula for this function. Before we begin this derivation, we need the following result concerning generalized Bernoulli polynomials:

Lemma 6. Let g be a positive integral multiple of f_{χ} . Then for each $n \in \mathbb{Z}$, $n \ge 0$,

$$B_{n,\chi}(t) = (-1)^n g^{n-1} \sum_{a=0}^{g-1} \chi(-a) B_n\left(\frac{a-t}{g}\right).$$

A version of this result appears in Chapter 2 of [4], and can be derived by a manipulation of the appropriate generating functions. Proof of Theorem 2. Let $a \in \mathbb{Z}$, (a, p) = 1. For $t \in \mathbb{C}_p$, $|t|_p \leq 1$, the same argument as that given in the proof of the main theorem of [8] can be applied to show that each of the functions $\sum_{m=0}^{\infty} {\binom{s}{m}} (F/(a-qt))^m B_m$ and $\langle a - qt \rangle^s = \sum_{m=0}^{\infty} {\binom{s}{m}} (\langle a - qt \rangle - 1)^m$ is analytic for $s \in \mathfrak{D}$. This method can also be used to show that the function $\sum_{m=0}^{\infty} {\binom{s}{m}} (F/(a-qt))^m B_m$ is analytic for $t \in \mathbb{C}_p$, $|t|_p < |q|_p^{-1}$, whenever $s \in \mathfrak{D}$. It readily follows that $\langle a - qt \rangle^s = \langle a \rangle^s \sum_{m=0}^{\infty} {\binom{s}{m}} (-a^{-1}qt)^m$ is analytic for $t \in \mathbb{C}_p$, $|t|_p \leq 1$, when $s \in \mathfrak{D}$. Thus, since $(s-1)L_p(s,t;\chi)$ is a finite sum of products of these two functions, it must also be analytic for $s \in \mathfrak{D}$ given $t \in \mathbb{C}_p$, $|t|_p \leq 1$, and for $t \in \mathbb{C}_p$, $|t|_p \leq 1$, whenever $s \in \mathfrak{D}$. Note that

$$\lim_{s \to 1} (s-1)L_p(s,t;\chi) = \frac{\chi(-1)}{F} \sum_{\substack{a=1\\(a,p)=1}}^{F} \chi(a) = \begin{cases} 1-p^{-1}, & \text{if } \chi = 1, \\ 0, & \text{if } \chi \neq 1. \end{cases}$$

Thus, our conclusions on when $L_p(s, t; \chi)$ is analytic or meromorphic follow.

Now let $n \in \mathbb{Z}$, $n \ge 1$, and fix $t \in \mathbb{C}_p$, $|t|_p \le 1$. Since F must be a multiple of f_{χ_n} , Lemma 6 implies that

$$B_{n,\chi_n}(qt) = (-1)^n F^{n-1} \sum_{a=0}^{F-1} \chi_n(-a) B_n\left(\frac{a-qt}{F}\right).$$

If $\chi_n(p) \neq 0$, then $(p, f_{\chi_n}) = 1$, so that F/p is a multiple of f_{χ_n} . Therefore,

$$\chi_n(p)p^{n-1}B_{n,\chi_n}\left(p^{-1}qt\right)$$

= $(-1)^n\chi_n(p)F^{n-1}\sum_{a=0}^{F/p-1}\chi_n(-a)B_n\left(\frac{a-p^{-1}qt}{Fp^{-1}}\right)$
= $(-1)^nF^{n-1}\sum_{\substack{a=0\\p\mid a}}^{F-1}\chi_n(-a)B_n\left(\frac{a-qt}{F}\right).$

The difference of these quantities yields

$$B_{n,\chi_n}(qt) - \chi_n(p)p^{n-1}B_{n,\chi_n}\left(p^{-1}qt\right) = \chi(-1)F^{n-1}\sum_{\substack{a=1\\(a,p)=1}}^F \chi_n(a)B_n\left(\frac{a-qt}{F}\right).$$

By using (2), we can rewrite the Bernoulli polynomial $B_n(t)$ in this expression as

$$B_n\left(\frac{a-qt}{F}\right) = F^{-n}(a-qt)^n \sum_{m=0}^n \binom{n}{m} \left(\frac{F}{a-qt}\right)^m B_m.$$

Since $\chi_n(a) = \chi(a)\omega^{-n}(a)$ and $\omega^{-1}(a)(a-qt) = \langle a-qt \rangle$ for (a,p) = 1 and $t \in \mathbf{C}_p, |t|_p \leq 1$, we obtain

$$B_{n,\chi_n}(qt) - \chi_n(p)p^{n-1}B_{n,\chi_n}\left(p^{-1}qt\right)$$
$$= \frac{\chi(-1)}{F} \sum_{\substack{a=1\\(a,p)=1}}^F \chi(a)\langle a-qt\rangle^n \sum_{m=0}^\infty \binom{n}{m} \left(\frac{F}{a-qt}\right)^m B_m.$$

Therefore,

$$-\frac{1}{n}\left(B_{n,\chi_n}(qt) - \chi_n(p)p^{n-1}B_{n,\chi_n}\left(p^{-1}qt\right)\right) = L_p(1-n,t;\chi),$$

completing the proof.

Note that the proof of the main theorem of [8] infers the existence of the factor $\chi(-1)$ in the formula for $L_p(s;\chi)$. However, since $\chi(-1) \neq 1$ implies that $L_p(s;\chi)$ is identically 0, this quantity is not needed in the given expression. As $L_p(s,t;\chi)$ is not identically 0 for any character χ , the factor $\chi(-1)$ is needed in the expression corresponding to this function.

In [7], Washington modifies the derivation of $L_p(s; \chi)$ by first defining the function

(3)
$$H_p(s,a,F) = \frac{1}{s-1} \frac{1}{F} \langle a \rangle^{1-s} \sum_{m=0}^{\infty} {\binom{1-s}{m} \left(\frac{F}{a}\right)^m B_m},$$

where $s \in \mathfrak{D}$, $s \neq 1$, $a \in \mathbb{Z}$ with (a, p) = 1, and F is a multiple of q. The function $L_p(s; \chi)$ can then be expressed as the sum

$$L_{p}(s;\chi) = \sum_{\substack{a=1\\(a,p)=1}}^{F} \chi(a)H_{p}(s,a,F),$$

provided F is a multiple of both q and f_{χ} . The function $H_p(s, a, F)$ is meromorphic for $s \in \mathfrak{D}$ with a simple pole at s = 1, having residue 1/F, and it interpolates the values

$$H_p(1-n,a,F) = -\frac{1}{n}\omega^{-n}(a)F^{n-1}B_n\left(\frac{a}{F}\right),$$

where $n \in \mathbf{Z}, n \geq 1$.

It is obvious that we can express $L_p(s,t;\chi)$ in a similar manner. Using (3) to define $H_p(s, a - qt, F)$ for all $a \in \mathbb{Z}$, (a, p) = 1, and $t \in \mathbb{C}_p$, $|t|_p \leq 1$, we obtain

$$L_p(s,t;\chi) = \chi(-1) \sum_{\substack{a=1\\(a,p)=1}}^{F} \chi(a) H_p(s,a-qt,F).$$

From the proof of Theorem 2, it follows that $H_p(s, a - qt, F)$ is analytic for $t \in \mathbb{C}_p$, $|t|_p \leq 1$, when $s \in \mathfrak{D}$, $s \neq 1$, and meromorphic for $s \in \mathfrak{D}$, with a simple pole at s = 1, when $t \in \mathbb{C}_p$, $|t|_p \leq 1$.

4. The value of $(\partial/\partial s)L_p(0,t;\chi)$.

Let us now consider the values of the first partial derivatives of the function $L_p(s,t;\chi)$ at s=0.

In [3], it is shown that whenever $n \in \mathbb{Z}$, $n \ge 1$,

$$\frac{\partial^n}{\partial t^n} L_p(s,t;\chi) = n! q^n \binom{-s}{n} L_p(s+n,t;\chi_n)$$

for all $s \in \mathfrak{D}$, $s \neq 1$ if $\chi = 1$, and $t \in \mathbb{C}_p$ with $|t|_p \leq 1$. Furthermore, we have

$$\lim_{s \to 1-n} {\binom{-s}{n}} L_p(s+n,t;\chi) = -\frac{1}{n} \left(1 - \chi(p)p^{-1}\right) B_{0,\chi}.$$

Therefore,

$$\frac{\partial^n}{\partial t^n} L_p(1-n,t;\chi) = -(n-1)!q^n \left(1-\chi_n(p)p^{-1}\right) B_{0,\chi_n}.$$

Since $B_{0,\chi} = 0$ whenever $\chi \neq 1$, this becomes

$$\frac{\partial^n}{\partial t^n} L_p(1-n,t;\chi) = \begin{cases} -(n-1)! q^n \left(1-p^{-1}\right), & \text{if } \chi_n = 1, \\ 0, & \text{if } \chi_n \neq 1. \end{cases}$$

Thus, when n = 1, we have the value of $(\partial/\partial t)L_p(0, t; \chi)$.

The value of $(\partial/\partial s)L_p(0,t;\chi)$ is given in Theorem 4. The proof of this result follows in much the same manner as the proof of Theorem 3, given in [6, pp. 393-394].

Proof of Theorem 4. The value of $(\partial/\partial s)L_p(0,t;\chi)$ is the coefficient of s in the expansion of $L_p(s,t;\chi)$ about s = 0. We find this by determining the constant and linear terms in the corresponding expansions of each of three functions of s that make up the expression given in Theorem 2.

Expanding 1/(1-s) about s = 0 yields

$$\frac{1}{1-s} = 1+s+\cdots,$$

while expanding $\langle a - qt \rangle^{1-s}$ about s = 0 yields

$$\langle a - qt \rangle^{1-s} = \langle a - qt \rangle \left(1 - s \log_p \langle a - qt \rangle + \cdots \right).$$

The expansion of $\binom{1-s}{m}$ about s = 0 is given by

$$\binom{1-s}{m} = \frac{(-1)^{m+1}}{m(m-1)}s + \cdots,$$

provided $m \geq 2$. Employing these expansions, along with some algebraic manipulations, we obtain

$$\frac{\partial}{\partial s}L_p(0,t;\chi) = \chi(-1)\sum_{\substack{a=1\\(a,p)=1}}^F \chi_1(a) \left(\left(\frac{a-qt}{F} - \frac{1}{2}\right) \log_p \langle a-qt \rangle - \frac{a-qt}{F} + \sum_{m=2}^\infty \frac{1}{m(m-1)} \left(\frac{a-qt}{F}\right)^{1-m} B_m \right).$$

Since $\omega(a)$ is a root of unity for (a, p) = 1, we see that $\log_p \langle a - qt \rangle = \log_p (a - qt)$. Therefore,

$$\frac{\partial}{\partial s}L_p(0,t;\chi) = \chi(-1)\sum_{\substack{a=1\\(a,p)=1}}^F \chi_1(a)\left(F^{-1}\log_p(F)\cdot a + G_p\left(\frac{a-qt}{F}\right)\right).$$

By evaluating the sum

$$F^{-1} \sum_{\substack{a=1\\(a,p)=1}}^{F} \chi_1(a)a = (1 - \chi_1(a)) B_{1,\chi_1} = -L_p(0;\chi),$$

we obtain the result.

By means similar to those used in the proof of Theorem 4, one can derive the following formula for the value of $L_p(1,t;\chi)$, whenever $\chi \neq 1$:

$$L_p(1,t;\chi) = \frac{\chi(-1)}{F} \sum_{\substack{a=1\\(a,p)=1}}^{F} \chi(a) \left(-\log_p \langle a - qt \rangle + \sum_{m=1}^{\infty} \frac{(-1)^m}{m} \left(\frac{F}{a - qt} \right)^m B_m \right),$$

where F is a positive integral multiple of q and f_{χ} . This is a generalization of a similar formula for $L_p(1;\chi)$ (see [6, p. 85]).

Acknowledgements. Finally, the author would like to express his gratitude to his graduate advisor, Professor Andrew Granville of the University of Georgia, Athens, GA, under whose direction the two-variable *p*-adic *L*function was derived, and to Paul Young of the University of Charleston, Charleston, SC, for suggesting the consideration of the partial derivative of this function at s = 0.

References

- J. Diamond, *The p-adic log gamma function and p-adic Euler constants*, Trans. Amer. Math. Soc., **233** (1977), 321-337, MR 58 #16610, Zbl 0382.12008.
- [2] G.J. Fox, Kummer congruences for expressions involving generalized Bernoulli polynomials, J. Théor. Nombres Bordeaux, 14 (2002), 1-18, CMP 1 925 997.
- [3] _____, A p-adic L-function of two variables, Enseign. Math. (2), 46 (2000), 225-278, MR 2002c:11162.
- [4] K. Iwasawa, Lectures on p-Adic L-Functions, Ann. of Math. Studies, 74, Princeton Univ. Press, Princeton, NJ, 1972, MR 50 #12974, Zbl 0236.12001.
- [5] T. Kubota and H.-W. Leopoldt, Eine p-adische Theorie der Zetawerte, I. Einführung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math., 214/215 (1964), 328-339, MR 29 #1199, Zbl 0186.09103.
- [6] S. Lang, Cyclotomic Fields I and II, Combined second edition, Graduate Texts in Math., 121, Springer, New York, 1990, MR 91c:11001, Zbl 0704.11038.
- [7] L.C. Washington, Introduction to Cyclotomic Fields, Second edition, Graduate Texts in Math., 83, Springer, New York, 1997, MR 97h:11130, Zbl 0966.11047.
- [8] _____, A note on p-adic L-functions, J. Number Theory, 8 (1976), 245-250, MR 53 #10766, Zbl 0329.12017.
- [9] P.T. Young, On the behavior of some two-variable p-adic L-functions, J. Number Theory, 98 (2003), 67-88.

Received December 7, 2001 and revised May 24, 2002.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY ATLANTA GA 30322 *E-mail address:* fox@mathcs.emory.edu