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Given a module M over a ring R that has a grading by a
semigroup Q, we present a spectral sequence that computes
the local cohomology Hi

I(M) at any graded ideal I in terms of
Ext modules. We use this method to obtain finiteness results
for the local cohomology of graded modules over semigroup
rings. In particular we prove that for a semigroup Q whose
saturation Qsat is simplicial, and a finitely generated mod-
ule M over k[Q] that is graded by Qgp, the Bass numbers
of Hi

I(M) are finite for any Q-graded ideal I of k[Q]. Con-
versely, if Qsat is not simplicial, we find a graded ideal I and
graded k[Q]-module M such that the local cohomology mod-
ule Hi

I(M) has infinite-dimensional socle. We introduce and
exploit the combinatorially defined essential set of a semi-
group.

1. Introduction.

The local cohomology modules H i
I(M) for finitely generated modules M

over noetherian rings R have been studied for several decades. When I is a
maximal ideal of R the local cohomology of M is fairly well-understood (and
reasonably well-behaved), but for general ideals I much less is known, and
the behavior can be quite bad. For instance, Hartshorne [Har70] has shown
that the Bass numbers of H i

I(M) need not be finite for general I and R.
Recently, however, some progress has been made in special cases. When R

is a regular local ring containing a field, Lyubeznik [Lyu93], and Huneke
and Sharp [HS93] have shown that H i

I(M) has finite Bass numbers. In the
same spirit (albeit by different techniques), Yanagawa [Yan01] has shown
that if ω is the canonical module of a simplicial and normal semigroup ring
and I is a monomial ideal, then H i

I(ω) has finite Bass numbers.
Our approach is a substantial generalization of that found in [Yan01]. We

consider a noetherian ring R graded by a semigroup Q, and modules over R
graded by Qgp. In this setting, we introduce a functor called the Čech hull
(Section 2), which allows us to recover the full local cohomology of a finitely
generated module M from the portion of the local cohomology that lies in
those graded degrees that are elements of Q (Section 3). This piece of the
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local cohomology is often easier to understand than the entire module; in
particular it is finitely generated when R = k[Q] for an affine semigroup Q
(see Proposition 4.3, or Corollary 5.3 along with Proposition 5.4). Using
this fact we prove several finiteness results for the local cohomology of Qgp-
graded modules over affine semigroup rings (Section 5). In particular we
show (without Cohen-Macaulay hypotheses) that when the saturation Qsat

is simplicial, H i
I(M) has finite Bass numbers.

The converse holds, as well: Our construction of a local cohomology mod-
ule with infinite-dimensional socle when Qsat is not simplicial (Section 7)
contains Hartshorne’s counterexample to Grothendieck’s conjecture [Har70]
as the simplest special case. The constructions are polyhedral in nature,
exploiting a new combinatorial structure, the essential set of a semigroup
(Section 6). Properties of the essential set govern the associated primes,
and to some extent the module structure, of the local cohomology of the
canonical module.

The reader interested in affine semigroup rings rather than general semi-
group gradings need not endure anything in Sections 2-4 except Proposi-
tion 4.1 (which can be taken as a definition) and the two paragraphs preced-
ing it. Instead, begin with Section 7 and the first half of Section 6 (through
Example 6.5)—in either order—noting especially Theorem 7.1, which con-
tains our main results on local cohomology over affine semigroup rings. Then
continue with Proposition 4.1 and Section 5. The required results from other
parts of the paper can be referred to as necessary.

2. The Čech hull.

Let Q be a cancellative, commutative semigroup, and Qgp its Grothendieck
group, i.e., the group obtained from Q by adjoining an inverse for every
element. (The reader may safely assume for the purposes of this paper that
Q is affine—that is, a finitely generated submonoid of Zd with Qgp = Zd;
indeed, we will make this assumption starting in Section 4. However, we
hope that the extra generality in this section and the next will be useful
for more general semigroup gradings, such as those arising in the Cox ho-
mogeneous coordinate rings of toric geometry [Cox95].) We say a ring R
is Q-graded and an R-module M is Qgp-graded if we are given direct sum
decompositions

R =
⊕
a∈Q

Ra and M =
⊕

α∈Qgp

Mα

such that RaRb ⊆ Ra+b and RaMβ ⊆ Ma+β. The category of Qgp-graded
modules is henceforth denoted by M.

A morphism M → N in M is a degree-preserving R-module homomor-
phism; i.e., a map f of R-modules such that f(Mα) ⊆ Nα. We denote by
HomR(M,N) the R0-module of such morphisms and by HomR(M,N) the
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Qgp-graded R-module

HomR(M,N) =
⊕

α∈Qgp

HomR(M,N(α)) =
⊕

α∈Qgp

HomR(M(−α), N).

Here, the Qgp-graded R-module N(α) is the shift of N by α, defined by
N(α)β = Nα+β.

For a subset S ⊆ Qgp closed under the action of Q, we define the S-graded
part MS ⊆ M to be

MS =
⊕
α∈S

Mα.

We frequently consider the case in which S = α + Q for some α ∈ Qgp. In
particular, taking MQ yields the part of M graded by elements of Q. Taking
S-graded parts is functorial and exact, for any S.

The theory we develop below revolves around the following question: To
what extent can we recover a module M from its Q-graded part MQ? If M is
finitely generated, for example, then although we may not be able to get M
from MQ, we can shift by some a ∈ Q to get M(−a) = M(−a)Q. Therefore,
the question is more meaningful for infinitely generated modules, such as
the local cohomology modules of a finitely generated module. We will find
that these belong to a certain class of modules that can be recovered from
Q-graded parts of other modules by a functor Č that we call the Čech hull,
as defined by the next result.

Theorem 2.1. The functor (−)Q : M → M taking Q-graded parts has a
right adjoint Č; that is, there exists a functor Č and natural isomorphisms

HomR(MQ, N) = HomR(M, ČN)

for any M,N ∈M.

Proof. Given N , we explicitly construct ČN by defining

(ČN)α = HomR(RQ−α, N(α))(1)

= HomR(RQ−α(−α), N).

The multiplication maps

Rb ⊗R0 (ČN)α → (ČN)b+α

are given by taking r ⊗ φ to (x 7→ φ(rx)). This is well-defined since multi-
plication by r ∈ Rb is a degree zero map RQ−α−b(−α− b) → RQ−α(−α).

Note that if a ∈ Q then RQ−a = R, so

(ČN)a = HomR(RQ−a(−a), N) = HomR(R(−a), N) = Na,

whence (ČN)Q = NQ. Therefore, given an element of HomR(M, ČN), tak-
ing its Q-graded part gives an element of HomR(MQ, NQ). This last module
is HomR(MQ, N) (since degree zero maps from MQ to N must land in NQ),
so we have produced a natural map HomR(M, ČN) → HomR(MQ, N).
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Conversely, if f ∈ HomR(MQ, N) then for each α ∈ Qgp we have a map

Mα → (ČN)α = HomR(RQ−α, N(α)) defined by x 7→ (r 7→ f(rx)).

This is well-defined since if r ∈ RQ−α and x ∈ Mα, then rx ∈ MQ, so we can
evaluate f(rx). We thus obtain a well-defined element of HomR(M, ČN),
whose Q-graded part is just f . This gives the natural inverse map for our
bijection. �

Remark 2.2. It is clear by looking at the graded pieces of Č that it is left
exact but not right exact, and that its derived functors are given in terms of
Ext modules; that is ((RiČ)M)α = Exti

R(RQ−α(−α),M). Since RQ−α(−α)
is supported on Q ⊂ Qgp, both the Čech hull and its derived functors depend
only on the Q-graded part of M .

Remark 2.3. The Čech hull was defined in [Mil00] for polynomial rings.
In this case Q = Nd, R = k[Q], and HomR(RQ−α(−α),M) = Mα+ , where
α+ is obtained from α by zeroing out the negative coordinates. Thus our
definition of Č agrees with the one in [Mil00]. Note that the Čech hull is
exact in this case, since RQ−α is free for all α, so the Ext modules that make
up the graded pieces of RiČ vanish.

Example 2.4. Let Q ⊂ Z2 be the semigroup generated by (0, 2),(1, 1), and
(2, 0), so that Qgp ⊂ Z2 is a lattice of index 2. Take R = k[Q], graded by
Q. If α = (x, y) ∈ Qgp, then x and y have the same parity. If x and y are
even, or if x and y have the same sign, then RQ−α(−α) is free. On the other
hand, if x is odd and negative while y is odd and positive, then RQ−α(−α)
is generated in degrees (1, y) and (0, y + 1). Moreover, one has an exact
sequence:

0 → RQ−α(−α− (1, 1)) −→ R(−1,−y)⊕R(0,−y − 1) −→ RQ−α(−α) → 0.

Splicing homological and graded shifts of this short exact sequence together
gives a free resolution F. of RQ−α(−α) such that Fi = R(−1− i,−y − i)⊕
R(−i,−y − i − 1). Since Q is symmetric in x and y, a similar result holds
with x and y reversed.

We now have free resolutions of RQ−α(−α) for every α ∈ Qgp, and we can
use them to compute the Cech hull and its derived functors. For instance,
consider the module k(−u,−v) consisting of a single copy of the residue field
k, supported in a degree (u, v) satisfying v > u > 1. Then for α = (x, y),
we find that HomR(RQ−α(−α), k(−u,−v)) is only nontrivial if α = (u, v).
Since Equation (1) implies that

RiČ(k(−u,−v))α
∼= Exti

R(RQ−α(−α), k(−u,−v)),

it follows that Č(k(−u,−v)) = k(−u,−v). In contrast, RiČ(k(−u,−v)) for
i > 1 can only be nonzero in degrees α for which x and y are odd and of
differing sign, since RQ−α(−α) is free otherwise.
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Suppose we have such an α, and let F. be the corresponding free resolution
of α constructed above. Then HomR(Fi, k(−u,−v)) is nonzero if (and only
if) one of the generators of Fi sits in degree (u, v). Referring to the expression
for the degrees of the Fi in terms of α (and remembering that we assumed
v > u > 1), we find that HomR(Fi, k(−u,−v)) is nonzero if and only if
i = u and y = v − u − 1 or if i = u − 1 and y = v − u + 1. In other
words, RiČ(k(−u,−v)) vanishes except when i ∈ {u − 1, u}. Moreover,
Ru−1Č(k(−u,−v)) is supported in those degrees α such that x is odd and
negative and y = v − u + 1, while RuČ(k(−u,−v)) is supported in those
degrees α such that x is odd and negative and y = v − u− 1.

To summarize, when v > u > 1, we have:
• Č(k(−u,−v)) = k(−u,−v)
• Ru−1Č(k(−u,−v)) = k[x−(2,0)](−1,−v + u− 1)
• RuČ(k(−u,−v)) = k[x−(2,0)](−1,−v + u + 1)

and all other derived functors of Č vanish. Here, xα ∈ k[Qgp] is the element
corresponding to α ∈ Qgp.

3. Local cohomology.

In this section we study the interaction of the Čech hull with the functor
ΓI , which takes a module M to the submodule annhilated elementwise by
some power of the ideal I. If I is graded, then ΓI takes the category M of
Qgp-graded modules to itself.

Proposition 3.1. If R is noetherian, then Č and ΓI commute: ΓIČ =
ČΓI .

Proof.

(ΓIČM)α =
⋃
n

{x ∈ HomR(RQ−α(−α),M) | Inx = 0}

= HomR(RQ−α(−α),ΓIM)

= (ČΓIM)α.

�

Henceforth we assume R is noetherian. In Proposition 3.3 we shall apply
the spectral sequence of a composite functor to the functors ΓIČ and ČΓI .
In order to do this we use the fact that both ΓI and Č take injectives to
injectives. For ΓI this is standard; for Č this follows from Lemma 3.2, whose
extra precision is vital for Section 5.

Lemma 3.2. Let J be an indecomposable injective in M. Then ČJ = 0
if JQ = 0, and ČJ = J otherwise. In particular, Č takes injectives to
injectives.
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Proof. The first statement is clear, since Č depends only on the Q-graded
portion of a module. The last statement follows from the others, using the
fact that every injective is a direct sum of indecomposable injectives (this
uses the noetherian hypothesis).

For the remaining statement, write J = E (R/p)(α) for some prime p of R
and α ∈ Qgp. Then (R/p)(α) is an essential submodule of J , so since JQ is
nonzero, (R/p)(α)Q is nonzero. Now (R/p)(α)Q is an essential submodule of
(R/p)(α) (since R/p is an integral domain), so it is an essential submodule
of J . Thus in particular JQ is an essential submodule of J .

The inclusion JQ → J induces a map φ : J → ČJ , by the adjointness
property of Č. Moreover, φ is injective, since it restricts to the identity on
the essential submodule JQ. Thus J is a direct summand of ČJ , since J is
injective. We claim that ČJ is an essential extension of J , from which the
result follows immediately.

Let x ∈ (ČJ)α = HomR(RQ−α(−α), JQ) be a nonzero homogeneous ele-
ment. Then there is an r ∈ R such that x(r) is nonzero, and then rx = x(r)
is a nonzero element of JQ. Thus ČJ is an essential extension of JQ and
hence of J as well. �

Proposition 3.3. Let M be a graded R-module. There are spectral se-
quences E(M) and F (M) described by

Ep,q
2 (M) = RpČHq

I (M) ⇒ Rp+q(ΓIČ)M

F p,q
2 (M) = Hp

I (RqČM) ⇒ Rp+q(ΓIČ)M.

Proof. These are spectral sequences for the composite functors ČΓI and ΓIČ
[Wei94], using Proposition 3.1 along with Lemma 3.2 and the fact that ΓI

takes injectives to injectives. �

Example 3.4. We return to the case of Remark 2.3; that is, R = k[Nd].
Here Č is exact, and so the spectral sequences E(M) and F (M) both col-
lapse. The proposition simply says that H i

I(ČM) = ČH i
I(M). The right

derived functors of the Čech hull measure the degree to which this equality
fails in other rings.

Ultimately, the goal of this section is Theorem 3.10, which describes how
the local cohomology modules of M can be reconstructed from a finite col-
lection of submodules thereof, using the Čech hull and its derived functors.
After a choosing a certain α ∈ Qgp, this is accomplished by a spectral se-
quence E(M(−α)) that only depends on the (finitely generated) Q-graded
parts of the local cohomology modules of M(−α), since RpČHq

I (−) depends
only on the Q-graded part of Hq

I (−).
For this approach to work, we of course need Rp+q(ΓIČ)M to be a lo-

cal cohomology module. To this end, we use the spectral sequence F (M).
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Although the filtration that arises from F (M) is generally nontrivial, we
avoid this nuisance by replacing M with a suitable Qgp-graded shift, forcing
F to collapse in low cohomological degree. We find this suitable shift in
Corollary 3.6 using Proposition 3.5, which is interesting in its own right.

Proposition 3.5. Let J
. be a minimal injective resolution of a finitely gen-

erated module M ∈ M. Let p be a homogeneous prime of R, let m be a ho-
mogeneous maximal ideal containing p, and let c = dim(R/p)− dim(R/m).
If every indecomposable summand of ΓmJ i+c has nonzero Q-graded part,
then every indecomposable summand of J i isomorphic to a shift of E (R/p)
has nonzero Q-graded part.

Proof. Inverting all homogeneous elements outside m fixes all shifts of
E (R/p) as well as ΓmJ i, so we assume henceforth that m is the unique
maximal homogeneous ideal of R.

We begin with the case c = 1. Using (−)(p) to denote the localization by
all homogeneous elements outside of p, it is a standard fact (in [BH93,
p. 101], for instance) that (Exti

R(R/p, M))(p) = (HomR(R/p, J i))(p) ⊂
(ΓpJ i)(p) is an essential extension. Therefore, we need only show that every
indecomposable submodule of the free (R/p)(p)-module (Exti

R(R/p,M))(p)

has nonzero Q-graded part.
Choose a homogeneous element x ∈ m \ p, and define L by the exact

sequence

0 → R/p
x−→ R/p −→ L → 0,

where x→ is multiplication by x. The long exact sequence for Ext.R(−,M)
provides a right exact sequence

Exti
R(R/p,M) x−→ Exti

R(R/p,M) −→ L(i, x,M) → 0

for the appropriate submodule L(i, x, M) ⊆ Exti+1
R (L,M). Tensoring with

R/m yields an isomorphism R/m⊗Exti
R(R/p,M) ∼= R/m⊗L(i, x, M) since

multiplication by x becomes the zero map. Nakayama’s lemma implies that
Exti

R(R/p,M), and hence (Exti
R(R/p,M))(p), is generated by elements in

degrees γ ∈ Qgp such that L(i, x,M)γ ⊆ Exti+1
R (L,M)γ 6= 0.

Now Exti+1
R (L,M) is the (i+1)st cohomology of the complex HomR(L, J

.)
⊂ ΓmJ

., whose socle subcomplex HomR(R/m, J
.) ⊆ HomR(L, J

.) (the in-
clusion being induced by the surjection L�R/m) is equal to Ext.R(R/m,M).
The hypothesis on (ΓmJ i)Q in the Proposition implies that Exti+1

R (R/m,M)
must in fact equal its Q-graded part. Given any degree γ ∈ Qgp for which
Exti+1

R (L,M)γ 6= 0, we therefore can find a homogeneous element r ∈ R such
that γ +deg(r) ∈ Q. Note that p annihilates L and hence also HomR(L, J

.),
so we can always find our element r outside of p. When we invert r to form
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the localization (Exti
R(R/p,M))(p), any generator y in degree γ can be re-

placed by the generator ry whose degree is in Q. This concludes the case
where c = 1.

The general case proceeds by induction on c, replacing R with its
homogeneous localization at a prime containing p and having dimension
dim(R/p)− 1. �

Recall that the Bass number of a module M at the prime p in cohomo-
logical degree i is the number of indecomposable summands isomorphic to
a shift of E (R/p) appearing at the ith stage in any minimal injective reso-
lution of M . These numbers are always finite if M is finitely generated, but
may in general be infinite.

Corollary 3.6. Suppose R has a unique maximal homogeneous ideal m. Let
M ∈M be a finitely generated R-module, and n be a positive integer. Then
there exists α ∈ Qgp such that for all β ∈ α + Q,

1. Č(M(−β)) = M(−β), and
2. RjČ(M(−β)) = 0 if 1 ≤ j < n.

Proof. Since M is finitely generated, the Bass numbers of M at m are finite.
Thus ΓmJ i is a finite direct sum of indecomposables for each i ≤ n+dim(R).
These can be moved to have nonzero Q-graded part by some shift (−α).
Lemma 3.2 and Proposition 3.5 together then imply that Č fixes J

.(−β) in
cohomological degree n and less for all β ∈ α + Q. �

Remark 3.7. If R is a ring with only finitely many homogeneous primes
(e.g., a semigroup ring), then the conclusion of Corollary 3.6 holds for any
M with finite Bass numbers, as then M has an injective resolution with
finitely many summands in each cohomological degree.

Example 3.8. Let Q ⊂ Zd be a finitely generated semigroup, and let R =
k[Q], graded by Q. Ishida [Ish88] constructed a dualizing complex for R,
in which each indecomposable injective appears without shift. When R is
Cohen-Macaulay, this is an injective resolution of the canonical module ωR

that is fixed by the Čech hull. Hence Corollary 3.6 holds for ωR with α = 0.
It follows that for q > 0 we have

F p,q
2 (ωR) = Hp

I (RqČωR) = 0,

so F (ωR) converges to Hp+q
I (ωR). Thus E(ωR) likewise converges to a filtra-

tion of Hp+q
I (ωR). We will use this fact in the next section (Proposition 4.9)

to compute Hp+q
I (ωR) for I prime.

Example 3.9. The phenomenon predicted by Corollary 3.6 is clearly il-
lustrated in Example 2.4: As u and v increase, the derived functors of
Č(k(−u,−v)) in positive cohomological degrees < u− 1 vanish.
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Theorem 3.10. Suppose R has a unique homogeneous maximal ideal. Let
M be a finitely generated R-module, and n be a positive integer. Then there
exists α ∈ Qgp such that for all β ∈ α + Q, the spectral sequence

Ep,q
2 (M(−β)) = RpČHq

I (M(−β)) ⇒ Hp+q
I (M)(−β)

converges to a local cohomology module for p + q < n.

Proof. Choose α as in Corollary 3.6. Then for all β ∈ α + Q,

F p,q
2 (M(−β)) = Hp

I (RqČM(−β)) =

{
0 if q > 0
Hp

I (M)(−β) if q = 0
.

Hence if p+q < n, Rp+q(ΓIČ)(M(−β)) = Hp+q
I (M(−β)). Since E(M(−β))

converges to the former by Proposition 3.3, the result follows. �

Injective resolutions are rarely finite, so no matter which α is chosen in
Theorem 3.10, F (M) really can converge to something other than Hp+q

I (M)
in large cohomological degrees. For example, if we take Q, R, and k(−u,−v)
as in Example 2.4, then H i

I(k(−u,−v)) vanishes for i ≥ 1 and any I. On
the other hand, we have F p,q

2 (k(−u,−v)) = 0 for p ≥ 1 and F 0,q
2 nonzero for

q ∈ {u−1, u}, so the nonvanishing derived functors of Č cause F (k(−u,−v))
to fail to converge to local cohomology in these degrees.

However, since Hp+q
I (M) vanishes in sufficiently high cohomological de-

grees, choosing n large in the theorem does show how the collection of Q-
graded parts Hj

I (M)(−β)Q for all j determine the entire local cohomology
modules. As we shall see in Section 4, the Q-graded portion of a local coho-
mology module is often much easier to understand than the local cohomology
module itself.

4. Semigroup rings.

One of the ways of understanding local cohomology H
.
I(−) in terms of finitely

generated modules is by taking limits (over m) of modules Ext.R(R/Im,−).
Unfortunately, these limits are frequently quite badly behaved (see[EMS00],
for example). Here, we bypass them entirely, in the case where R = k[Q] is an
affine semigroup algebra over a field k, by constructing the graded pieces of
H

.
I(M) in terms of the derived functors Ext.R(R/Im,M) of HomR(R/Im,M)

for a single fixed m, using Theorem 3.10. In order for this to work, we need
to know what the Q-graded part of local cohomology looks like.

In Sections 4-7, we set R = k[Q], an affine semigroup algebra graded by
Q ⊆ Zd, which is not assumed normal. Such a ring satisfies the hypotheses
of Corollary 3.6, so that all of the machinery of the previous sections applies.
For k[Q] we also have a simpler expression for the Čech hull. In what follows,
Q is viewed as contained in k[Q] via a 7→ xa.
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Proposition 4.1. When R = k[Q] and M ∈M, we have

(ČM)β
∼= HomR(RQ+β,M).

If a ∈ Q, we have a commutative diagram:

(ČM)β
·xa

−→ (ČM)β+a

↓ ↓
HomR(RQ+β,M) −→ HomR(RQ+a+β,M),

where the vertical arrows are isomorphisms and the bottom arrow is induced
by the inclusion of RQ+a+β in RQ+β.

Proof. By definition, (ČM)β = HomR(RQ−β(−β),M). Multiplication by xβ

induces an injection RQ−β(−β) → RQ+β; this is an isomorphism since both
of these modules are supported in the same degrees.

Moreover, one has the following commutative diagram:

RQ−β−a(−β − a) ·xa

−→ RQ−β(−β)
↓ ↓

RQ+β+a −→ RQ+β

from which the rest of the proposition follows immediately. �

Lemma 4.2. Let J = E (R/p)(−α) be an indecomposable injective, and I
an ideal of R. There exists n ∈ N such that for all m > n, (ΓIJ)Q =
HomR(R/Im, J)Q.

Proof. Suppose I is not contained in p. Then some element of I acts as a
unit on R/p, so ΓIJ = HomR(R/Im, J) = 0 and the result is trivial. Thus
it suffices to show this result for I contained in p. In this case ΓIJ = J , so
it suffices to show that HomR(R/Im, J)Q = JQ; i.e., that every element of
JQ is killed by Im.

Let τ be a linear functional that takes nonnegative values on Q, such that
if b ∈ Q, then τ(b) > 0 ⇔ b ∈ p. Then E (R/p) is supported in those degrees
β such that τ(β) ≤ 0. Thus J is supported in those degrees β such that
τ(β) ≤ τ(α) =: n.

Suppose m > n. Let y ∈ JQ and x ∈ Im be nonzero homogeneous
elements of degrees b and c, respectively. Then τ(b) ≥ 0 because b ∈ Q and
τ(c) ≥ m because x ∈ Im ⊆ pm. Thus xy lies in degree b+c and τ(b+c) > n,
so xy = 0, as required. �

Now we can apply the Lemma to describe Q-graded parts of local coho-
mology.

Proposition 4.3. Let M ∈M be finitely generated, and I be a graded ideal
of R. Fix a nonnegative integer i. Then there exists m0 ∈ N such that for
any m ≥ m0,

H i
I(M)Q

∼= Exti
R(R/Im,M)Q.
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Proof. Let J
. be an injective resolution for M , and choose m0 sufficiently

large that (ΓIN)Q = HomR(R/Im, N)Q agree for every m ≥ m0 and every
indecomposable injective summand N appearing in cohomological degree
i or lower in J

.. Then the first i right derived functors of (ΓI−)Q and
HomR(R/Im,−)Q agree on M ; since (−)Q is exact this means H i

I(M)Q
∼=

Exti
R(R/Im,−)Q. �

Example 4.4. If Q is saturated and M = ωR then the power of I in Propo-
sition 4.3 can be set equal to 1; i.e.,

Extp
R(R/I, ωR)Q

∼= Hp
I (ωR)Q,

since the indecomposable summands of the injective resolution of ωR are
unshifted E (R/p)’s.

Corollary 4.5. If M ∈ M is finitely generated, H i
I(M)Q is finitely gener-

ated.

Corollary 4.6. Let M ∈ M be finitely generated. Then H i
I(M) has a

finitely generated essential submodule if and only if for some β ∈ Qgp the
natural map H i

I(M)(−β) → Č(H i
I(M)(−β)) is an injection.

Proof. Suppose H i
I(M) has a finitely generated essential submodule N .

Then we can shift N so that all of its generators have degrees in Q; i.e., there
exists β such that N(−β) ⊂ (H i

I(M)(−β))Q. Since the map H i
I(M)(−β) →

ČH i
I(M)(−β) is injective on its Q-graded part, it is injective on N(−β);

since N(−β) is essential the map is injective everywhere.
Conversely, H i

I(M)(−β)Q is an essential submodule of Č(H i
I(M)(−β))

and hence of H i
I(M)(−β). By Corollary 4.5 it is finitely generated. �

The upshot of the above is that since the spectral sequence E(M) of
Proposition 3.3 depends only on the Q-graded parts of the local cohomol-
ogy modules whic appear in it, we can just replace these local cohomology
modules with the corresponding Ext-modules.

Theorem 4.7. Let M be a finitely generated module over R = k[Q], and n
be a positive integer. Then there exists α ∈ Qgp such that for all β ∈ α +Q,
there exists m ∈ Z making the spectral sequence

Ep,q
2 (M(−β)) = RpČExtq

R(R/Im,M(−β)) ⇒ Hp+q
I (M)(−β)

from Proposition 3.3 converge to a local cohomology module for p + q < n.
Taking degree γ parts for any γ ∈ Qgp yields a spectral sequence of iterated
Ext modules,

Ep,q
2 (M(−β))γ = Extp

R(RQ+γ(β),Extq
R(R/Im,M)) ⇒ Hp+q

I (M)γ−β .

Proof. This is immediate from Theorem 3.10 and Proposition 4.3. �
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Example 4.8. Returning to the setting of Example 3.4, we find using this
theorem that if M is a Zd-graded module over a polynomial ring in d vari-
ables and I is a monomial ideal, then there exist m ∈ Z and β ∈ Zd such
that H i

I(M) = ČExti
R(R/Im,M(−β)). This generalizes a result proved

independently by Mustaţǎ [Mus00] and Terai [Ter99].

For saturated Q, Theorem 4.7 takes an especially nice form for canonical
modules. Recall that a face of Q is the set of degrees of elements outside a
prime ideal of R.

Proposition 4.9. Suppose R is normal and of dimension d. Let p be a
prime of R, corresponding to an n-dimensional face of Q. Then Hd−i

p (ωR) ∼=
Rn−iČ(ωR/p).

Proof. RqČExtp
R(R/p, ωR) ⇒ Hp+q

p (ωR) by Example 4.4 and Theorem 4.7.
Since R/p is a dimension n Cohen-Macaulay quotient of the Cohen-Macaulay
ring R of dimension d, the module Extp

R(R/p, ωR) is nonzero only when
p = d−n, in which case it is ωR/p. Thus the spectral sequence degenerates,
and RqČ(ωR/p) ∼= Hq+d−n

p (ωR). �

Example 4.10. Let Q be the semigroup on four generators {x, y, u, v} and
one relation x+u = y+v, and R = k[Q]. In [Har70], Hartshorne shows that
for the ideal I = (xu,xv), the local cohomology module H1

I (ωR) has a finitely
generated essential submodule while H2

I (ωR) has an infinite dimensional
socle, supported in degrees n(x − v) for n > 0. This is consistent with
Proposition 4.9, which says that infinite-dimensional socles must arise from
a nonvanishing higher derived functor of the Čech hull. See Section 7 for a
combinatorial explanation of why this bad behavior occurs, in the context
of its generalization to arbitrary affine semigroup rings.

5. Finiteness for simplicial semigroups.

Letting Q ⊆ Zd be affine as in the previous section, the above machinery
allows us to make strong statements about local cohomology over R = k[Q].
Indeed, the fact that local cohomology modules “come from” the derived
functors of the Čech hull forces certain structure on them. This structure
is codified in the notion of a straight module, a common generalization of
notions due to Miller [Mil00] (who defined a-determined modules over a
polynomial ring for a ∈ Nn) and Yanagawa [Yan01, Yan00] (who defined
straightness for a restrictive class of modules over semigroup rings). One ob-
tains from Theorem 4.7 that local cohomology modules over semigroup rings
are straight when shifted appropriately. Over a simplicial (and not neces-
sarily normal) semigroup ring this forces them to have finite Bass numbers
(Theorem 5.8). The key to all this is the following definition:
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Definition 5.1. Let Q ⊆ Zd be affine and R = k[Q]. The category S of
straight R-modules is the smallest subcategory of the Qgp-graded modules
M such that (1) all indecomposable injectives J satisfying JQ 6= 0 are
in S; (2) finite direct sums of modules in S are in S; and (3) if φ is a
homomorphism of straight modules, then ker(φ) and coker(φ) are straight.

Proposition 5.2. Let M ∈ M be finitely generated. Then RiČM is
straight.

Proof. By definition, a finite direct sum of straight modules is straight. Thus
if C

. is a complex of finite direct sums of indecomposable injectives, and
each indecomposable injective in C

. has nontrivial Q-graded part, then C
.

is a complex of straight modules, and the cohomology of C
. is straight. In

particular, if C
. = ČJ

. is the Čech hull of an injective resolution J
. of

M , then ČJ
. is a complex of straight modules by Lemma 3.2. Thus its

cohomology is straight, as required. �

Corollary 5.3. Let M ∈ M be finitely generated. Then there exists an
element a ∈ Q such that H i

I(M)(−a) is straight.

Proof. By Theorem 4.7 and Proposition 5.2, we have a ∈ Q such that
H i

I(M)(−a) is the limit of a spectral sequence of straight modules. This
spectral sequence yields a finite filtration of H i

I(M)(−a) whose associated
graded modules are therefore straight. �

Straight modules have a number of useful properties. In particular, the
fact that they can be “built out of” indecomposable injectives with nontrivial
Q-graded part by taking kernels, cokernels, and finite direct sums forces
many of their graded pieces to be isomorphic to each other.

Proposition 5.4. Let M be a straight module over R = k[Q]. Then:
1. MQ is finitely generated.
2. M(−a) is straight for all a ∈ Q.
3. Multiplication by xa is an isomorphism Mβ → Ma+β whenever β ∈

Qgp and a ∈ Q satisfy (β + Q) ∩Q = (a + β + Q) ∩Q.

Proof. If the above three properties hold for M and N , then they also hold
for M ⊕ N , as well as ker(φ) and coker(φ) for any φ : M → N . Thus it
suffices to check that if J is an indecomposable injective, and JQ is nonzero,
then J has the above properties. JQ is clearly finitely generated, and if JQ

is nonzero, so is J(−a)Q, so the first two properties are clear.
For the third property, note that ČJ = J by Lemma 3.2. Thus in partic-

ular,
Jβ = (ČJ)β = HomR(RQ+β, J)

and Ja+β = (ČJ)a+β = HomR(RQ+a+β, J).
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The hypothesis in part 3 says that RQ+β = RQ+a+β, whence multiplication
by xa is an isomorphism Jβ → Ja+β, as required. �

The third property of Proposition 5.4 motivates the following definition:

Definition 5.5. An essential point for Q is an element ε ∈ Qgp such that if
a ∈ Q and (ε+Q)∩Q = (a+ ε+Q)∩Q, then a is a unit. The essential set
E is the Q-set generated by the essential points; i.e., E is the union

⋃
(Q+ε)

over essential points ε.

Now we derive the main theorem of this section, Theorem 5.8, from com-
binatorial properties of the essential set, which we develop in detail in Sec-
tion 6. The key results from that section which we use below are Lemma 6.6,
which is an existence result for essential points, and Proposition 6.13, which
allows us to control the size of the essential set when Q has simplicial satu-
ration.

Proposition 5.6. If M is straight, then ME is an essential submodule of
M .

Proof. Suppose 0 6= x ∈ Mα, and choose an essential point ε with ε− α ∈ Q
and (ε+Q)∩Q = (α+Q)∩Q, using Lemma 6.6. Proposition 5.4 shows that
multiplication by xε−α is an isomorphism Mα → Mε. Thus any submodule
of M containing x contains xε−αx ∈ ME . �

Observe that the results in this section so far have used no extra hypothe-
ses on the affine semigroup Q. Since our goal involves simplicial semigroups,
this will change starting now.

Proposition 5.7. Let Q be an affine semigroup whose saturation is sim-
plicial modulo units, and M a straight module over k[Q]. Then the Bass
numbers of M are finite.

Proof. Taking a as in Proposition 6.13, we find that ME ⊂ MQ−a, so
ME(−a) ⊂ (M(−a))Q. Since M(−a) is straight, M(−a)Q is finitely gener-
ated. Thus ME is finitely generated, so M has a finitely generated essential
submodule by Proposition 5.6. In particular, its Bass numbers in cohomo-
logical degree zero are finite. Moreover, if J

. is a minimal injective resolution
of M , then J0(−a) is straight because it has a Q-graded essential submodule
M(−a)Q. Therefore coker(M(−a) → J0(−a)) is straight, whence the result
follows by induction on the cohomological degree. �

The Bass numbers of such an M at ungraded primes are also finite, by
results of [GW78].

Theorem 5.8. Let Q be an affine semigroup whose saturation is simplicial
modulo units. If M is a finitely generated Qgp-graded k[Q]-module, then the
Bass numbers of H i

I(M) are finite, for any Q-graded ideal I.
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Proof. This is immediate from Proposition 5.7 and Corollary 5.3. �

Corollary 5.9. Suppose Q is affine, with Qsat simplicial modulo units, and
let M ∈ M be finitely generated over R = k[Q]. Then there exist β ∈ Qgp

and n ∈ N such that

H i
I(M)(−β) ∼= ČExti

R(R/In,M(−β)).

Proof. Since the Bass numbers of H i
I(M) are finite, by Remark 3.7 there

exists β such that H i
I(M)(−β) is fixed by the Čech hull. Then H i

I(M)(−β) is
the Cech hull of its Q-graded part and the result follows from Proposition 4.3.

�

6. The essential set.

The essential set, introduced in Definition 5.5, fleshes out in some detail the
combinatorics hidden in an affine semigroup. Since we believe this combi-
natorics is of independent interest, we determine in Theorem 6.2, Proposi-
tion 6.4, and the comments in between, the structure of the essential set in
the saturated case, along with its relation to Hilbert bases, monomial mod-
ules, irrelevant ideals of toric varieties, and Alexander duality. The rest of
the section we devote to providing the necessary relations between essential
sets of unsaturated semigroups and those of their saturations, including the
results already applied in Section 5.

We need a bit of notation. Associated to an affine semigroup Q are its
facets F1, . . . , Fr; these are the degrees of homogeneous elements outside of
the r codimension-one Q-graded primes of k[Q]. There are unique primitive
integer-valued linear functionals {τ1, . . . , τr} on Qgp, nonnegative on Q, such
that Fi = {b ∈ Q | τi(b) = 0}. Given α ∈ Qgp, define τ(α) ∈ Zr to be the
vector (τ1(α), . . . , τr(α)), and let τ(α)+ be the vector obtained from τ(α) by
replacing its negative entries with zeros.

Lemma 6.1. Suppose Q is saturated. Then (α + Q) ∩Q = (β + Q) ∩Q if
and only if τ(α)+ = τ(β)+. In particular, ε is an essential point if and only
if τ(ε)+ 6= τ(a + ε)+ for all nonunits a in some generating set for Q.

Proof. Since Q is saturated, (α + Q)∩Q is the set of lattice points γ ∈ Qgp

inside the polyhderon defined by {τi(γ) ≥ 0 and τi(γ) ≥ τi(α) | i = 1, . . . , r}.
This is the polyhedron defined by the inequalities {τi(γ) ≥ τ(α)+i | i =
1, . . . , r}, and the first claim follows easily.

The map τ : Qgp → Zr takes Q to the semigroup τ(Q) isomorphic to
the quotient of Q by its group of units. As a consequence, the definition of
essential point translates to: ε is an essential point if and only if τ(ε)+ 6=
τ(a + ε)+ for all nonunits a ∈ Q. But since τi is nonnegative on Q for all i,
the second statement follows. �
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The lack of nontrivial units in τ(Q) endows it with a unique minimal set
H of semigroup generators, called the Hilbert basis of τ(Q). Each element
of H imposes a condition that α must satisfy to be essential. To express this
condition, define, for h ∈ Nr, the set 〈h〉 = {ζ ∈ Zr | ζi > −hi for some i
such that hi > 0}. Observe that 〈h〉 is a union of half-spaces, and is defined
in such a way that τ−1(〈τ(a)〉) = {ε ∈ Qgp | τ(ε)+ 6= τ(ε + a)+}.

Theorem 6.2. If Q is saturated then the essential set E consists entirely of
essential points. Furthermore, E = τ−1(

⋂
h∈H〈h〉) =

⋂
h∈H τ−1(〈h〉).

Proof. The second sentence follows from Lemma 6.1 and the remarks fol-
lowing it because τ−1(H) generates Q. Since 〈h〉 is stable under the action
of Q, τ−1(〈h〉) is Q-stable, too. Thus the essential points already form a
Q-set, which therefore equals E . �

Example 6.3. We consider once again the semigroup Q generated by three
elements x, y, z such that x + y = 2z. τ embeds Q in Z2 by sending x to
(2, 0), y to (0, 2), and z to (1, 1); the image of Qgp in Z2 is the sublattice of
index 2 consisting of pairs (u, v) such that u and v have the same parity.

The points (0, 2), (1, 1) and (2, 0) form a Hilbert basis for τ(Q). 〈(0, 2)〉
consists of those points (u, v) in Z2 with v ≥ −1; similarly 〈(2, 0)〉 consists
of those points with u ≥ −1. Finally 〈(1, 1)〉 consists of points with either u
or v nonnegative. Thus the essential points are those points α ∈ Qgp such
that τ(α) has one of the following forms:

1. (−1, v) for some odd positive v.
2. (u,−1) for some odd positive u.
3. (u, v) for u, v nonnegative and with the same parity.
Figure 1 shows the essential set embedded in Z2 via τ . The spots (both

hollow and solid) represent elements of Qgp; solid spots are essential points.
The regions in which α+Q∩Q remain constant are enclosed by dotted lines.
Note in particular that there is an essential point in every region, and that
the essential points form a Q-set, as predicted by the theorem.

If we refer back to Example 2.4, we see that the socles of RpČ computed
there lie within the essential set, as Proposition 5.6 and Proposition 5.2
predict. Also note that z +E ⊂ Q. One will be able to translate E so that it
lies in Q precisely when Q is simplicial; this is the content of Proposition 6.13,
which is the central goal of this section.

The essential set E is related to a number of other notions already playing
roles in the study of semigroup algebras and toric varieties. For instance,
the subset 〈H〉 :=

⋂
h∈H〈h〉 of Zr is a monomial module [BS98], so E might

be called a skew monomial module inside the lattice Qgp. To get a better
picture, 〈H〉 ⊂ Zr is a “fuzzy neighborhood” of a certain union U of orthants,
in the sense that there is a vector z ∈ Nr such that U ⊆ 〈H〉 ⊆ U−z. In fact,
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Figure 1. The essential set of the semigroup generated by
(2, 0), (1, 1), and (0, 2).

each set 〈h〉 contains and approximates the union Uh =
⋃

hi>0{ζ ∈ Zr | ζi ≥
0} of half-spaces, and U =

⋂
h∈H Uh; our z can be any vector with zi > hi

for all h ∈ H and all i.
We can get an even better handle on U in the case where Q is the cone

over Q, an integral polytope in Zd−1 × {1} ⊂ Zd−1 × Z = Zd. For each
face F of Q, let van(F ) ⊆ {1, . . . , r} be the indices of functionals vanishing
on F ; similarly, for z ∈ Nr, let van(z) = {i ∈ {1, . . . , r} | zi = 0}. For
instance, if F = Fi is a facet then van(Fi) = {i}, and van(z) = van(F ) if
and only if zi = 0 and zj > 0 for all j 6= i. The polynomial ring k[Nr] is the
Cox homogeneous coordinate ring [Cox95] of the projective toric variety X
whose isomorphism class and embedding in projective space are determined
by Q. The Cox ring comes equipped with the irrelevant ideal B = 〈xz | z ∈
Nr and van(z) ⊆ van(F ) for some face F of Q〉.

Proposition 6.4. If Č is the Čech hull over Nr, then −ζ ∈ U if and only
if xζ 6∈ Č(B). Equivalently, the k[Nr]-submodule 〈xζ | ζ ∈ U〉 ⊂ k[Zr] is the
shift by (1, . . . , 1) ∈ Zr of the Čech hull Č(B?) of the ideal B? Alexander
dual to B [ER98], [MP01, Lecture VI].

In the case where Q is a simple polytope, so the corresponding projective
toric variety is simplicial, B? is the Stanley-Reisner ideal for the simplicial
polytope polar to Q.

Proof. The equivalence of the two statements is [Mil98, Lemma 2.11]. Note
that Č(B) is, a priori, a submodule of k[Zr] since the latter is the injective
hull of B and the former is an essential extension. Now xζ ∈ Č(B) if and
only if van(ζ+) ⊆ van(F ) for some face F by Remark 2.3. On the other
hand, −ζ ∈ Uh precisely when ζi ≤ 0 for some i with hi > 0; that is, when
van(ζ+) 6⊆ van(h). Therefore, −ζ 6∈ U if and only if van(ζ+) ⊆ van(h) for
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some h ∈ H. This occurs if and only if van(ζ+) ⊆ van(F ) for some face
F , because: van(F ) ⊆ van(h) for all h ∈ F ; and each h ∈ H lies in the
relative interior of some F , so van(h) = van(F ) for this F . We conclude
that xζ ∈ Č(B) if and only if −ζ 6∈ U . �

Example 6.5. We illustrate this for the semigroup Q of Example 4.10; that
is, the semigroup on four generators {x, y, u, v} with the relation x+u = y+
v. If we order the four facets appropriately, τ embeds Qgp in Z4 by sending
x to (1, 0, 0, 1), y to (0, 1, 0, 1), u to (0, 1, 1, 0) and v to (1, 0, 1, 0). The image
τ(Qgp) is the lattice consisting of points (a, b, c, d) with a + c = b + d.

Now 〈(1, 0, 0, 1)〉 is the set of (a, b, c, d) in Z4 such that either a or d is
nonnegative. Thus, if α ∈ Qgp is an essential point, with τ(α) = (a, b, c, d),
then either a or d is nonnegative. Similarly, using the other elements of the
Hilbert basis, we find that:

• Either b or d is nonnegative.
• Either b or c is nonnegative.
• Either a or c is nonnegative.

Note that in this example, the irrelevant ideal B of Proposition 6.4 is
generated by the elements x(1,0,0,1),x(0,1,0,1),x(0,1,1,0), and x(1,0,1,0) in the
polynomial ring k[N4]. The Čech hull of this ideal is thus supported precisely
on those (a, b, c, d) ∈ Z4 such that at least one of the pairs {a, d}, {b, d},
{b, c}, {a, c} consists of strictly positive integers. Therefore, an element of
Z4 fails to be in this support if and only if its negative satisfies the above
four conditions. To summarize, those elements α of Qgp such that −τ(α) is
not in the support of ČB are essential points, as Proposition 6.4 predicts.

The conditions on τ(α) given above, together with the fact that (a, b, c, d)
= τ(α) (and therefore a + b = c + d), imply that α is an essential point if
(and only if) at most one of {a, b, c, d} is negative. Note that no finite shift
will take all of the essential points inside of Q, since one has essential points
α whose negative coordinate is −n for any natural number n. In particular,
the degrees of the socle elements of H2

(x,u)(ωR) produced in Example 4.10 are
a set of essential points whose negative coordinates are unbounded below.

More generally, the fact that we cannot shift the essential set into Q
means that we cannot rule out the possibility of local cohomology having
infinite Bass numbers. In fact, we will construct a local cohomology module
with infinite Bass numbers whenever the essential set cannot be shifted into
Q (Corollary 7.5).

During our proof of Theorem 5.8, we needed certain results about the
structure of E . In order to obtain them in the generality we used in Section 5,
we no longer assume that Q is saturated. We begin with a lemma used in
the proof of Proposition 5.6.



BASS NUMBERS ... 59

Lemma 6.6. Given α ∈ Qgp, there exists some essential point ε with (ε +
Q) ∩Q = (α + Q) ∩Q.

Proof. Any element β ∈ Qgp satisfying (β + Q) ∩ Q = (α + Q) ∩ Q must
also satisfy τ(β) � τ(γ) for all γ ∈ (α + Q) ∩ Q, where � is the partial
order by componentwise comparison. The set of possibilities for τ(β) ∈ Zr

satisfying this condition is bounded above, and thus has a maximal element
τ(ε). Moreover, τ(β) = τ(ε) for some β ∈ Qgp if and only if β − ε is a unit
of Q. This proves that ε is an essential point. �

The major combinatorial result used in the previous section is the fact
that if Qsat is (modulo its units) simplicial, then E can be shifted inside
of Q. Therefore, we want an analog to Lemma 6.1 which holds even for
semigroups which are not saturated. The key tool relating the combinatorics
of a semigroup to the combinatorics of its normalization is provided by the
next lemma. Recall that a face of Q is the set of degrees of elements outside
a prime ideal of k[Q].

Lemma 6.7. Let F be a face of Q. There exists aF ∈ F such that aF +QF ⊂
Q, where QF := (Q + F gp) ∩Qsat is the partial saturation of Q at F .

Proof. Let R′ = k[QF ] and R̃ = k[Qsat]. Then, letting p ⊂ R = k[Q] be
the prime ideal such that R/p = k[F ], the R-algebra R′ is the intersection
R(p) ∩ R̃ of the homogeneous localization at p with the normalization. The
Lemma calls for a homogeneous element outside of p to be in the conductor
ideal

annR(R′/R) = {x ∈ R | xR′ ⊂ R}.
Such an element exists precisely when annR(R′/R)(p) = R; i.e., when the
localizations R(p) and R′ ⊗R R(p) are equal. But

R′ ⊗R R(p) = R(p) ∩ (R̃⊗R R(p))

= R(p) ∩ R̃
(p eR)

= R(p)

because R(p) ⊆ R̃
(p eR)

. �

Remark 6.8. When F = Q, then QF = Qsat, and this is the well-known
fact that every semigroup Q contains an element a with a + Qsat ⊂ Q.

With Lemma 6.7 in hand, we can now find a sufficient condition under
which (β + Q) ∩ Q = (a + β + Q) ∩ Q. Let vanτ (F ) ⊆ {τ1, . . . , τr} be the
subset consisting of functionals vanishing on the face F of Q.

Lemma 6.9. Let a ∈ F , and suppose we have β ∈ Qgp such that τi(a +
aF + β) ≤ 0 for all τi 6∈ vanτ (F ). Then (β + Q) ∩Q = (a + β + Q) ∩Q.
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Proof. Noting that τj(a) = τj(aF ) = 0 for τj ∈ vanτ (F ), the hypothesis on
a + aF + β implies that the intersections with Q are contained in (a + aF +
β + Qsat). Therefore, it is enough to show that

(β + Q) ∩ (a + aF + β + Qsat) = (a + β + Q) ∩ (a + aF + β + Qsat).

This follows by adding β or a+β to both sides of the equality in Lemma 6.10,
below, and setting respectively b = a + aF or b = aF . �

Lemma 6.10. If b ∈ F and b + QF ⊆ Q, then Q ∩ (b + Qsat) = b + QF .

Proof. We show Q∩(b+Qsat) = (b+QF )∩(b+Qsat), which obviously equals
b + QF . Now Q ∩ (b + Qsat) ⊇ (b + QF ) ∩ (b + Qsat), because Q contains
b+QF ; and Q∩ (b+Qsat) ⊆ (b+QF )∩ (b+Qsat), because a− b ∈ QF when
a ∈ Q ∩ (b + Qsat), by definition of QF . �

We are now in a position to state and prove the unsaturated analog of
Lemma 6.1.

Proposition 6.11. Choose aQ so that τi(aQ) ≥ τi(aF ) for all i and F .
Suppose a ∈ Q, β ∈ Qgp, and τ(aQ + β)+ = τ(a + aQ + β)+. Then (β +
Q) ∩Q = (a + β + Q) ∩Q.

Proof. Let F be the smallest face of Q containing a. Then for all τi not
vanishing on F , we have τi(a) > 0, so τi(a + aQ + β) ≤ 0 (as otherwise
the ith coordinates of τ(aQ + β)+ and τ(a + aQ + β)+ are unequal). Thus
τi(a + β) ≤ τi(−aQ) ≤ −τi(aF ), and by Lemma 6.9 we have (β + Q) ∩Q =
(a + β + Q) ∩Q, as required. �

The approximation to Theorem 6.2 in the unsaturated case is as follows:

Corollary 6.12. Let H be the Hilbert basis for τ(Q), and aQ be as in Propo-
sition 6.11. Then E + aQ ⊆

⋂
h∈H τ−1(〈h〉).

Proof. Pick, for each h ∈ H, an element qh ∈ Q with τ(qh) = h. Suppose
ε is an essential point. Setting β = ε and a = qh in Proposition 6.11, we
have τ(ε + aQ)+ 6= τ(ε + aQ + qh)+. Just as before Theorem 6.2, we have
τ(ε + aQ) ∈ 〈h〉, and this holds for all h ∈ H. �

Proposition 6.13. Suppose Qsat is simplicial (modulo units). Then there
exists a ∈ Q such that a + E ⊂ Q.

Proof. The hypothesis on Q means precisely that for each i = 1, . . . , r, the
image τ(Q) contains an element hi ∈ H in its Hilbert basis whose unique
nonzero coordinate is hi

i > 0. Observe that 〈hi〉 = {ζ ∈ Zr | ζi > −hi
i}

is a half-space by definition. Setting h = (h1
1, . . . , h

r
r) ∈ Zr, we find that

h+
⋂

h∈H〈h〉 ⊆ h+
⋂r

i=1〈hi〉 ⊆ Nr. By Corollary 6.12 we may take a = aQ+h̃

for any h̃ ∈ Q satisfying τ(h̃) = h. �



BASS NUMBERS ... 61

7. Infinite-dimensional socles.

In this section we prove our principal result concerning semigroup rings,
Theorem 7.1, by combining Theorem 5.8 with its converse, namely that if
Qsat is not simplicial then one can always find an ideal I for which local
cohomology is not well-behaved. We avoid dealing with nontrivial units
here, since they add nothing to the content, but obscure the statement.

Theorem 7.1. Let Q be an affine semigroup of dimension d with trivial
unit group (but not necessarily saturated ). The following are equivalent:

1. The saturation Qsat is simplicial.
2. For every Q-graded ideal I and every finitely generated Q-graded k[Q]-

module M , the Bass numbers of H i
I(M) are finite.

3. For every Q-graded prime p of dimension 2, Hd−1
p (ωk[Qsat]) has finitely

generated socle.

This theorem provides a proof and generalization of Example 4.10. The
key to our argument is Yanagawa’s computation of the local cohomology
of the canonical module ωk[Q] over a normal semigroup ring k[Q] [Yan01].
To state it, let τ1, . . . , τr be linear functionals which vanish on the facets
F1, . . . , Fr of Q and take nonnegative integer values on Q, as in the previous
sections. For the sake of simplicity we assume that Q has no nonzero units.
Choose a hyperplane H transverse to the real cone R+Q generated by Q,
so that Q = (R+Q) ∩H is a polytope of dimension d − 1 = dim(k[Q]) − 1
whose faces (including the empty face ∅) correspond to the primes of k[Q].

Definition 7.2. Let F ∈ Q correspond to F ∈ Q (so 0 ∈ Q corresponds to
∅ ∈ Q, for example). Define the polyhedral cell subcomplex

F (α) = {F ′ ∈ F | (α + R+Q) ∩ F ′ = ∅}
of F for any face F ⊆ Q and α ∈ Qgp.

Theorem 7.3 ([Yan01, Theorem 6.1]). Let Q be saturated and p be a
graded prime of k[Q], corresponding to a face F of Q. Then Hd−i

p (ωk[Q])α
∼=

H̃ i−1(F , F (α)) for all α ∈ Qgp.

We will apply this when p has dimension 2; that is, when F is an edge of
Q.

Proposition 7.4. If p corresponds to the edge F and Q is saturated, then:
1. Hd−1

p (ωk[Q])α = 0 if τi(α) > 0 for some i such that F i ∩ F 6= ∅.
2. Hd−1

p (ωk[Q])α = 0 if τi(α) ≤ 0 for all i such that F i ∩ F = ∅.
3. Hd−1

p (ωk[Q])α = k if neither of the above conditions holds.

Proof. Suppose the first condition holds. If F i contains F , then α + R+Q
misses F entirely, so F (α) = F , and the zeroth relative homology is zero.
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Otherwise, F i∩F is a vertex of the edge F , and F (α) contains at least that
vertex. Thus the relative homology is again zero.

If the second condition holds, but the first does not, then τi(α) ≤ 0 for
all i. This implies F (α) is the void complex—not even ∅ ∈ F (α), so the
zeroth relative homology is still zero.

In the third case, F (α) consists of just the empty face ∅, and the zeroth
relative homology is the number of connected components of F . �

Corollary 7.5. Let F be an edge of Q such that there exists a facet F j of
Q with F j ∩ F = ∅. Let p be the prime of k[Q] corresponding to F . Then
if Q is saturated, Hd−1

p (ωk[Q]) has an infinite-dimensional socle.

Proof. Every nonzero element x ∈ Hd−1
p (ωk[Q]) is annihilated by some power

of the maximal ideal of k[Q]. To see this, suppose x is homogeneous of degree
α, and assume that for some β ∈ Q, we had xnβx 6= 0 for all n ∈ N. Then,
by Proposition 7.4, τi(nβ + α) ≤ 0 for all n and all i such that F i ∩ F 6= ∅.
Thus τi(β) = 0 for all such i, so β ∈ F i for all such i. But the intersection
of all such F i is empty, so β = 0.

If F j ∩F = ∅, then choose α ∈ Qgp such that τj(α) > 0 and τi(α) ≤ 0 for
i 6= j. Proposition 7.4 implies that Hd−1

p (ωk[Q])α is nonzero and killed by
some power of the maximal ideal, so Hd−1

p (ωk[Q]) has nontrivial socle. Sup-
pose its socle were finite-dimensional. Then there would exist β ∈ Qgp such
that τj(β) is maximal among the socle degrees in Qgp. But since τj(α) > 0,
we have τj(β) > 0, so τj(2β) > τj(β). Moreover the local cohomology
is nontrivial in degree 2β. Taking a nonzero element of Hd−1

p (ωk[Q])2β and
multiplying it by a sufficiently large power of the maximal ideal then yields a
socle element in a degree γ with τj(γ) > τj(β), which is a contradiction. �

Proof of Theorem 7.1. 1 ⇒ 2 is Theorem 5.8, and 2 ⇒ 3 is because ωk[Qsat]

is finitely generated over k[Q]. For 3 ⇒ 1, the unsaturated case follows from
the saturated case. Indeed, any Qsat-graded ideal I ⊂ k[Qsat] is generated
up to radical by elements y = (y1, . . . , ys) in k[Q] (high powers of any
homogeneous generating set for I will do). If M is any k[Qsat]-module, the
cohomology of the Čech complex C

.(y;M) on these generators is therefore
a module over both k[Qsat] and k[Q]. As such, it is simultaneously the local
cohomology of M over k[Qsat] with support on I ⊂ k[Qsat] and over k[Q]
with support on I∩k[Q]. Furthermore, any socle element of a k[Qsat]-module
is also a socle element over k[Q], since the maximal ideal of k[Q] is contained
in the maximal ideal of k[Qsat].

Thus by Corollary 7.5, it suffices to produce, for any polytope Q 6= sim-
plex, an edge F of Q that misses some facet. Equivalently, it suffices to
show that if Q is a polytope in which every edge meets every facet then Q
is a simplex. Let F ∈ Q be a facet, and τ a linear functional supporting
F , nonnegative on Q. Suppose τ takes a minimal nonzero value at a vertex
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v 6∈ F . If more than one vertex of Q lies off of F , there is an edge (necessar-
ily missing F ) connecting v to some vertex at which τ > 0. Thus, if every
edge meets every facet, there can be only one vertex of Q lying off of each
facet, and Q must be a simplex. �

8. Open problems.

It has been seen above that affine semigroup rings provide a wealth of ex-
amples and counterexamples to general questions about local cohomology in
singular varieties. In particular, they shed some light on some of the general
questions posed by Huneke on local cohomology [Hun92]:

1. When is H i
I(M) zero?

2. When is H i
I(M) finitely generated?

3. When is H i
I(M) artinian?

4. When is the number of associated primes of H i
I(M) finite?

Although the answer to the fourth is trivially “always” in the cases discussed
in this paper, the above examples provide clues as to how to refine the first
three, given a grading.

Section 4 provides a possibility for answering Question 1: Relate the van-
ishing of local cohomology in a given cohomological degree to the vanishing
of Ext modules in that cohomological degree and lower. Theorem 4.7 estab-
lishes this link for graded modules over semigroup rings; we believe that such
a connection exists in significantly more generality, but we are unaware of
how to relate infinitely generated modules to finitely generated ones with-
out resorting to a grading. The key concept is that of a certain kind of
“constancy”, provided here by the Čech hull. This type of constancy is rem-
iniscent of the characteristic 0 regular local case, in which the modules in
question are treated as D-modules [Lyu93]. Perhaps the right generaliza-
tion of D-module to the singular setting will provide the appropriate notion
of constancy to bridge finitely generated Ext modules and local cohomology.

A partial answer to Question 2 in the general (local, ungraded) case con-
cerns numerical criteria on the heights of primes and cohomological degrees
involved [Hun92]. In the semigroup-graded case, finite generation can be
viewed as a convex-geometric problem, dealing with Q-graded degrees in
which the summands in a minimal injective resolution are nonzero. We ex-
pect in the Q-graded case for these considerations to yield geometric and
combinatorial criteria in addition to the general numerical criteria. For the
canonical module of a normal semigroup ring, for instance, local cohomology
at a graded prime ideal p of R is finitely generated if and only if it vanishes,
since Proposition 4.9 expresses such cohomology in terms of derived functors
of Č, which are never finitely generated if they are nonzero, or in terms of
ČωR/p, which is also never finitely generated.

As pointed out by Huneke [Hun92], Question 3 has two parts, namely:
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3a. When is the maximal ideal the only associated prime of H i
I(M)?

3b. When are the Bass numbers of H i
I(M) finite?

Both 3a and 3b should have concrete combinatorial answers in the semigroup
case, at least when M is a canonical module. In fact, we expect the essential
set to play a pivotal role in answering these and the following refinement of
3a: For which cohomological degrees i and graded ideals I is a given prime
of k[Q] associated to H i

I(ωk[Q])?
As for Question 3b, it seems to be connected with the kinds of singularities

which appear in the normalization of the ring R. Whether this holds in more
generality than simply for semigroup rings is an interesting question. For
instance, one can try classifying the singularities of a ring R or ideals I
for which the modules H i

I(M) can have infinite Bass numbers (or, for that
matter, which primes can appear with infinite Bass number). Even in the
case of a semigroup ring, we do not have satisfactory answers to these last
questions.

Finally, is there a global version of the Čech hull that works for toric
varieties, and if so, what is its relation to the Čech hull over the Cox homo-
geneous coordinate ring [Cox95]? More generally, for varieties with a torus
action, can a global Čech hull give information about cohomology with sup-
port on subvarieties fixed pointwise by subgroups of the acting torus? In the
toric case, properties of a global Čech hull will be governed by the group of
Weil divisors modulo Cartier divisors, introduced by Thompson to control
resolutions of singularities [Tho01].
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