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If an irreducible manifold M admits two Dehn fillings along
distinct slopes each filling resulting in a reducible manifold,
then we call these bireducible Dehn fillings. The first example
of bireducible Dehn fillings is due to Gordon and Litherland.
More recently, Eudave-Munoz and Wu presented the first in-
finite family of manifolds which admit bireducible Dehn fill-
ings. We present another infinite family of hyperbolic man-
ifolds which admit bireducible Dehn fillings. The manifolds
obtained by the fillings are always the connect sum of two lens
spaces.

0. Introduction.

Let M be an orientable 3-manifold with toroidal boundary T'. Given a slope
r on T, the Dehn filling of M along r, denoted by M(r), is the manifold
obtained by identifying 71" with the boundary of a solid torus V' so that r
bounds a meridian disk in V.

In this paper, we are especially interested in those Dehn fillings which
produce reducible manifolds. Recall that a manifold is reducible if it contains
an essential 2-sphere, that is, a 2-sphere which does not bound a 3-ball. If
an irreducible manifold M admits two Dehn fillings along distinct slopes
each filling resulting in a reducible manifold, then we call these bireducible
Dehn fillings.

The first example of bireducible Dehn fillings is due to Gordon and Lither-
land [GLi]. More recently, Eudave-Munoz and Wu [EW] presented the
first infinite family of manifolds with admit bireducible Dehn fillings. They
show that for each p # 0 there is a hyperbolic manifold M, such that
Mp(0) =2 Q(2,—2)#RP3 and Mp(0) = Q(2p, —2p)#RP3, where Q(r, s) is
the double branched cover of a Montesinos tangle T'[r, s].

We present another infinite family of hyperbolic manifolds which admit
bireducible Dehn fillings, all with exactly one toroidal boundary compo-
nent. They represent counterexamples to the generalization of the Cabling-
Conjecture [GS] since they are hyperbolic. Notice that examples with a
single boundary component can be constructed from the examples given in
[EW] (for more details, see the end of Section 4).
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Theorem 1. There exists an infinite family of hyperbolic manifolds which
admit bireducible Dehn fillings. More precisely, there exist families of hy-
perbolic manifolds M, MY and M], parameterized by an integer t, such
that:

a) Mi(oco) = L(—2,1)#L(—4,1) and

Mi(t) = L(2,1) #L{t*—2t+1,t—2) fort+#0,1,2,
b) Mi(oo) = L(—3,1)#L(-3,1) and

Mi(t) = L(3,1) #L{t*—t+1,t—1) fort#0,1,
c) Mi(oo) 2 L(—4,1)#L(-2,1) and

Mi(t) = L(4,1) #L{#*+1,t) fort#0.

Note that in each instance, the manifold resulting from the Dehn filling
is the connect sum of two lens spaces. The lens space L(p, q) is the manifold
obtained by performing p/g-Dehn surgery on the unknot. The restrictions
on the parameter ¢ are there to account for cases where either the resultant
manifold is not reducible (i.e., one of the summands is L(1,n) = S%), or one
summand of the resultant manifold is not a lens space. The latter occurs
in Case (a) with t = 1. Here we get the summand L(0,—1) = S? x S,
This case is also uninteresting since the manifold (before the Dehn filling)
is reducible.

1. Surgery instructions.

In this section, we show how to construct a family of manifolds with one
toroidal boundary component. Begin with the five component link L C $3
shown in Figure 1 having components A, B, C', D and K. The box labeled
t represents t full twists. Positive values represent right-handed twists; and,
negative values represent left-handed twists. For example,
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T[s5=000000C  and =2000C

Define M, f abe.d) to be the manifold obtained by removing a regular neigh-
borhood of K and performing Dehn surgery on the components A, B, C
and D along the respective slopes a, b, ¢ and d. The parameter ¢ repre-
sents the number of twists between the components K and C (as shown
in Figure 1). In particular, we are interested in the families of manifolds
MELL*?,L?)’ MELL*MJ)’ M572,71,1,2) and Mf—z,—lg,l) parametrized by the
nonzero integer t.

Also, let T' = 8M€a,,b,c,d) be the boundary torus. If  is a slope in T, then

define M (ta,b,c, d)(r) to be the manifold obtained by performing a Dehn filling
along r.
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2. Bireducibility.

Here we show that there are two slopes, namely co = % and ¢, in the bound-
ary of M&Lb’c& such that the Dehn fillings, M(ta’b’c’d)(oo) and M(ta,b,c,d) (1),
are both reducible manifolds. Moreover, the resulting summands are all lens
spaces.

The following proofs use the link-calculus of 3-manifolds as described in
Chapter 9H of [R]. The proofs consist of a series of link diagrams with ac-
companying surgery coefficients. Each transition between diagrams is either
an isotopy or a twisting about an unknotted component. In order to sim-
plify the statements of the following claims, we will consider L(1,n) = 3
and L(0,41) = S? x S! as lens spaces. This inclusion applies only to this
section of the paper. Let us first consider the manifolds for which a = —1,
b= —-2.

Claim 1. M{ | , ()= L(t®+ (1 -t +1,t+1—c)#L(d+2,1).

Proof. We refer the reader to Figure 2. In the first transition, component
D is isotoped so that components B and D “pass through” component A in
like fashion. This is done to facilitate the twisting of component A in the
second transition.

In transition 2, we perform a single positive twist about component A.
Since A now has a trivial surgery coefficient, it is removed from the dia-
gram. Note that the surgery coefficients increase for components B and D
as they link component A. In transition 3, we perform a single positive twist
about component B. Again, the component is removed as it has a trivial
surgery coefficient; and, the surgery coefficients for components C' and D
are increased.

Transition 4 introduces a new component F' linking components C' and K,
and gives it —t — 1 twists (to unwind the twisting of components C' and K).
Thus the surgery coefficient of F'is — tl—l' This new component is temporary
and simplifies the diagram for the next transition. Moreover, we achieve the
desired effect that the surgery coefficient of K is now —1. At this point,
component C' and D have, respectively, surgery coefficients ¢ — t and d + 2.

In transition 5, we perform a single positive twist about component K,
giving it a trivial surgery coefficient. We will keep K in the diagram so
that we may see how it lies in the resulting manifold. Note that the surgery
coefficient of component C' is unchanged as it has linking number zero with
component K. The surgery coefficient of F' is increased by the twist.

Transition 6 is an isotopy of component C. In transition 7, components
D, F and K are isotoped to facilitate a twisting about component C.

In transition 8, we perform a single negative twist about component C.
This is done so the coefficient of component F' once again represents —t — 1
twists. Transitions 9 and 10 are isotopies of component D in an attempt to
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separate components C' and D. In transition 9, the lower arc of D is flyped
to the top of the diagram. Also, a lower loop of D is untwisted. In transition
10, component D is pulled taut at the expense of twisting component K.

Transition 11 is an isotopy of components F' and C. Component C' is
pulled down. We also localize component F' so that, in transition 12, we
may perform ¢ + 1 twists about F'.

The final diagram shows us the knot K with trivial surgery coefficient.
If we disregard K, we see two unknotted and unlinked components. Each
component, C' and D, represents a lens space summand (possibly S3 or

52 x Sb) of Mfil’%’c’d)(t), thus proving the claim. O

Next, consider the manifolds for which ¢ = —2 and b = —1.
Claim 2. M{ , ()= L(t* —ct+ 1t —c)#L(d +1,1).

Proof. We refer the reader to Figure 3. The proof of this claim is nearly
identical to the proof of Claim 1. Transition 1 is an isotopy of component
D. In transition 2, we perform a single positive twist on component B.
This gives B a trivial surgery coeflicient; so it is removed. The surgery
coefficient of components A and C' increase to —1 and ¢+ 1, respectively. In
transition 3, we perform a single positive twist on component A. This gives
A a trivial surgery coefficient; so it too is removed. The surgery coefficients
of components C' and D each increase by 1. The remaining transitions are
identical to those in Claim 1, the only difference being the surgery coefficients
of components C and D. U
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Figure 2. The equivalence of M(_; _5 . )(t) and L2+ (1—c)t+1,t+1—
O#L(d+2,1).
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Figure 3. The equivalence of M(_y _; . 4)(t) and L(t? —ct+1,t—c)#L(d+
1,1).
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Figure 4. The equivalence of M’

(a,b,2 1)(00) and L(a—2,1)#L(b—1,1) with
t > 0.
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Figure 5. The equivalence of M’

(a,b,2 1)(00) and L(a—2,1)#L(b—1,1) with
t <O.
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Figure 6. The equivalence of M’

(p1,2)(00) and L(a—1, 1)#L(b—2,1) with
t>0.
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Figure 7. The equivalence of M!

(p1,2)(00) and L(a—1, 1)#L(b—2,1) with
t < 0.
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In our third claim, we consider the manifolds for which ¢ =2 and d = 1.

Claim 3. M!

(a,

b,2,1)(oo) = La—2,1)#L(b—1,1).

Proof. There are two cases, t > 0 and ¢t < 0, in the proof of this claim. The
two cases are nearly identical. We refer the reader to Figures 4 and 5. In
transition 1, we perform a single negative twist about component D giving
it a trivial surgery coefficient. Component D thus is removed from the dia-
gram. The surgery coefficients of components A and C' are each reduced by
1. We also see in transitions 1 and 2 a rather involved isotopy of component
K in which the twisting of components K and C' is replaced by the looping
of K around C. This is done to facilitate transition 3, where we perform
a single negative twist about component C. This gives C a trivial surgery
coefficient; so it is removed from the diagram. The surgery coefficients of
components A and B are reduced to a — 2 and b— 1, respectively. Note that
K keeps its trivial surgery coefficient.

Transition 4 is the start of another involved isotopy. This isotopy sep-
arates components A and B. The reader should first isotop the foremost
(and leftmost) arc of component A so that it moves: In front of the diagram,
through the interior of the disk bounded by component B, and behind the
diagram. During this isotopy, A will snag one of the strands of component
K. In transition 5, we deform component B to an oval. We note that com-
ponents A and B are unlinked and unknotted. Thus each component, A and
B, represents a lens space summand of M Za7b7271)(oo) proving the claim. O

Finally, we consider the manifolds for which ¢ =1 and d = 2.

Claim 4. M!

(a,

b,1,2)(oo) = L(a—1,1)#L(0b—2,1).

Proof. Again there are two nearly identical cases to consider, ¢ > 0 and
t < 0. We refer the reader to Figures 6 and 7. This proof is similar to
that of Claim 3. Transition 1 is an isotopy of component K in which the
twisting of K and C' is replaced by the looping of K around C'. This is done
to facilitate transition 2, where we perform a single negative twist about
component C. This gives C a trivial surgery coefficient; so it is removed
from the diagram. The surgery coefficients of components B and D are
each reduced by one.

Transition 3 is an isotopy which shrinks component D and stretches com-
ponent A. In transition 4, we perform a single negative twist about compo-
nent D giving it a trivial surgery coefficient, and so it is removed from the
diagram. The surgery coefficients of components A and B are reduced to
a — 1 and b — 2, respectively.

We separate components A and B with an isotopy in transition 5. The
reader should refer to the transitions 4 and 5 in the proof of Claim 3 for
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clarification. We note that components A and B are unlinked and unknot-
ted. Thus each component, A and B, represents a lens space summand of
Mfa’b’m)(oo) proving the claim. O

These four claims give us the following corollary. Part (a) of the corollary
follows from Claims 2 and 3. Part (c) follows from Claims 1 and 4. And
Part (b) follows from either Claims 2 and 4 or from Claims 1 and 3.

Corollary 2.1. Ift is an integer, then

a) M(t—z _121)(00) = L(—4,1)#L(=2,1) and
ME 100y () = L2 = 2t + 1,1 = 2)#L(2,1).
b) M(t—2,—1,1,2) 00) & L(=3,1)#L(-3,1) and
M{_y 410 (H) = L2 —t+ 1,6 — 1)#L(3,1), also

= L(t2 —t+1,t—1)#L(3,1),
00) 2 L(—=2,1)#L(—4,1) and
M(t—l,—27172) (t) = L(tz + 17 t)#L(4—a ]-)

(
(t) =
M _p51)(00) 2 L(=3,1)#L(=3,1) and
( (
(

For the remainder of this paper, we wish to restrict our results to the cases
which yield true lens spaces (thus excluding S? and S? x S'). In Case (a),
we must exclude the values t = 0,1 and 2. Likewise, in Case (b) we exclude

=0 and 1, and in Case (c) we exclude ¢t = 0. All other integral values of ¢
are admissible.

We should remark, at this point, that these excluded cases are genuinely
uninteresting. If the manifolds, before Dehn filling, were hyperbolic, then we
might be able to claim a counterexample to a generalized cabling conjecture.
But alas, the excluded manifolds are not hyperbolic.

3. Hyperbolicity.

Let M be any one of the manifolds M€_17_2,172), M(t—l,—2,2,1)’ M(t—2,—1,l,2)

and M (22’717271) where ¢ is an admissible integer. In this section, we prove
that M is hyperbolic (i.e., the interior of M admits a hyperbolic structure).
Since each manifold M has toroidal boundary T'= M, we need to show M
is irreducible, O-irreducible, atoroidal, and not Seifert fibered [T.

Lemma 3.1. If S is a separating reducing 2-sphere in M (o) or M(t), then
S may not be isotoped so that SNT = ().

Proof. It suffices to prove the claim for M (t) since if a reducing 2-sphere
S could be made disjoint from 7" in M (c0), then either S would also be a
reducing 2-sphere disjoint from 7" in M (t) or S would be inessential in M (t).
In the latter case, both summands of M (t) would have to appear in M (c0).
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First note that, for the connect sum of two irreducible manifolds, there
is only one isotopy class of reducing (essential) 2-spheres. By Corollary 2.1,
M (t) is homeomorphic to the connect sum of two lens spaces. Thus any
reducing 2-sphere in M (t) can be isotoped to a “standard” sphere S which
misses the cores of the lens space summands. That is, we may assume S
separates to the two link components with the nontrivial surgery coefficients
shown in the final diagrams in Figures 2 and 3. Since S is reducing, it must
separate the two cores and intersect the component K. Recall that T is the
torus boundary of a regular neighborhood of K. Now the problem can be
restated by claiming K cannot be isotoped in M () to miss S.

Again, we refer the reader to the final diagrams in Figures 2 and 3. Note
that the link diagrams are identical, only the surgery coeflicients differ.
For this link diagram, with ¢ # 0, the Alexander polynomial is given by
A(a) = a® —4a+6 —4a~! + a2 when all components are given a clockwise
orientation. Recall that if L is a split link, then the Alexander polynomial is
zero for that link. So we conclude that the three components in this diagram
are indeed linked.

Every arc of K in M (t)—S links with the core of the lens space summands.
So for any product neighborhood S x I of S, where S =S x {0}, such that
S x {1} and K intersect transversaly, we have |(S x {1}) N K| > |SN K]|.
Therefore, from Proposition 1.1 of [E], |[SNK| is minimal. So, it is impossible
for K to be isotoped to miss S. ([l

Lemma 3.2. M is irreducible and O-irreducible.

Proof. Suppose that M is reducible with S a reducing sphere in M. If S is
nonseparating in M, then S is nonseparating in M (r). But by Corollary 2.1,
there are slopes r for which M (r) is the connect sum of two lens spaces. And
these manifolds contain no nonseparating spheres.

So assume that S is a separating sphere in M. Then M = X#Y where
0X = OM and Y # S3. Thus M(r) = X(r)#Y. In particular, M(o0) =
X(00)#Y = L1#Lo where Ly and Ly are lens spaces. By the uniqueness of
decomposition, we can assume X (00) = Lj and Y = Lo. But this contradicts
Lemma 3.1.

If M is O-reducible, since M is irreducible and OM is a torus, then M
must be a solid torus. But this is impossible since the fillings of a solid torus
are well-known and do not correspond to the results of Corollary 2.1. U

Bireducible manifolds are not Seifert fibered. Thus we have the following
lemma:

Lemma 3.3. M is not Seifert fibered.

Proof. If M is Seifert fibered, then M(r) is Seifert fibered for all but one
slope r for which M is reducible [H]. But by Corollary 2.1, we have two
slopes for which Dehn filling produces reducible manifolds. O
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The following lemma is proved in [EW]:

Lemma 3.4 (Eudave-Munoz, Wu). Let W be an irreducible and 0-irreduc-
ible 3-manifold. If both W (r1) and W (rq) are reducible and O-reducible, then

r =T2.
Next, we show that M does not contain an essential torus.
Lemma 3.5. M is atoroidal.

Proof. Suppose that M contains an essential torus F. Then F must be sep-
arating. Otherwise, M (co) would contain a nonseparating torus or sphere,
contradicting Corollary 2.1. Let W and W' be the two components of M cut
along F', where W contains M. Using Lemma 3.2, we may conclude that
W is both irreducible and d-irreducible (as is W’). By Corollary 2.1, both
M (00) and M (t) are atoroidal and reducible. Thus F' must be compressible
in both W(oco) and W (t).

If both W (oo) and W (¢) are reducible, then this contradicts Lemma 3.4.
Thus, we may assume that one of them is irreducible (i.e., it is a solid torus).

Let x € {co,t} such that W(x) = S! x D?. Let y € {oo,t} and = # .
Let K, be the core of the Dehn filling, and V, = N(K;). Then W =
W(z) — intV,. Note that W' = M — W and W/ = M(y) — W(y), for
all slopes v € OM. Recall that F = OW’' = 0W(y). Therefore W' =
M(z) — W(z) = (L(a,b)#L(p,q)) — S* x D?. Let r be a slope in F' which
corresponds to a meridian of W (z) & S x D2. Then W'(r) is reducible.

Now we examine W' = M(y) — W(y). Let s be the slope in F, which
corresponds to a meridian in OW (y). So, r is the meridian slope in OW (z)
and s is the slope of the new meridian in OW (y) = 0W (x) after performing
surgery on K, along .

We consider two cases, according to whether W (y) is reducible or not.

Case 1: W (y) is reducible (i.e., W(y) = S x D?4#L(p,q)).

It follows from theorems of Gabai and Scharlemann ([Ga] and [S]) that
W is a cable space.
Case 2: W(y) is irreducible.

From Gabai’s Theorem 1.1 [Ga], W is the exterior of a braid in a solid

torus. So, in both cases, we can apply Gordon’s Lemma 3.3 [Go] (here W
2
nw

and K, take place of respectively Y and J). Thus, A(r,s) = (w,m)

where w is the winding number of K in the solid torus W(z).

In the first case, K, is (p, ¢)-cable knot (hence ¢ > 2). So |w| > 1. In the
second case, K, is a braid, then again | w |> 1. Consequently, A(r,s) > 1.
Note that this result also follows from [B] Theorem 2.5.

Now, in the first case W’(s) is a lens space, which contradicts [BZ]. In
the second case, W'(s) is also reducible, which contradicts [GLul]. O

'z wl,
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t
(-1,-2,1,2)

where t is an admissible integer,

The results of this section show that any one of the manifolds M

M{ 1 a1y M{_g 119y and M{_, _15,),
is a hyperbolic manifold. This fact and Corollary 2.1 suffice to prove Theo-

rem 1.

4. Comments and questions.

The use of both positive and negative values in the parameter ¢ produces
redundancy in the list of manifolds up to homeomorphism. This redundancy
is made explicit in the correspondences shown in the next theorem.

Theorem 2. The following manifolds are homeomorphic:
a) Mf_Q 19 1)(75) = MQ:; (2—1t) forallt < —1.

(-2,-1,2,1)
b) M{_17_27271)(t) = M(1:f7_27271)(1 —t) forallt < —1.
C) M(t_l’_27172) (t) = M(_it17727172)<_t) for all t S —1.

Proof. This proof is based on the fact that two lens spaces L(p, ¢) and L(p, ¢)
are of the same homeomorphism type if and only if +q¢’ = 1(modp) [R].
We only prove Case (a), as the other two cases are similar. By Corollary 2.1,
M{ 5y 54(t) = L(#?=2t+1,1-2) and M(2_*2t7_17271)(2—t) >~ L(t2—2t+1, —t).
The homeomorphism of the two follows since —(2 — t)(—t) = 2t — t? =
1— (12 —-2t+1). a

We would like to point out that all known examples of bireducible fill-
ings result in a summand which is homeomorphic to one of the lens spaces
L(2,1),L(3,1), or L(4,1). The Eudave-Munoz and Wu examples [EW] and
the Gordon and Litherland example [GLi] always have an L(2,1) summand.
This begs the question: Does there exist an example in which no summand
is homeomorphic to either L(2,1),L(3,1), or L(4,1)?

Second, we would like the reader to note that there are no known examples
of “trireducible” manifolds. According to Gordon and Luecke [GLu], if two
fillings on an irreducible manifold with torus boundary produce reducible
manifolds, then the slopes of the fillings must have a minimal geometric
intersection of one. This means an irreducible manifold can have at most
three slopes for which Dehn filling produces a reducible manifold. Does
there exist a manifold which is trireducible?

Finally, in all known examples, the minimum number of times one of the
reducing spheres meets the core of the Dehn filling is bounded by four. In
our examples and the Eudave-Munoz and Wu examples [EW], the other
reducing sphere in each family meets the core an arbitrarily large number
of times. Does there exist an example in which both minimal intersections
are larger than four? And if so, is there a family of examples in which both
minimal intersections are unbounded?
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For the readers’ convenience, here is a way to construct examples of hy-
perbolic manifolds with a single boundary manifold which have bireducible
Dehn fillings, from the examples given in [EW].

It is shown in [EW] Theorem 3.6 that there is a collection of hyperbolic
manifolds, denoted M,,, with two toroidal boundary components 7T and 71,
such that T has two reducing slopes. If r is a slope in Ty, denote the Dehn
filling along r by M,(r); and, if r is in 77, denote the Dehn filling by (r)M,.

It follows from [EW] Lemma 3.1 that for the slopes oo and 0 in Ty, both
My (o0) and M,(0) are reducible. Now, from [EW] Figure 3.1, (c0)M,, and
(0)M,, are also both reducible, where co and 0 are slopes in 77. Then, from
[EW] Table 1.1, if r is a slope in T} such that A(r,00) > 3 or A(r,0) > 3
then (r)M, is hyperbolic.

So, for almost all r (for all except at most 16 values of r) ()M, is a
hyperbolic manifold, with a single boundary component, and with bire-
ducible Dehn fillings. Furthermore, (1)My(c0) = R P3#5S; and (r)M,(0) =
R P3#8,, where S and Sy are small Seifert fibered spaces (in a few cases
they are lens spaces).
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