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A natural number m is called the homotopy minimal period
of a map f : X → X if it is a minimal period for every map
g homotopic to f. The set HPer (f) of all minimal homotopy
periods is an invariant of the dynamics of f which is the same
for a small perturbation of f. In this paper we give a complete
description of the sets of homotopy minimal periods of self-
maps of nonabelian three dimensional nilmanifold which is a
counterpart of the corresponding characterization for three
dimensional torus proved by Jiang and Llibre. As a corollary
we show that if 2 ∈ HPer (f) then HPer (f) = N for such a map.

0. Introduction.

One of the natural problems in dynamical systems is the study of the ho-
motopy minimal periods of self-map f : X → X i.e., these periods which
are also minimal periods for every map g homotopic to f. An aim is to give
a complete characterization, of the set HPer (f) of all homotopy minimal
periods, in terms of the homological information on f. Since the homotopy
minimal period preserves under a small perturbation of a manifold map, one
can say that the set of all homotopy minimal periods describes the rigid part
of dynamics of f. A description of the set of all homotopy minimal periods of
a map is difficult in general, however here are some results for the mappings
of compact homogenous spaces of Lie groups by a discrete subgroup.

After the case of maps of the circle in [4] (Block, Guckenheimer, Misi-
urewicz and Young) in the second instance maps of two-dimensional torus
(X = T 2) have been investigated in a series of papers [1] and [2] by Alsedá,
Baldwin, Llibre, Swanson and Szlenk. In our notion they gave a complete
description of the set of all homotopy minimal periods of a map of the circle
or two torus respectively. The answer is given in terms of the linearization
of map f , i.e., an integral matrix of the linear map induced by f. In the
work of Jiang and Llibre [12] the qualitative description of this set was suc-
cessfully studied for maps of r-dimensional torus, for an arbitrary r ≥ 1.
All of them use the Nielsen theory, which for the torus maps has very nice
algebraic description ([5]) and prepossessing geometric properties ([12], [17]
and [18]).
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Using the general result of [12] Jiang and Llibre gave also a complete
description of the set of all homotopy minimal periods (called them the
minimal set of periods) of a map of the three torus. It can be done with
relatively easy handling using algebraic integers of degree equal or less than
three.

Recently the authors extended the main theorem of [12] onto the case of
a map f of an arbitrary compact nilmanifold X with the similar qualitative
statement ([10] Thm. A). The crucial step of the mentioned fact was a proof
that NPn(f) = 0 implies that f ∼ g, where g has no periodic points of the
minimal period n. Basing also on this theorem we give here a complete de-
scription of the set of minimal homotopy periods of a compact nonabelian
three dimensional nilmanifold (Theorem 3.1). A preliminary version of this
theorem has been presented already in [10] (Thm. C) but that statement
does not contain all restrictions on the sets of homotopy minimal periods
that appear in the discussed case. Here we make use of the classification
of compact three dimensional nilmanifolds and the fact that every such nil-
manifold X forms a fibration with S1 as the fiber and T 2 as the base (cf. [6]).
Moreover every self-map of X is homotopic to a fiber map of this fibration
due the Fadell-Husseini theorem (cf. [6]). This means that the integral 3×3
matrix A corresponding to f is a direct sum of one-dimensional and two-
dimensional summand which yields that its characteristic polynomial is the
multiple of a two polynomials of degree one and two, corresponding to the
fiber mapf1 and the base map f respectively. It lets us to derive the set of
homotopy minimal periods of f from the corresponding sets of the factors
f1, f (Theorem 3.1) by use of a formula (Theorem 3.5, Corollary 3.6). Due
to this factorization we can use the previous classification done in [2] and
[4], and do not need to cope with algebra. The main necessary topologi-
cal ingredient, with except the mentioned Thm. A of [10], is a description
of the form of automorphism of any nilpotent nonabelian group of rank 3
(Proposition 2.12). In particular this yields that the degree of base map f
is equal to the degree of fiber map f1 (Corollary 2.13).

As an application we specify our theorem to the case of a homeomorphism
of such a nilmanifold (Theorem 4.1).

Here is the scheme of the paper. In Section 1 we recall the formula for
the homotopy minimal periods of self-maps of S1 and T2 ([4], [1] and [2]).
In Section 2 the necessary information about nilmanifolds and theorem on
HPer f for the self-maps of nilmanifolds of [10] are recalled. Also general
form of an automorphism of any nilpotent nonabelian group of rank 3 is
given. This gives a necessary and sufficient condition on 3 × 3 matrix to
be the linearization of a self-map of such a manifold. Then in Section 3 we
show how to reduce the 3-nilmanifold case to S1 and T2. This let us to prove
the main result (Theorem 3.1). As an application we present a theorem of
Šarkovskii type (Corollary 3.9) that says that for a self-map of nonabelian
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three nilmanifold the existence of homotopy period 2 implies the existence of
all homotopy minimal periods. Finally we show that for a homeomorphism
f of such manifold if HPer (f) 6= ∅ then HPer (f) = N with except two
special cases when HPer (f) = N \ 2N.

1. Homotopy minimal periods of self-maps of S1 and T 2.

In this section we recall the explicit formulae of the homotopy minimal peri-
ods of self-maps of S1 and T 2 presented in [4], [1] and [2]. First we recall the
basic definitions used in [12] and [10]. Remaining a standard terminology,
let f : X → X be a self-map of a compact connected polyhedron X, and n be
a natural number. Let Fix(f) be the fixed point set of f, Pm(f) := Fix(fm)
and let

Pm(f) := Pm(f) \
⋃

n|m, n<m

Pn(f),

denote the set of periodic points with least period m.
Recall that Per(f) denotes the set of all minimal periods of f i.e.,

Per(f) := {m ∈ N; Pm(f) 6= ∅}.
When a map g : X → X is homotopic to f, we shall write g ' f. Define the
set of homotopy minimal periods to be the set

HPer (f) :=
⋂
g'f

Per(g).(1.1)

Boju Jiang and Llibre use the name “the minimal set of periods” but we
hope that what we use here more emphasizes that n ∈ HPer (f) iff n is a
minimal period for every g homotopic to f.

We begin with X = S1 which was studied by Block and co-authors in [4].
The meaning of letters (E), (F), (G) as well as the definition of matrix A
and the set TA ⊂ N in the theorem given below are given in the next section
(Theorem 2.3).

Theorem 1.2 ([4]). Let f : S1 → S1 be a map of the circle and d ∈ Z =
M1×1(Z) be the matrix corresponding to f i.e., the degree of f.

There are three types for the minimal homotopy periods of f :
(E) HPer (f) = ∅ if and only if d = 1.
(F) HPer (f) is nonempty and finite if and only if d = −1 or d = 0. We

have HPer (f) = {1} then. Moreover the sets TA are equal to N \ 2N
and N correspondingly.

(G) HPer (f) is equal to N for the remaining d, i.e., |d| > 1, with the
exception of one special case d = −2 where TA = N but HPer (f) =
N \ {2}.

The case X = T 2 had been completely described by Alseda and co-authors
in [1] and [2]. A reformulation of it is the following:
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Theorem 1.3 ([2]). Let f : T 2 → T 2 be a map of the torus, A ∈M2×2(Z)
the linearization of f, and χA(t) = t2−at+b be its characteristic polynomial.

There are three types for the minimal homotopy periods of f :
(E) HPer (f) = ∅ if and only if −a + b + 1 = 0.
(F) HPer (f) is nonempty and finite for 6 cases corresponding to one of

the six pairs (a, b) listed below

(0, 0), (−1, 0), (−2, 1), (0, 1), (−1, 1), (1, 1).

We have HPer (f) ⊂ {1, 2, 3} then. Moreover the sets TA and HPer (f)
are the following:

Cases of Type (F)

( a, b) TA HPer (f)

( 0, 0) N {1}
( 0, 1) N \ 4N {1, 2}
(−1, 0) N \ 2N {1}
(−1, 1) N \ 3N {1}
(−2, 1) N \ 2N {1}
( 1, 1) N \ 6N {1, 2, 3}

(G) HPer (f) is infinite for the remaining a, and b. Furthermore, HPer (f)
is equal to N for all pairs (a, b) ∈ Z2 with the exception of the following
special cases listed below. We say that a pair (a, b) ∈ Z2 satisfies
condition
10 if a 6= 0 and a + b + 1 = 0,
20 if a + b = 0,
30 if a + b + 2 = 0 respectively,
and (a, b) is not one of the pairs of case (E) and (F).

We have the following table of special cases:

Special Cases of Type (G)

( a, b) TA HPer (f)

(−2, 2) N N \ {2, 3}
(−1, 2) N N \ {3}
( 0, 2) N N \ {4}
( a, b), (a, b) satisfies 10 N \ 2N N \ 2N

( a, b), (a, b) satisfies 20 N N \ {2}
( a, b), (a, b) satisfies 30 N N \ {2}
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2. Nilmanifolds.

A compact manifold M is a nilmanifold iff it is of the form G/Γ where G is
a simply connected nilpotent Lie group of dimension r and Γ is a lattice of
rank r of G i.e., a discrete, torsion free, subgroup of G of rank r ([14] and
[16]). Then the fundamental group of M is Γ and Γ uniquely determines M
up to homeomorphism.

Fadell and Husseini in [6] show that every self map on M can be induc-
tively fibered on an orientable fibration into a map on torus and a map on
a lower dimensional nilmanifold ([6, Thm. 3.3]). This enables the proof of
the following theorem (cf. [9] and [13], see also [10] for an exposition of it):

Theorem 2.1. Let f : X → X be a map of a compact nilmanifold X of
dimension r. Then there exists an r × r matrix A with integral coefficients
such that

L(fm) = det(I−Am)

for every m ∈ N.

The integral matrix A is the basic object in study minimal and homotopy
minimal periods of a self-map f : X → X. Note that if X = T r is the
torus then A is the unique homomorphism of Γ = Zr which corresponds
to f and A is called the linearization of f (cf. [9] and [13]). As matter of
fact the spectrum of matrix A, or equivalently the characteristic polynomial
χA(t) ∈ Z[t] determines the set HPer (f). For given A ∈Mr×r(Z) we set

TA := {n ∈ N |det(I−An) 6= 0}.(2.2)

In the case if A = Af is the matrix associated to a self-map f : X → X
of a compact nilmanifold X we call TA the set of algebraic periods of f. The
main result of [9] says the following:

Theorem 2.3 ([10], Thm. A). Let f : X → X be a map of a compact
nilmanifold X of dimension r, A the matrix associated with f and TA ⊂ N
the set of algebraic periods of f.

Then HPer (f) ⊂ TA and it is in one of the following three (mutually ex-
clusive) types, where the letters E, F, and G are chosen to represent “empty”,
“finite” and “generic” respectively:
(E) HPer (f) is empty if and only if N(f) = L(f) = 0, i.e., if and only if

1 is an eigenvalue of A;
(F) HPer (f) is nonempty but finite if and only if all the eigenvalues of A

are either zero or roots of unity different from 1;
(G) HPer (f) is infinite and TA \HPer (f) is finite.
Moreover, for every dimension r of X, there are finite sets P (r), Q(r) of

integers such that HPer (f) ⊂ P (r) in Type F and TA \ HPer (f) ⊂ Q(r) in
Type (G).
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Theorem 2.3 generalizes the corresponding result of Boju Jiang and Llibre
([12, Thm. B]) from the torus map onto the case of any compact nilmanifold.
The last was used by Jiang and Llibre to give a complete description of all
homotopy minimal periods of an arbitrary map of three torus in the terms
of characteristic polynomial χA(t) of its linearization ([12, Thm. C]). The
corresponding result for three dimensional nonabelian nilmanifolds was given
in a not complete form in [10] (Thm. C). Now we would like to present a
complete version of this description. To do this we need a little bit more
information about three nilmanifolds.

We would like to remind the reader that the simplest nontrivial ex-
amples of compact nilmanifolds are Iwasawa manifolds Nn(R)/Nn(Z) and
Nn(C)/Nn(Z[i]), where Z[i] is the ring of Gaussian integers and for any ring
R with unity Nn(R) denotes the group of all unipotent upper triangular
matrices whose entries are elements of the ring R. The Iwasawa 3-manifold
N3(R)/N3(Z), called also “Baby Nil” is the simplest example of compact
three dimensional nonabelian nilmanifold, since N3(Z) 6= Z3. Generaliza-
tions of the Iwasawa manifolds are compact nilmanifolds N3(R)/Γp,q,r, where
the subgroup Γp,q,r, with fixed p, q, r ∈ N consists of all matrices of the form1 k

p
m

p·q·r
0 1 l

q

0 0 1

 , where k, l, m ∈ Z.(2.4)

Since the group N3(R) are named the Heisenberg group, the nilmanifolds
N3(R)/Γp,q,r, are also called the Heisenberg nilmanifolds. The groups π1(X)
for all compact nilmanifolds X are precisely all finitely generated torsion-free
nilpotent groups (see [3], [7], [14] and [16]).

This leads to the following well-known classification theorem ([7, 4.1, Cor.
2]):

Theorem 2.5. Let X be a compact nilmanifold of dimension 3. Then X is
diffeomorphic to T 3 or to N3(R)/Γ1,1,r with some r ∈ N.

Proof. The point is that any finitely generated nilpotent group of rank 3 is
isomorphic to Z3 or to the group Γ1,1,r with some r ∈ N (cf. [7, 4.1, Cor. 2]).

We explain it briefly. In fact the correspondence1 x z
0 1 y
0 0 1

 7→
1 px pqz

0 1 qy
0 0 1


is an isomorphism of N3(R) sending Γp,q,r onto Γ1,1,r. It is sufficient to show
[!] that any discrete subgroup of rank 3 of R3 , or N3(R) is equal, up to
isomorphism, to Z3 , or Γp,q,r respectively.

Since a nilmanifold is the quotient of a simply connected nilpotent Lie
group by its uniform (hence discrete) subgroup, it remains to know that any
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three dimensional simply connected non-commutative nilpotent Lie group
is isomorphic to the Heisenberg group N3(R). The last follows from the fact
that there is one non-commutative nilpotent Lie algebra of dimension three,
up to isomorphism.

Then a three nilmanifold different than torus is of the form N3(R)/Γ where
Γ is a uniform subgroup in N3(R) hence Γ = Γp,q,r for some p, q, r ∈ N. We
notice that N3(R)/Γp,q,r = N3(R)/Γ1,1,r. �

Next we point out that the Fadell-Husseini toral fibration of a three-
dimensional compact nilmanifold has a special form. Since the commutator

G1 =

〈
[N3(R), N3(R)] =

1 0 z
0 1 0
0 0 1

 : z ∈ R

〉
(2.6)

is one dimensional, the quotient space G1/Γ∩G1 ≈ S1. By the dimensional
reasons the base space must be 2-torus and the fibration becomes S1 ⊂
N1,1,r → T 2.

The above gives the following statement:

Proposition 2.7. Let f : X → X be a map of compact nilmanifold X of
dimension 3 not diffeomorphic to T 3, and f1 : S1 → S1, f : T 2 → T 2 a
pair of maps associated with f considered as a fiber map. Then the matrix
A corresponding to f by Theorem 2.1 has the form[

d 0
0 A

]
= A1 ⊕A,

where A1 = [d], with d := deg(f1) the degree of the fiber map f1, and A ∈
M2×2(Z) is the matrix corresponding to the map f of base T 2.

Consequently the characteristic polynomial of f is equal to χA(t) = χA1(t)·
χA(t) = (t − d)(t2 − at + b), where d ∈ Z, t − d = χA1(t), a, b ∈ Z and
t2 − at + b = χA(t) is the characteristic polynomial of A. Moreover a = tr A

and b = detA = deg(f).

Proof. All with the exception of the last equality are obvious algebraically.
The equality detA = deg(f) is well-known for the torus map induced by an
integral matrix. �

The above proposition gives a natural restriction on an integral 3 × 3
matrix of the linearization any map of such a manifold. Now we formulate
next algebraic restriction that comes from the geometry of the discussed
spaces. First we recall a more general fact:

Proposition 2.8. Let Γ = π1(X) be the fundamental group of a compact
nilmanifold X = G/Γ. Then every map f : X → X is homotopic to a
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map given by a homomorphism Φ : G → G and the induced homomorphism
π1(Φ) : Γ → Γ is equal to Φ|Γ.

Inversely, for every homomorphism φ : Γ → Γ there exist a map f : X →
X such that π1(f) = φ.

Proof. The statement follows from the fact that X is the K(Γ, 1)-space
(cf. [6]), the fact that every endomorphism φ of Γ has a unique extension to
an endomorphism Φ of G (cf. [16]), and that for a map f : X → X given by
a homomorphism Φ of G the induced map of the fundamental group π1(f)
is equal to Φ|Γ. �

With respect to Theorem 2.5 and Proposition 2.8 and the below it is
enough to determine the set of matrices of linearization of all endomor-
phisms of Γ = Γ1,1,r. We begin with a description of Γ1,1,r. Then we give
a description of all endomorphisms of Γ1,1,r. We follow the approach of [8]
where the case of Γ1,1,1 was discussed.

Assigning to any matrix1 x z
0 1 y
0 0 1

 , where x, y, z ∈ R the vector (x, y, z)

we get the homeomorphism between N3(R) and R3. In these coordinates the
multiplication has form

(x, y, z) ∗ (x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′).

Using the coordinates we see that Γ1,1,r ⊂ N3(R) is generated by the matrices

a := (1, 0, 0), b := (0, 1, 0), c := (0, 0, 1/r),

since (m, p, q/r) = ambpcq−mp. Moreover the only relations are

aba−1b−1 = cr, aca−1c−1 = e, bcb−1c−1 = e.(2.9)

Let φ : R3 → R3 be a map and let

φ(a) = (α1, β1, γ1), φ(b) = (α2, β2, γ2), φ(c) = (α3, β3, γ3).

We look for a necessary and sufficient condition on φ to extend to homo-
morphism of Γ1,1,r. Suppose that φ extends to a such homomorphism. Then
for some integer k

φ(c) = ck,(2.10)

because the cyclic group generated by c is equal to the center of Γ1,1,r,
consequently α3 = 0 β3 = 0 γ3 = k. Using the first equality of (2.9) and
(2.10), deriving φ(a)φ(b)φ(a)−1φ(b)−1, and comparing the coordinates we
get

k = α1β2 − α2β1.(2.11)
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Note that φ(c) = ck implies that the second and third relations of (2.9) are
preserved, because φ(c) is in the center of Γ1,1,r. Notice that γ1 , γ2 may be
arbitrary. Since (2.9) are the only relations we get the following fact:

Proposition 2.12. A map φ : Γ1,1,r → Γ1,1,r defined in the coordinate
system by its values on the generators a, b, c as

φ(a) = (α1, β1, γ1), φ(b) = (α2, β2, γ2), φ(c) = (α3, β3, γ3)

extends to an automorphism of Γ1,1,r iff α3 = β3 = 0, and γ3 = α1β2−α2β1.
Consequently a 3 × 3 integral matrix A is the linearization matrix of a

map of X given by an endomorphism of Γ1,1,r iff it is of the form

A = A1 ⊕A =

k 0 0
0 α1 β1

0 α2 β2


where det A = k.

Finally we formulate a topological consequence of Proposition 2.12:

Corollary 2.13. Let X → X be a map of three dimensional nilmanifold
not diffeomorphic to the torus.

Then there exists k ∈ Z such that deg f = k2. In particular if deg f 6= 0
then f preserves the orientation.

Proof. Note that for a fiber-map f = (f1, f) we have deg f = deg f1 deg f.
On the other hand we have just shown that for a map induced by a ho-
momorphism, thus for every map, we have deg f1 = d = detA = deg f, by
Proposition 2.12. �

3. The main theorem.

Theorem 3.1. Let f : X → X be a map of three-dimensional compact
nilmanifold X not diffeomorphic to T 3. Let A = A1 ⊕ A ∈ M3×3(Z) be the
matrix induced by the fibre map f = (f1, f) (Theorem 2.1) and χA(t) =
χA1(t) · χA(t) = (t − d)(t2 − at + b) be its characteristic polynomial. Then
d = b and there are three types for the minimal homotopy periods of f :
(E) HPer (f) = ∅ if and only if or d = 1 or −a + d + 1 = 0.
(F) HPer (f) is nonempty and finite only for 2 cases corresponding to

d = 0

combined with one of the two pairs (a, b)

(0, 0), and (−1, 0).

We have HPer (f) = {1} then. Moreover the sets TA and HPer (f) are
the following:
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Map Cases of Type (F)

(d, a, b) TA HPer (f)

(0, 0, 0) N {1}
(0, −1, 0) N \ 2N {1}

(G) HPer (f) is infinite for the remaining (d, a, b = d). Furthermore,
HPer (f) is equal to N for all triples (d, a, b = d) ∈ Z3 with the excep-
tion of the following special cases listed below:

Special Cases of Type (G)

( d, a, b) TA HPer (f)

a + d + 1 = 0, with a 6= 0, N \ 2N N \ 2N
and d /∈ {−2, −1, 0, 1}
( 0, −2, 0) N N \ {2}
(−1, 1, −1) N \ 2N N \ 2N

(−1, −1, −1) N \ 2N N \ 2N

(−2, 1, −2) N \ 2N N \ 2N

(−2, 0, −2) N N \ {2}
(−2, 2, −2) N N \ {2}

Moreover for every pair subset S1 ⊂ S2 ⊂ N, appearing as HPer (f)
and TA listed above there exists a map f : X → X such that HPer (f) =
S1 and TA = S2.

To prove Theorem 3.1 we show an algorithm which allows us to express the
homotopy minimal periods of a given self-map of a (nontrivial) 3-nilmanifold
by the corresponding data of self-maps on S1 and T 2. This will be obtained
as a consequence of formulas deriving the set TA of algebraic periods of
A = ⊕l

1Ai from the sets TAi and analogously HPer (f) from HPer (fi) for
a map f : X → X where the sequence of torus maps {fi}l

1 come from
consecutive applications of the Fadell-Husseini fibrations.

Let us start with some more general remarks. Recall that a matrix A ∈
Mr×r(Z) of a self-map of compact nilmanifold X according to Theorem 2.1
is given by the following procedure: Suppose that a self-map f : X → X,
dim X = r is a fiber map given by the Fadell-Husseini theorem i.e., a map
such that the diagram
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T s1
f1−−−→ T s1

ι

y ι

y
X

f−−−→ X

p

y p

y
X

f−−−→ X

commutes. Then f1 : T s1 → T s1 is induced, up to homotopy, by a matrix
A1 ∈ Ms1×s1(Z). By induction on the dimension, we can assume that with
f is assigned a matrix A = ⊕l

2Aj A ∈M(r−s1)×(r−s1)(Z), Aj ∈Msj×sj (Z).
Put

A := A1 ⊕A = ⊕l
i=1 Aj ,(3.1)

where l is the length of the given tower of consecutive Fadell-Husseini fibra-
tions.

We begin with the following consequence of Theorem 2.1:

Proposition 3.2. For a given map f of a compact nilmanifold X the matrix
A and consequently its characteristic polynomial

χA(t) =
l∏
1

χAj (t) ∈ Z[t]

depends only on the homotopy class of f.

Definition 3.3. For a given map f : X → X, let (f1, f2, . . . , fl) be a tower
of torus maps given by the described above procedure. The number

s := max
1≤j≤l

sj = max
1≤j≤l

deg χAj (t)

we call the size of this tower.

Now we have to formulate a criterion to determine whether a natural
number is a homotopy minimal period of a given map of nilmanifold (cf. [8]
and [12] for the torus case, or [9] and [10] for the nilmanifold case).

Theorem 3.4. Let f : X → X be a map of a compact nilmanifold X. Then
m /∈ HPer (f) if and only if either N(f) = 0 or N(fm) = N(fm/p) for some
prime factor p of m.

Consequently m ∈ HPer (f) if and only if:
a) N(fm) = |L(fm)| = |det(I−Am)| = |χm

A (1)| 6= 0, and
b) for every prime p|m we have N(fm) > N(fm/p).
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Proof. Recall that m /∈ HPer (f) ⇔ NPm(f) = 0 (by [17] and [18] for tori,
by [10] for nilmanifolds). On the other hand NPm(f) = 0 ⇔ N(f) = 0
or N(fm) = N(fm/p) for some prime factor p of m ([12] for tori, [10] for
nilmanifolds). �

We are in position to formulate the formula which allows us to derive
the sets TA and HPer (f) of a map f with a given Fadell-Husseini tower
(f1, f2, . . . , fl).

Theorem 3.5. Let f : X → X be a map of a compact nilmanifold X of
dimension r. Let next (f1, . . . , , fl) be the tower of consecutive torus maps
given by the Fadell-Husseini fibrations and (A1, . . . , Al) the sequence of their
linearizations and A = ⊕l

1Aj the matrix corresponding to f.
Then

TA = ∩l
1 TAj and

TA ∩ (∪l
1 HPer (fj)) ⊂ HPer (f).

Proof. By the definition, m ∈ TA iff det(I−Am) = χAm(1) 6= 0. But χA(1) =∏l
1 χAj (1) which proves the first equality.
To prove the second formula, first note that |χAn(1)| divides |χAm(1)|

if n|m (provided χAn(1) 6= 0) for every integral matrix A. Consequently,
by Theorem 3.4 it follows that m ∈ HPer (f) if m ∈ TA and there exists
1 ≤ j0 ≤ l such that |χAm

j0
(1)| > |χ

A
m/p
j0

(1)| for every prime p|m, since

|χAm
j

(1)| ≥ |χ
A

m/p
j

(1)| for the remaining j. This shows the statement. �

As a consequence of the above theorem we have the following fact:

Corollary 3.6. Let f : X → X be as in Theorem 3.5 and m = pa a prime
power. Then m ∈ HPer (f) if and only if m ∈ TA ∩ (∪l

1 HPer (fj)).

Proof. By the argument of Theorem 3.5, since p is the only prime dividing
m there exists 1 ≤ j ≤ l such that |χAm

j
(1)| > |χ

A
m/p
j

(1)|. But this means

that m = pa ∈ HPer (fj) in respect of Theorem 3.4. �

The next theorem reduces the computation of HPer (f) to HPer (f) and
TA which are given by Theorem 3.1.

Theorem 3.7. Let X be a three dimensional compact nilmanifold different
from a torus. Let f : X → X induces the pair of (f1, f) in the resulting
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Fadell-Husseini S1 ⊂ X → T 2 for X. Let d = deg f1. Then

HPer (f) =



TA for d /∈ {0,−1,+1,−2}
∅ for d = 1
HPer (f) for d = 0
HPer (f) \ 2N for d = −1
TA \ {2} for d = −2 and 2 /∈ HPer (f)
TA for d = −2 and 2 ∈ HPer (f).

Proof. We consider the following cases:

1. Let d /∈ {0,−1,+1,−2}. Then HPer (f1) = TA1 = N. We will show that
HPer (f) = TA. ⊂ is evident since HPer (f) ⊆ TA = TA ∩ TA1 = TA. On the
other hand, Theorem 3.5 implies HPer (f) ⊃ TA ∩ {HPer (f)∪HPer (f1)} =
TA = TA, which gives ⊃.

2. Let d = 1. Then HPer (f) = ∅ by Theorem 2.3.

3. Let d = 0. Then χk(t) = tχk(t) gives N(fk) = |χk(1)| = |χk(1)| =
N(fk) which implies

HPer (f) = HPer (f).

4. Let d = −1. We will show that HPer (f) = HPer (f) \ 2N . We notice
that TA1 = N \ 2N and HPer (f1) = {1}. Now χk(t) = (t− (−1)k)χk(t) gives

N(fk) =

{
2N(fk) for k odd,

0 for k even.

By Theorem 3.4 notice that no even number k belongs to HPer (f) since
N(fk) = 0 and that any odd number k will either belong to both of HPer (f)
and HPer (f) or neither of these since N(fk) = 2N(fk). Consequently

HPer (f) = HPer (f) \ 2N

in this case.

5. Let d = −2. Now by definition TA1 = N and from Theorem 1.2
HPer (f1) = N \ {2} . Then TA = TA, and by Theorem 3.5 HPer (f) ⊃
TA ∩ {HPer (f1) ∪HPer (f)} = TA ∩ {(N \ {2}) ∪HPer (f)}.

Consequently we have

HPer (f) =

{
TA \ {2} for 2 /∈ HPer (f)
TA for 2 ∈ HPer (f).

�
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Proof of Theorem 3.1. We shall use Theorems 1.2, 1.3, 3.7, and Proposi-
tion 2.12. From Proposition 2.12 it follows that d = b. At first we notice
that

HPer (f) = ∅ ⇐⇒ HPer (f) = ∅ or HPer (f1) = ∅
⇐⇒ det(A) = 0 or d = 1
⇐⇒ 1− a + d = 0 or d = 1.

We will assume now that HPer (f) 6= ∅ . Suppose first that d /∈ {−2, −1,
0, 1}. From Theorem 1.3 it follows that TA1= N and consequently HPer (f)=
TA = TA by Theorem 3.7. Now we look for the case TA 6= N and d /∈
{−2, −1, 0, 1} in the tables of Theorem 1.3. The second condition does not
hold if f ∈ (F). On the other hand if f ∈ (G) then the first condition holds
iff (a, b) satisfies 10) i.e., a 6= 0, and a + d + 1 = 0. HPer (f) = TA = TA =
N \ 2N then. This gives the first row of the table of special cases (G) of the
statement.

Let d = 0 . Then HPer (f) = HPer (f) by Theorem 3.7. Looking at the
tables of Theorem 1.3 we get the two triples which gives the case (F) of the
statement. Moreover, substituting b = d = 0 to the special cases 10, 20, 30

of (G) of Theorem 1.3, deriving a, and excluding pairs (a, b) that have been
already listed we get the second row of the case (G) of the statement.

Let d = −1. Then TA1 = N\2N and HPer (f1) = {1}. Thus TA = TA\2N.
On the other hand HPer (f) ⊃ TA ∩HPer (f) = HPer (f) \ 2N. Now looking
at the tables of Theorem 1.3 we notice that b = d = −1 may occur only in
(G). But even then HPer (f) ⊃ N \ 2N. Thus N \ 2N = TA ⊃ HPer (f) ⊃
HPer (f) \ 2N ⊃ N \ 2N implies HPer (f) = N \ 2N. On the other hand we
notice that this occurs exactly for (1,−1) and (−1,−1). This gives the third
and the fourth line of the exceptional cases in 3.1 (G).

Let d = −2. By Theorem 3.7

HPer (f) =

{
TA \ {2} for 2 /∈ HPer (f)
TA for 2 ∈ HPer (f).

Lemma 3.8 shows that 2 /∈ HPer (f) iff a = 0, 1, 2. In all remaining
cases (d = −2,HPer (f) 6= ∅) HPer (f) = TA. In Theorem 1.3 we look
for the cases TA 6= N (with d = −2). This is possible only for (a, d) =
(1,−2), (2,−2), (0,−2) the three exceptional cases discussed in Lemma 3.8.
In all remaining cases HPer (f) = TA = N. Now the three last lines in the
table in Theorem 3.1 (G) follow from Lemma 3.8.

We are left with the task to prove that for every pair of sets listed as
(TA, and HPer (f)) in the statement of Theorem 3.1 there exists a map
f : N3(R)/Γp,q,r → N3(R)/Γp,q,r which gives this pair. Fix a, b = d ∈ Z. For
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given a, b we define an integral matrix

A =

 b 0 0
0 a b
0 −1 0

 .

By Proposition 2.12 A defines a homomorphisms of Γp,q,r and hence a map
of N3(R)/Γp,q,r whose linearization is equal A = A1⊕A. We have detA = b,

and tr A = a, which proves the theorem. �

An elementary consideration gives the lemma below, which verification is
left to the reader.

Lemma 3.8. If d = −2 and HPer (f) 6= ∅ then 2 /∈ HPer (f) ⇐⇒ a =
0, 1, 2. Moreover:

- TA = HPer (f) = N \ 2N for a = 1,
- TA = N, HPer (f) = N \ {2} for a = 0 or a = 2.

As a consequence of Theorem 3.1 we get the following:

Corollary 3.9. If a self map of a 3-nilmanifold different than 3-torus is
such that 3 ∈ HPer (f) then N \ 2N ⊂ HPer (f) ⊂ Per(f). If 2 ∈ HPer (f)
then N = HPer (f) = Per(f). In particular, the first assumption is satisfied
if L(f3) 6= L(f) and the second if L(f2) 6= L(f).

Proof. By Theorem 3.1, HPer (f) finite implies HPer (f) ⊂ {1}. Thus 3 ∈
HPer (f) implies case (G) hence HPer (f) ⊃ N\2N. If 2 ∈ HPer (f) then the
special cases in Theorem 3.1 are excluded hence HPer f = N. �

Remark 3.10. It is easy to note that one may modify Theorem 3.1 to a
nilmanifold of any dimension provided the size of its Fadell-Husseini tower
is less or equal to two. If the size of tower is less or equal to three these
approach should still work due to the complete description of the homotopy
minimal periods of the three torus maps done by Jiang and Llibre in [12].

Remark 3.11. Roughly speaking Corollary 3.9 is a Šarkovskii type theo-
rem. Instead of the existence of an orbit of a given length (here 2 or 3) we
need a stronger assumption 2 or 3 ∈ HPer (f). However the conclusion is
also stronger, because it states the existence of homotopy minimal periods.

Remark 3.12. The next natural and possible to achieve case is a descrip-
tion of minimal homotopy periods of maps of some low dimensional compact
solvmanifolds especially of dimension 4. The latter needs a slight modifica-
tions of theorems of [10] and some facts already proved in [9]. The possibility
of non Nielsen number fibre uniformity on the associated Mostow fibrations
for solvmanifolds makes the study more complicated.
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4. Homeomorphisms of 3-nilmanifolds.

We will formulate a version of the last section for homeomorphisms of three
dimensional nilmanifolds (see [12] for the corresponding theorem for a home-
omorphism of the three dimensional torus).

Theorem 4.1. Let f : X → X be a homeomorphism of three-dimensional
compact nilmanifold X not diffeomorphic to T 3. Let A = A1⊕A ∈M3×3(Z)
be the matrix induced by the fibre map f = (f1, f) (Proposition 2.7) and
χA(t) = χA1(t) · χA(t) = (t − d)(t2 − at + b) its characteristic polynomial.
Then d = b = ±1 and consequently HPer (f) = ∅ iff d = 1 or (d = −1 and
a = 0). For d = −1 and the remaining a we have HPer (f) = N with the
only two exceptions being when a = 1 or a = −1. For these special cases
TA = HPer (f) = N \ 2N.

Proof. The statement follows from Theorem 3.1 and the fact that d = ±1.
�

As a direct consequence we get the following analog of the Šarkovskii type
for a homeomorphisms of nonabelian three nilmanifolds:

Corollary 4.2. Let f : X → X be a homeomorphism, or more general
a homotopy equivalence, of a compact three dimensional nilmanifold X not
diffeomorphic to the torus. If HPer (f) 6= ∅ then N\2N ⊂ HPer (f). Moreover
if 2 ∈ HPer (f), e.g., if L(f2) 6= L(f), (or if any 2k ∈ HPer (f)) then
HPer (f) = N.

Acknowledgements. The authors wish to express their thanks to the ref-
eree for several helpful comments concerning the subject and form of the
paper.
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