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In this paper we will use one well-known modular equation
of seventh order, one theta function identity of S. McCullough
and L.-C. Shen, 1994, and the complex variable theory of el-
liptic functions to prove some new septic identities for theta
functions. Then we use these identities to provide new proofs
of some Eisenstein series identities in Ramanujan’s notebooks
or “lost” notebook. We also derive a new identity for Eisen-
stein series and some curious trigonometric identities.

1. Introduction.

Suppose throughout that q = exp(2πiτ), where τ has positive imaginary
part, and set

(z; q)∞ =
∞∏

n=0

(1− zqn).(1.1)

The Dedekind eta-function is defined by

η(τ) = q
1
24 (q; q)∞ = e

πiτ
12

∞∏
n=1

(1− e2πinτ ).(1.2)

For brevity, we define

h(τ) =
η4(7τ)
η4(τ)

, k(τ) =
η7(τ)
η(7τ)

, and ρ(τ) = 7
η(49τ)
η(τ)

.(1.3)

Throughout this article we will use
(

n
7

)
to denote the Legendre symbol.

The Eisenstein series T (τ), L(τ),M(τ), and N(τ) are defined by

T (τ) = 1 + 2
∞∑

n=1

(n

7

) qn

1− qn
= 1 + 2

∞∑
n=1

(n

7

) e2πinτ

1− e2πinτ
,(1.4)

L(τ) = 1− 24
∞∑

n=1

nqn

1− qn
= 1− 24

∞∑
n=1

ne2πinτ

1− e2πinτ
,(1.5)
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M(τ) = 1 + 240
∞∑

n=1

n3qn

1− qn
= 1 + 240

∞∑
n=1

n3e2πinτ

1− e2πinτ
,(1.6)

and

N(τ) = 1− 504
∞∑

n=1

n5qn

1− qn
= 1− 504

∞∑
n=1

n5e2πinτ

1− e2πinτ
.(1.7)

In his lost notebook [17, p, 53], S. Ramanujan recorded without proofs
formulas for T (rτ), L(rτ),M(rτ), and N(rτ), for certain positive integers
r, as sums of quotients of Dedekind eta-functions. These particular quo-
tients (called Hauptmoduls) frequently arise in the theory and applications
of modular forms and elliptic functions. In particular, Ramanujan claimed
that:

Theorem 1. Let k(τ), h(τ),M(τ) and N(τ) defined by (1.3), (1.6), and
(1.7), respectively. Then we have

M(τ) = k(τ)4/3
(
1 + 245h(τ) + 2401h2(τ)

)
(1.8)

·
(
1 + 13h(τ) + 49h2(τ)

)1/3
,

M(7τ) = k(τ)4/3
(
1 + 5h(τ) + h2(τ)

) (
1 + 13h(τ) + 49h2(τ)

)1/3
,(1.9)

N(τ) = k(τ)2
(
1− 72(5 + 2

√
7)h(τ)− 73(21 + 8

√
7)h2(τ)

)
(1.10)

·
(
1− 72(5− 2

√
7)h(τ)− 73(21− 8

√
7)h2(τ)

)
,

and

N(7τ) = k(τ)2
(
1 + (7 + 2

√
7)h(τ) + (21 + 8

√
7)h2(τ)

)
(1.11)

·
(
1 + (7− 2

√
7)h(τ) + (21− 8

√
7)h2(τ)

)
.

These identities reveal deep connections between Eisenstein series and
Dedekind eta-functions. The first published proofs of (1.8)-(1.11) are due
to S. Raghavan and S.S. Rangachari [16], who used the theory of modular
forms with which Ramanujan was unfamiliar. These proofs give a uniform
explanation of the existence of these identities but do not provide any insight
into how Ramanujan discovered the identities. These proofs are essentially
verifications. It is desirable to find more natural proofs of the aforementioned
identities without employing the theory of modular forms. B.C. Berndt,
H.H. Chan, J. Sohn, and S.H. Son [3] recently found proofs of (1.8)-(1.11)
based entirely on results found in Ramanujan’s notebooks [18]. In fact,
their proofs depend upon some modular equations of the seventh order of
Ramanujan.
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In the present paper, we present a quite different approach. Our main
tools are the following three Lemmas:

Lemma 2. The sum of all the residues of an elliptic function at the poles
inside a period-parallelogram is zero.

Lemma 3. Let θ1(z|q) be Jacobi theta function defined by (2.1) below. Then:

(q; q)∞
θ1(2z|q)
θ1(z|q)

= 2
∞∑

n=−∞
(−1)nq

1
2
(3n2+n) cos(6n + 1)z,(1.12)

θ′1
θ1

(x|q) +
θ′1
θ1

(y|q) +
θ′1
θ1

(z|q)− θ′1
θ1

(x + y + z|q)(1.13)

= θ′1(0|q)
θ1(x + y|q)θ1(y + z|q)θ1(z + x|q)

θ1(x|q)θ1(y|q)θ1(z|q)θ1(x + y + z|q)
.

Lemma 4. Let h(τ) and ρ(τ) be defined by (1.3). Then

7ρ3(τ) + 35ρ2(τ) + 49ρ(τ) + (ρ2(τ) + 7ρ(τ) + 7)(1.14)

·
√

4ρ3(τ) + 21ρ2(τ) + 28ρ(τ) = 98h(τ).

Lemma 2 is a fundamental theorem of elliptic functions and can be found
in [5, p. 22]. Recently, in [9, 10, 11, 12, 13], we have used Lemma 2 to set up
many important theta function identities. Identity (1.12) is the well-known
quintuple identity [6, 7, 8, 21]. For an interesting account of this identity,
one can consult [2, p. 83]. Identity (1.13) was derived by S. McCullough and
L.-C. Shen in their remarkable paper [14], in which they used the properties
of theta functions to study the Sezgö kernel of an annulus. Identity (1.14)
is [22, p. 117, Equation (4.5)]. It plays a pivotal role in the study of the
modular equations of degree 7.

It should be emphasized that our method is constructive and can be used
to derive theta function identities and Eisenstein series identities, rather
than just to verify previously derived identities. This method provides
deeper insight into the theory of theta function identities and Eisenstein
series identities.

In this paper we will also prove the following identities:

Theorem 5. Let k(τ), h(τ), and T (τ) be defined by (1.3) and (1.4), respec-
tively. Then we have

8− 7
∞∑

n=1

(n

7

) n2qn

1− qn
= k(τ)(8 + 49h(τ)),(1.15)

T (τ) = k(τ)1/3
(
1 + 13h(τ) + 49h2(τ)

)1/3
,(1.16)
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A(τ) : = 1 + 4
∞∑

n=1

nqn

1− qn
− 28

∞∑
n=1

nq7n

1− q7n
(1.17)

= T 2(τ) = k(τ)2/3
(
1 + 13h(τ) + 49h2(τ)

)2/3

and

16 +
∞∑

n=1

(n

7

) n4qn

1− qn
= k(τ)5/3(16 + 49h(τ))(1.18)

·
(
1 + 13h(τ) + 49h2(τ)

)2/3
.

Equation (1.15) can also be found in [17, p. 53] and the first published
proof of (1.15) are due to S. Raghavan [15], who used the theory of modular
forms. Equations (1.16) and (1.17) are contained in Entry 5 (i) of Chapter
21 of Ramanujan’s second notebook [18]. In [2, p, 467-473], B.C. Berndt
has given proofs of (1.8) and (1.9) by using some modular equations of the
seventh order. Many wonderful applications of (1.16) have been given in
[10]. To the author’s best knowledge (1.18) is a new identity.

In the course of our investigations, we obtain the following intriguing
identities of theta functions:

Theorem 6. If k(τ), h(τ) and ρ(τ) are defined by (1.3). Then we have

θ1(2π
7 |q)

θ1(π
7 |q)

−
θ1(3π

7 |q)
θ1(2π

7 |q)
+

θ1(π
7 |q)

θ1(3π
7 |q)

= 1 + ρ(τ),(1.19)

θ1(π
7 |q)

θ1(2π
7 |q)

−
θ1(2π

7 |q)
θ1(3π

7 |q)
+

θ1(3π
7 |q)

θ1(π
7 |q)

(1.20)

=
1
2
(3ρ(τ) + 4) +

1
2

√
4ρ3(τ) + 21ρ2(τ) + 28ρ(τ),

θ2
1(

π
7 |q)

θ1(3π
7 |q)

−
θ2
1(

2π
7 |q)

θ1(π
7 |q)

+
θ2
1(

3π
7 |q)

θ1(2π
7 |q)

= 0,(1.21)

θ1(2π
7 |q)

θ4
1(

π
7 |q)

−
θ1(π

7 |q)
θ4
1(

3π
7 |q)

+
θ1(3π

7 |q)
θ4
1(

2π
7 |q)

=
1√
7
η−2(τ)η−1(7τ) (8 + 49h(τ)) ,(1.22)

θ4
1(

3π
7 |q)

θ1(π
7 |q)

−
θ4
1(

π
7 |q)

θ1(2π
7 |q)

−
θ4
1(

2π
7 |q)

θ1(3π
7 |q)

=
√

7η2(τ)η(7τ) (5 + 49h(τ)) ,(1.23)

θ7
1(

2π
7 |q)

θ7
1(

π
7 |q)

−
θ7
1(

3π
7 |q)

θ7
1(

2π
7 |q)

+
θ7
1(

π
7 |q)

θ7
1(

3π
7 |q)

= 57 + 2× 73h(τ) + 74h2(τ),(1.24)
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θ7
1(

π
7 |q)

θ7
1(

2π
7 |q)

−
θ7
1(

2π
7 |q)

θ7
1(

3π
7 |q)

+
θ7
1(

3π
7 |q)

θ7
1(

π
7 |q)

(1.25)

= 289 + 18× 73h(τ) + 19× 74h2(τ) + 76h3(τ),

θ3
1(

3π
7 |q)

θ6
1(

π
7 |q)

−
θ3
1(

π
7 |q)

θ6
1(

2π
7 |q)

+
θ3
1(

2π
7 |q)

θ6
1(

3π
7 |q)

(1.26)

=
1√
7
η−2(τ)η−1(7τ)

(
46 + 637h(τ) + 492h2(τ)

)
,

(
θ1(3π

7 |q)
θ2
1(

π
7 |q)

−
θ1(π

7 |q)
θ2
1(

2π
7 |q)

+
θ1(2π

7 |q)
θ2
1(

3π
7 |q)

)3

(1.27)

= 7
√

7η−2(τ)η−1(7τ)
(
1 + 13h(τ) + 49h2(τ)

)
and

θ−7
1

(π

7
|q
)
− θ−7

1

(
2π

7
|q
)
− θ−7

1

(
3π

7
|q
)

(1.28)

=
√

7η−14(τ)η−7(7τ) (1 + 7h(τ))

·
(
1 + 13h(τ) + 49h2(τ)

)1/3
.

Using the product representation of θ1(z|q) given by (2.2) and letting
q → 0 in (1.19)-(1.28), we readily find the following curious trigonometric
identities:

Corollary 7. We have:

sin(2π/7)
sin(π/7)

− sin(3π/7)
sin(2π/7)

+
sin(π/7)
sin(3π/7)

= 1,(1.29)

sin(π/7)
sin(2π/7)

− sin(2π/7)
sin(3π/7)

+
sin(3π/7)
sin(π/7)

= 2,(1.30)

sin2(π/7)
sin(3π/7)

− sin2(2π/7)
sin(π/7)

+
sin2(3π/7)
sin(2π/7)

= 0,(1.31)

sin(2π/7)
sin4(π/7)

− sin(π/7)
sin4(3π/7)

+
sin(3π/7)
sin4(2π/7)

=
64
7

√
7,(1.32)

sin4(3π/7)
sin(π/7)

− sin4(π/7)
sin(2π/7)

− sin4(2π/7)
sin(3π/7)

=
5
8

√
7,(1.33)

sin7(2π/7)
sin7(π/7)

− sin7(3π/7)
sin7(2π/7)

+
sin7(π/7)
sin7(3π/7)

= 57,(1.34)

sin7(π/7)
sin7(2π/7)

− sin7(2π/7)
sin7(3π/7)

+
sin7(3π/7)
sin7(π/7)

= 289,(1.35)
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sin3(3π/7)
sin6(π/7)

− sin3(π/7)
sin6(2π/7)

+
sin3(2π/7)
sin6(3π/7)

=
368√

7
,(1.36)

sin(2π/7)
sin2(3π/7)

− sin(π/7)
sin2(2π/7)

+
sin(3π/7)
sin2(π/7)

= 2
√

7,(1.37)

csc7
(π

7

)
− csc7

(
2π

7

)
− csc7

(
3π

7

)
= 27

√
7.(1.38)

Equations (1.31) and (1.37) have been found by Berndt and Zhang [4].
The rest of the article is organized as follows: In Section 2 we introduce

some basic facts about theta function θ1(z|q). In Section 3 we prove (1.19)
using the quintuple product identity. Section 4 is devoted to the proofs
of (1.20) and (1.21). In Section 5 we derive (1.22) and (1.23). Sections 6
and 7 are devoted to the proofs of (1.24)-(1.28). In Section 8 we prove (1.15),
(1.16), and (1.17). In Sections 9 and 10 we derive (1.8)-(1.11). Lastly, in
Section 11 we prove (1.18).

2. Some basic facts about θ1(z|τ ).

We begin with the definition of the classical theta function θ1(z|q) [23, p.
464]

θ1(z|q) = −iq
1
8

∞∑
n=−∞

(−1)nq
1
2
n(n+1)e(2n+1)iz(2.1)

= 2q
1
8

∞∑
n=0

(−1)nq
1
2
n(n+1) sin(2n + 1)z.

Using the Jacobi triple product formula we have [23, p. 470]

θ1(z|q) = 2q
1
8 (sin z)(q; q)∞(qe2iz; q)∞(qe−2iz; q)∞.(2.2)

Differentiating the above equation with respect to z and then putting z = 0
we find that

θ′1(0|q) = 2q
1
8 (q; q)3∞ = 2η3(τ),(2.3)

where and throughout this paper the prime means the partial derivative
with respective to z.

From the definition of θ1(z|q), the functional equations

θ1(z + π|q) = −θ1(z|q), θ1(z + πτ |q) = −q−1/2e−2πizθ1(z|q)(2.4)

can be easily verified. Differentiating the above equations with respect to z,
and then setting z = 0, we find that

θ′1(π|q) = −θ′1(0|q), θ′1(πτ |q) = −q−1/2θ′1(0|q).(2.5)
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Taking z = π
7 , 2π

7 , and 3π
7 , respectively in (2.2) and then multiplying the

three resulting equations together we find that

θ1

(π

7
|q
)

θ1

(
2π

7
|q
)

θ1

(
3π

7
|q
)

=
√

7q
3
8 (q; q)2∞(q7; q7)∞ =

√
7η2(τ)η(7τ).

(2.6)

The Fourier series expansion for the logarithmic derivatives of θ1(z|q) [23,
p. 489] is

θ′1
θ1

(z|q) = cot z + 4
∞∑

n=1

qn

1− qn
sin 2nz.(2.7)

Substituting

cot z =
1
z
− z

3
− z3

45
− 2z5

945
− z7

4725
+ · · ·(2.8)

and

sin z = z − 1
3!

z3 +
1
5!

z5 − 1
7!

z7 + · · ·(2.9)

into (2.7) gives

θ′1
θ1

(z|q) =
1
z
− 1

3
L(τ)z − 1

45
M(τ)z3 − 2

945
N(τ)z5(2.10)

− 1
4725

(
1 + 480

∞∑
n=1

n7qn

1− qn

)
z7 + · · · .

By the infinite products expansion for θ1(z|q) and direct computation, we
find that

θ1(7z|q7) = −(q7; q7)∞
(q; q)7∞

θ1(z|q)
3∏

r=1

θ1

(
z − rπ

7
|q
)

θ1

(
z +

rπ

7
|q
)

.(2.11)

We now take the logarithmic derivative of this equation and obtain

3∑
r=1

θ′1
θ1

(
z − rπ

7
|q
)

+
3∑

r=1

θ′1
θ1

(
z +

rπ

7
|q
)

= 7
θ′1
θ1

(7z|q7)− θ′1
θ1

(z|τ).(2.12)

Using (2.10) on the right-hand side of (2.12) yields

3∑
r=1

θ′1
θ1

(
z − rπ

7
|q
)

+
3∑

r=1

θ′1
θ1

(
z +

rπ

7
|q
)

(2.13)

=
1
3
(
L(τ)− 72L(7τ)

)
z +

1
45
(
M(τ)− 74M(7τ)

)
z3 + O(z5).
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Differentiating with repect to z and then setting z = 0 gives

(
θ′1
θ1

)′ (π

7
|q
)

+
(

θ′1
θ1

)′(2π

7
|q
)

+
(

θ′1
θ1

)′(3π

7
|q
)

=
1
6
(
L(τ)− 72L(7τ)

)
.

(2.14)

Differentiating (2.13) with repect to z, three times, and then setting z = 0
we obtain (

θ′1
θ1

)′′′ (π

7
|q
)

+
(

θ′1
θ1

)′′′(2π

7
|q
)

+
(

θ′1
θ1

)′′′(3π

7
|q
)

(2.15)

=
1
15
(
M(τ)− 74M(7τ)

)
.

3. The proof of (1.19).

We recall the quintuple product identity (see Lemma 3)

(q; q)∞
θ1(2z|q)
θ1(z|q)

= 2
∞∑

n=−∞
(−1)nq

1
2
(3n2+n) cos(6n + 1)z.(3.1)

When z = 0, (3.1) reduces to the Euler identity

(q; q)∞ =
∞∑

n=−∞
(−1)nq

1
2
(3n2+n).(3.2)

Denote

s(n) := cos
(6n + 1)π

7
− cos

2(6n + 1)π
7

+ cos
3(6n + 1)π

7
.(3.3)

By taking z = π
7 , z = −2π

7 , and z = 3π
7 , respectively, in (3.1) and then

adding the resulting equations we obtain

(q; q)∞

{
θ1(2π

7 |q)
θ1(π

7 |q)
−

θ1(3π
7 |q)

θ1(2π
7 |q)

+
θ1(π

7 |q)
θ1(3π

7 |q)

}
(3.4)

= 2
∞∑

n=−∞
(−1)nq

1
2
(3n2+n)s(n).

From the following easily verified elementary trigonometric facts:

s(n) =
{
−3, n ≡ 1 (mod 7)
1
2 , n 6≡ 1 (mod 7),(3.5)
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we have the evaluation

2
∞∑

n=−∞
(−1)nq

1
2
(3n2+n)s(n)

(3.6)

= 2
∞∑

n=−∞
n6≡1 (mod 7)

(−1)nq
1
2
(3n2+n)s(n) + 2

∞∑
n=−∞

n≡1 (mod 7)

(−1)nq
1
2
(3n2+n)s(n)

=
∞∑

n=−∞
n6≡1 (mod 7)

(−1)nq
1
2
(3n2+n) − 6

∞∑
n=−∞

n≡1 (mod 7)

(−1)nq
1
2
(3n2+n)

=
∞∑

n=−∞
(−1)nq

1
2
(3n2+n) + 7q2

∞∑
n=−∞

(−1)nq
1
2
(147n2+49n)

= (q; q)∞ + 7q2(q49; q49)∞.

In the last step we have used Euler’s identity (3.2). Substituting the above
equation into (3.4) we obtain (1.19). This completes the proof of (1.19).

4. The proofs of (1.20) and (1.21).

We first prove (1.21) and then prove (1.20).
Let

f(z) =
θ3
1(z|q)

θ1(z − π
7 |q)θ1(z − 2π

7 |q)θ1(z − 4π
7 |q)

.(4.1)

Using (2.4) we can easily show that f(z) is an elliptic functions with periods
π and πτ . It has three simple poles π

7 , 2π
7 , and 4π

7 and no other poles.
Let res(f ;x) denote the residue of f(z) at x. We have the following

evaluations:

res
(
f ;

π

7

)
= lim

z→π
7

(
z − π

7

)
f(z)(4.2)

= lim
z→π

7

(z − π
7 )

θ1(z − π
7 |q)

× lim
z→π

7

θ3
1(z|q)

θ1(z − 2π
7 |q)θ1(z − 4π

7 |q)
.

By L’Hôpital’s rule,

lim
z→π

7

(z − π
7 )

θ1(z − π
7 |q)

=
1

θ′1(0|q)
.(4.3)

It is plain that

lim
z→π

7

θ3
1(z|q)

θ1(z − 2π
7 |q)θ1(z − 4π

7 |q)
=

θ2
1(

π
7 |q)

θ1(3π
7 |q)

.(4.4)
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Therefore we have

res
(
f ;

π

7

)
=

θ2
1(

π
7 |q)

θ′1(0|q)θ1(3π
7 |q)

.(4.5)

In the same way we find that

res
(

f ;
2π

7

)
= −

θ2
1(

2π
7 |q)

θ′1(0|q)θ1(π
7 |q)

,(4.6)

res
(

f ;
4π

7

)
=

θ2
1(

3π
7 |q)

θ′1(0|q)θ1(2π
7 |q)

.(4.7)

On the other hand, Lemma 2 gives

res
(
f ;

π

7

)
+ res

(
f ;

2π

7

)
+ res

(
f ;

4π

7

)
= 0.(4.8)

Substituting (4.5)-(4.7) into the above equation we obtain (1.21).
We are now ready to prove (1.20). Letting

a :=
θ1(2π

7 |q)
θ1(π

7 |q)
, b := −

θ1(3π
7 |q)

θ1(2π
7 |q)

, c :=
θ1(π

7 |q)
θ1(3π

7 |q)
,(4.9)

and recalling (1.3), we find that (1.19) can be rewritten as

a + b + c = 1 + ρ(τ).(4.10)

Using (4.4) we find that (1.21) can be written as

ab2 − a2 + c = 0.(4.11)

It is obvious that

abc = −1.(4.12)

Multiplying (4.11) by a−1 and c, respectively, and then using (4.12) in the
resulting equations we find that

bc2 − b2 + a = 0,(4.13)

ca2 − c2 + b = 0.(4.14)

Denote

Q := ab + bc + ca, P := a + b + c = 1 + ρ(τ), R := abc = −1.(4.15)

Multiplying (4.11) by a, (4.13) by b, and (4.14) by c and then adding the
resulting equations we find that

(a2b2 + b2c2 + c2a2)− (a3 + b3 + c3) + ab + bc + ca = 0.(4.16)

Using the theory of elementary symmetric polynomials, we readily find that
the above equation can be rewritten as

Q2 + (3ρ(τ) + 4)Q− (ρ3(τ) + 3ρ2(τ) + ρ(τ)− 4) = 0.(4.17)
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Solving the above equation for Q, we obtain

Q = −1
2
(3ρ(τ) + 4)− 1

2

√
4ρ3(τ) + 21ρ2(τ) + 28ρ(τ).(4.18)

Noting the definitions of a, b, and c, (4.9), we find that (4.18) is (1.20).

5. The proofs of (1.22) and (1.23).

Using (2.6) and (4.9) we readily find that

y1 := a3b = −
√

7η2(τ)η(7τ)
θ1(2π

7 |q)
θ4
1(

π
7 |q)

,(5.1)

y2 := b3c = −
√

7η2(τ)η(7τ)
θ1(3π

7 |q)
θ4
1(

2π
7 |q)

,(5.2)

y3 := c3a =
√

7η2(τ)η(7τ)
θ1(π

7 |q)
θ4
1(

3π
7 |q)

.(5.3)

From (4.11)-(4.14) and some straightforward evaluations we find that

y1y2 = −y1 − 1,(5.4)

y2y3 = −y2 − 1,(5.5)

y3y1 = −y3 − 1,(5.6)

y1y2y3 = 1.(5.7)

We now compute y1 + y2 + y3 and y1y2 + y2y3 + y3y1. Noting (4.12)
and (4.15), we have the evaluation

PQ = (a + b + c)(ab + bc + ca)(5.8)

= ac2 + cb2 + ba2 + ab2 + bc2 + ca2 − 3.

Adding (4.11), (4.13), and (4.14), we find that

ab2 + bc2 + ca2 = a2 + b2 + c2 − a− b− c(5.9)

= (a + b + c)2 − 2(ab + bc + ca)− a− b− c

= P 2 − 2Q− P.

Substituting the above equation into (5.8), we find that

ac2 + cb2 + ba2 = −P 2 + PQ + P + 2Q + 3.(5.10)

Using (4.11), (4.13), (4.14), and the above equation, we readily find that

ab3 + bc3 + ca3 = a(c2 − b) + b(a2 − c) + c(b2 − a)(5.11)

= ac2 + cb2 + ba2 − ab− bc− ca

= −P 2 + PQ + P + Q + 3.



114 ZHI-GUO LIU

Employing (4.11), (4.12), (4.13), (4.14), and the above equation, we find
that

a3b + b3c + c3a = (a2 + b2 + c2)(ab + bc + ca)(5.12)

− ab3 − bc3 − ca3 + a + b + c

= (P 2 − 2Q)Q + P 2 − PQ− P −Q− 3 + P

= P 2Q + P 2 − 2Q2 − PQ−Q− 3.

Therefore, by using Lemma 4, (4.10), (4.18), and the definitions of y1, y2,
and y3, we obtain

y1 + y2 + y3 = a3b + b3c + c3a

(5.13)

= P 2Q + P 2 − PQ− 2Q2 −Q− 3

= (ρ2(τ) + 7ρ(τ) + 7)Q− 2ρ3(τ)− 5ρ2(τ) + 6

= −1
2
(ρ2(τ) + 7ρ(τ) + 7)

(
3ρ(τ) + 4 +

√
4ρ3(τ) + 21ρ2(τ) + 28ρ(τ)

)
− 2ρ3(τ)− 5ρ2(τ) + 6

= −1
2
(
ρ2(τ) + 7ρ(τ) + 7

)√
4ρ3(τ) + 21ρ2(τ) + 28ρ(τ)

− 1
2
(
7ρ3(τ) + 35ρ2(τ) + 49ρ(τ)

)
− 8

= −8− 49
η4(7τ)
η4(τ)

= −8− 49h(τ).

The above equation is equivalent to (1.22).
Adding (5.4), (5.5), and (5.6) and then using the above equation we im-

mediately have

y1y2 + y2y3 + y3y1 = −(y1 + y2 + y3)− 3(5.14)

= 5 + 49
η4(7τ)
η4(τ)

= 5 + 49h(τ).

The above equation is equivalent to (1.23).

6. The proofs of (1.24) and (1.25).

Multiplying (4.11) by ab, (4.13) by bc, (4.14) by ac, and noting the definitions
of y1, y2, and y3, we find that

a2b3 = y1 + 1, b2c3 = y2 + 1, c2a3 = y3 + 1.(6.1)
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Multiplying (4.11) by b3, (4.13) by c3, (4.14) by a3, and using the definitions
of y1, y2, and y3, we obtain

ab5 = a2b3 − y2, bc5 = b2c3 − y3, ca5 = c2a3 − y1.(6.2)

Combining (6.1) and (6.2) we have

ab5 = y1 − y2 + 1, bc5 = y2 − y3 + 1, ca5 = y3 − y1 + 1.(6.3)

Multiplying (4.11) by a5, (4.13) by b5 and (4.14) by c5, we find that

a7 = a5c + y2
1, b7 = b5a + y2

2, c7 = c5b + y2
3.(6.4)

From (6.3) and (6.4) we find the following relations:

a7 = y2
1 − y1 + y3 + 1, b7 = y2

2 − y2 + y1 + 1, c7 = y2
3 − y3 + y2 + 1.

(6.5)

Using the above relations, (5.13), and (5.14), we immediately have

a7 + b7 + c7(6.6)

= y2
1 + y2

2 + y2
3 + 3

= (y1 + y2 + y3)2 − 2(y1y2 + y2y3 + y3y1) + 3

= (8 + 49h(τ))2 − 2 (5 + 49h(τ)) + 3

= 57 + 2× 73h(τ) + 74h2(τ).

The above equation is equivalent to (1.24).
By using (6.5) and (5.4)-(5.7) we find that

a7b7 = y1(y1 + 1)2, b7c7 = y2(y2 + 1)2, c7a7 = y3(y3 + 1)2.(6.7)

Adding the three equations together in (6.7) and then using (5.4)-(5.7),
(5.13), and (5.14), we obtain

a7b7 + b7c7 + c7a7(6.8)

= y1(y1 + 1)2 + y2(y2 + 1)2 + y3(y3 + 1)2

= (y1 + y2 + y3)3 − 3(y1 + y2 + y3)(y1y2 + y2y3 + y3y1)

+ 3y1y2y3 + 2(y1 + y2 + y3)2 − 4(y1y2 + y2y3 + y3y1)
+ y1 + y2 + y3

= (y1 + y2 + y3)3 + 5(y1 + y2 + y3)2 + 14(y1 + y2 + y3) + 15

= −289− 18× 73h(τ)− 19× 74h2(τ)− 76h3(τ).

The above equation is equivalent to (1.25).
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7. The proofs of (1.26), (1.27) and (1.28).

Multiplying (4.11) by a4b2, (4.13) by b4c2, (4.14) by a2c4, and using (5.1)-
(5.4), we find that

a5b4 = y2
1 + y1, b5c4 = y2

2 + y2, c5a4 = y2
3 + y3.(7.1)

Therefore we have

a5b4 + b5c4 + c5a4 = y2
1 + y1 + y2

2 + y2 + y2
3 + y3(7.2)

= (y1 + y2 + y3)2 − 2(y1y2 + y2y3 + y3y1)
+ y1 + y2 + y3.

Substituting (5.13) and (5.14) into the above equation we obtain

a5b4 + b5c4 + c5a4 = 46 + 13× 49h(τ) + 492h2(τ).(7.3)

The above equation is the same as (1.26).
Now we prove (1.27). By a direct evaluation,

(x1 + x2 + x3)3(7.4)

= x3
1 + x3

2 + x3
3 + 6x1x2x3

+ 3x2
1x2 + 3x2

1x3 + 3x2
2x1 + 3x2

2x3 + 3x2
3x1 + 3x3

3x2.

Taking x1 = 3
√

y2
1y2, x2 = 3

√
y2
2y3, and x3 = 3

√
y2
3y1 and using (5.4)-(5.7),

we obtain (
3

√
y2
1y2 + 3

√
y2
2y3 + 3

√
y2
3y1

)3

(7.5)

= y2
1y2 + y2

2y3 + y2
3y1 + 3(y1 + y2 + y3)

+ 3(y1y2 + y2y3 + y3y4) + 6

= −y1(y1 + 1)− y2(y2 + 1)− y3(y3 + 1)

+ 3(y1 + y2 + y3) + 3(y1y2 + y2y3 + y3y4) + 6

= −y2
1 − y2

2 − y2
3 + 2(y1 + y2 + y3)

+ 3(y1y2 + y2y3 + y3y4) + 6

= −(y1 + y2 + y3)2 − 3(y1 + y2 + y3)− 9

= −49
(
1 + 13h(τ) + 49h2(τ)

)
.

Noting the definitions of y1, y2, and y3, we find that the above equation is
equivalent to (1.27).

Finally we prove (1.28). Denote

∆ := −8− 49h(τ).(7.6)
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Then (5.13) and (5.14) can be written in the following forms, respectively:

y1 + y2 + y3 = ∆(7.7)

y1y2 + y2y3 + y4y5 = −∆− 3.(7.8)

By (5.4)-(5.7), (7.7), and (7.8),

y2
1 + y2

2 + y2
3 = ∆2 + 2∆ + 6,(7.9)

y3
1 + y3

2 + y3
3 = ∆3 + 3∆2 + 9∆ + 3, ,(7.10)

y4
1 + y4

2 + y4
3 = ∆4 + 4∆3 + 14∆2 + 16∆ + 18,(7.11)

y5
1 + y5

2 + y5
3 = ∆5 + 5∆4 + 20∆3 + 35∆2 + 50∆ + 15.(7.12)

Taking x1 = 3
√

y5
1y2, x2 = 3

√
y5
2y3, and x3 = 3

√
y5
3y1 in (7.4) and us-

ing (5.4)-(5.7), we obtain(
3

√
y5
1y2 + 3

√
y5
2y3 + 3

√
y5
3y1

)3

(7.13)

= y5
1y2 + y5

2y3 + y5
3y1 + 3(y3

1y3 + y3
3y2 + y3

2y1)

+ 3(y3
1y

2
2 + y3

2y
2
3 + y3

3y
2
1) + 6

= −(y5
1 + y5

2 + y5
3)− (y4

1 + y4
2 + y4

3)

+ 3(y3
1 + y3

2 + y3
3) + 3(y2

1 + y2
2 + y2

3) + 3(y1 + y2 + y3)− 3

= −(∆2 + 3∆ + 9)(∆ + 1)3

= 75(1 + 13h(τ) + 49h2(τ))(1 + 7h(τ)).

Substituting (5.1)-(5.3) and (7.6) into the above equation, we obtain (1.28).

8. The proofs of (1.15), (1.16) and (1.17).

We recall the following identity (see, for example, [20]):

cot2 y − cot2 x + 8
∞∑

n=1

nqn

1− qn
(cos 2nx− cos 2ny)(8.1)

= θ′1(0|q)2
θ1(x− y|q)θ1(x + y|q)

θ2
1(x|q)θ2

1(x|q)
.

Dividing both sides of this equation by x− y and then letting y → x, we get

2 cot x(1 + cot2 x)− 16
∞∑

n=1

n2qn

1− qn
sin 2nx = θ′1(0|q)3

θ1(2x|q)
θ4
1(x|q)

.(8.2)
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Taking x = π
7 , 2π

7 , and −3π
7 , respectively, in the above equation and then

adding the resulting equations we get

s− 16
∞∑

n=1

s(n)
n2qn

1− qn
= θ′1(0|q)3

(
θ1(2π

7 |q)
θ4
1(

π
7 |q)

−
θ1(π

7 |q)
θ4
1(

3π
7 |q)

+
θ1(3π

7 |q)
θ4
1(

2π
7 |q)

)
.

(8.3)

Here

s = 2 cot
π

7

(
1 + cot3

π

7

)
+ 2 cot

2π

7

(
1 + cot3

2π

7

)
(8.4)

− 2 cot
3π

7

(
1 + cot3

3π

7

)
,

s(n) = sin
2nπ

7
+ sin

4nπ

7
− sin

6nπ

7
.(8.5)

Setting q = 0 in (8.3) and then using (1.32) we have

s =
sin(2π/7)
sin4(π/7)

− sin(π/7)
sin4(3π/7)

+
sin(3π/7)
sin4(2π/7)

=
64
7

√
7.(8.6)

From [13, p. 145, Equation (7.18)] we know that

s(n) = sin
2nπ

7
+ sin

4nπ

7
− sin

6nπ

7
=
√

7
2

(n

7

)
.(8.7)

Substituting (8.6) and (8.7) into (8.3) and then using (1.22) in the resuting
equation we obtain (1.15).

To prove (1.16), we recall the identity of Mccullogh and L.-C. Shen (see
Lemma 3)

θ′1
θ1

(x|q) +
θ′1
θ1

(y|q) +
θ′1
θ1

(z|q)− θ′1
θ1

(x + y + z|q)(8.8)

= θ′1(0|q)
θ1(x + y|q)θ1(y + z|q)θ1(z + x|q)

θ1(x|q)θ1(y|q)θ1(z|q)θ1(x + y + z|q)
.

Taking (x, y, z) = (π
7 ,−3π

7 ,−3π
7 ), (π

7 ,−2π
7 ,−2π

7 ), and (π
7 , π

7 , 2π
7 ), respec-

tively, in the above equation we obtain

θ′1
θ1

(π

7
|q
)
− θ′1

θ1

(
2π

7
|q
)
− 2

θ′1
θ1

(
3π

7
|q
)

= θ′1(0|q)
θ1(2π

7 |q)
θ2
1(

3π
7 |q)

,(8.9)

θ′1
θ1

(π

7
|q
)
− 2

θ′1
θ1

(
2π

7
|q
)

+
θ′1
θ1

(
3π

7
|q
)

= θ′1(0|q)
θ1(π

7 |q)
θ2
1(

2π
7 |q)

,(8.10)

2
θ′1
θ1

(π

7
|q
)

+
θ′1
θ1

(
2π

7
|q
)

+
θ′1
θ1

(
3π

7
|q
)

= θ′1(0|q)
θ1(3π

7 |q)
θ2
1(

π
7 |q)

.(8.11)
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Adding (8.9), (8.10), and (8.11) gives

2
(

cot
π

7
+ cot

2π

7
− cot

3π

7

)
(8.12)

+ 8
∞∑

n=1

qn

1− qn

(
sin

2nπ

7
+ sin

4nπ

7
− sin

6nπ

7

)

= θ′1(0|q)

(
θ1(3π

7 |q)
θ2
1(

π
7 |q)

−
θ1(π

7 |q)
θ2
1(

2π
7 |q)

+
θ1(2π

7 |q)
θ2
1(

3π
7 |q)

)
.

Setting q = 0 and then using (1.35), we obtain

cot
π

7
+ cot

2π

7
− cot

3π

7
=
√

7.(8.13)

Substituting (8.7), (8.13), and (1.27) into the above equation we obtain (1.16).
To prove (1.14), we construct the following elliptic function:

f(z) :=
θ1(z + π

7 |q)θ1(z + 2π
7 |q)θ1(z − 3π

7 |q)
θ3
1(z|q)

.(8.14)

By using (2.4), it is easy to check that f(z) is an elliptic function with
periods π and πτ . Also, f(z) has only one pole at 0, and its order is 3. We
now compute res(f ; 0).

It is plain that

res(f ; 0) =
1
2

[
d2(z3f(z))

d2z

]
z=0

.(8.15)

Set

F (z) := z3f(z), φ(z) =
F ′(z)
F (z)

.(8.16)

By logarithmic differentitation we easily find that

res(f ; 0) =
1
2

[
d2(z3f(z))

d2z

]
z=0

=
1
2
F (0)

(
φ(0)2 + φ′(0)

)
.(8.17)

Using (2.10) we find that

φ(z) =
z

3
− 3

θ′1
θ1

(z|q) +
θ′1
θ1

(
z +

π

7
|q
)

(8.18)

+
θ′1
θ1

(
z +

2π

7
|q
)

+
θ′1
θ1

(
z − 3π

7
|q
)

= L(τ)z +
θ′1
θ1

(
z +

π

7
|q
)

+
θ′1
θ1

(
z +

2π

7
|q
)

+
θ′1
θ1

(
z − 3π

7
|q
)

+ O(z3).
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Setting z = 0 and then using (8.7) and (8.13), we obtain

φ(0) =
θ′1
θ1

(π

7
|q
)

+
θ′1
θ1

(
2π

7
|q
)
− θ′1

θ1

(
3π

7
|q
)

(8.19)

=
(

cot
π

7
+ cot

2π

7
− cot

3π

7

)
+ 4

∞∑
n=1

qn

1− qn

(
sin

2nπ

7
+ sin

4nπ

7
− sin

6nπ

7

)

=
√

7

(
1 + 2

∞∑
n=1

(n

7

) qn

1− qn

)
.

Differentiating (8.18) with respect to z, setting z = 0, and using (2.14), we
find that

φ′(0) = L(τ) +
(

θ′1
θ1

)′ (π

7
|q
)

+
(

θ′1
θ1

)′(2π

7
|q
)

+
(

θ′1
θ1

)′(3π

7
|q
)

(8.20)

= −7

(
1 + 4

∞∑
n=1

nqn

1− qn
− 28

∞∑
n=1

nq7n

1− q7n

)
.

Note that

F (0) = −
θ1(π

7 |q)θ1(2π
7 |q)θ1(3π

7 |q)
θ′1(0|q)3

6= 0.(8.21)

Substituting (8.19) and (8.20) into (8.17) and using Lemma 2, we find that

1 + 4
∞∑

n=1

nqn

1− qn
− 28

∞∑
n=1

nq7n

1− q7n
=

(
1 + 2

∞∑
n=1

(n

7

) qn

1− qn

)2

.(8.22)

Combining (1.16) and (8.22) we obtain (1.17).

9. The proofs of (1.8) and (1.9).

To prove (1.8) and (1.9), we introduce the function

f(z) =
θ1(2z|q)θ1(3z|q)
θ6
1(z|q)θ1(7z|q7)

.(9.1)

By using (2.4) we readily verify that f(z) is an elliptic function with pe-
riods π and πτ . The poles of f(z) are 0 and π

7 , 2π
7 , . . . , 6π

7 . Furthermore,
π
7 , 2π

7 , . . . , 6π
7 are simple poles and 0 is a pole of order 5.

From Lemma 2, we have

res(f ; 0) +
6∑

k=1

res
(

f ;
kπ

7

)
= 0.(9.2)
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Now,

res
(
f ;

π

7

)
= lim

z→π
7

(
z − π

7

)
f(z)(9.3)

= −
θ1(2π

7 |q)θ1

(
3π
7 |q

)
7θ′1(0|q7)θ6

1(
π
7 |q)

= − 1
2
√

7
η2(τ)
η2(7τ)

θ−7
1

(π

7
|q
)

,

and we also find that

res
(

f ;
6π

7

)
= res

(
f ;

π

7

)
= − 1

2
√

7
η2(τ)
η2(7τ)

θ−7
1

(π

7
|q
)

.(9.4)

In the same way we find that

res
(

f ;
2π

7

)
= res

(
f ;

5π

7

)
=

1
2
√

7
η2(τ)
η2(7τ)

θ−7
1

(
2π

7
|q
)

,(9.5)

res
(

f ;
3π

7

)
= res

(
f ;

4π

7

)
=

1
2
√

7
η2(τ)
η2(7τ)

θ−7
1

(
3π

7
|q
)

.(9.6)

To compute res(f ; 0), we define

F (z) := z5f(z), φ(z) :=
F ′(z)
F (z)

.(9.7)

It is plain that

F (0) =
6

7θ′1(0|q7)θ′1(0|q)4
=

3
112η3(7τ)η12(τ)

.(9.8)

By an elementary calculation,

res(f ; 0) =
1
24

[
F (4)(z)

]
z=0

(9.9)

=
F (0)
24

(
φ4(0) + 6φ2(0)φ′(0) + 4φ(0)φ′′(0) + 3φ′(0)2 + φ′′′(0)

)
.

Using (2.10), we find that

φ(z) =
5
z
− 6

θ′1
θ1

(z|q) + 2
θ′1
θ1

(2z|q) + 3
θ′1
θ1

(3z|q)− 7
θ′1
θ1

(7z|q7)(9.10)

=
7
3

(7L(7τ)− L(τ)) z

+
7
45

(343M(7τ)− 13M(τ)) z3 + O(z5).

This yields

φ′(0) =
7
3

(7L(7τ)− L(τ)) = 14A(τ), φ(0) = 0, φ′′(0) = 0,(9.11)

φ′′′(0) =
14
15

(343M(7τ)− 13M(τ)) .
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Substituting the above equations into (9.9) we arrive at

res(f ; 0) =
1

960
η−3(7τ)η−12(τ)(9.12)

·
(
630A2(τ) + 343M(7τ)− 13M(τ)

)
.

Substituting (9.3)-(9.6) and (9.13) into (9.2) we obtain

630A2(τ) + 343M(7τ)− 13M(τ)(9.13)

=
960√

7
η14(τ)η(7τ)

(
θ−7
1

(π

7
|q
)
− θ−7

1

(
2π

7
|q
)
− θ−7

1

(
3π

7
|q
))

.

Substituting (1.28) into (9.13) we obtain the following interesting result:

Lemma 8. We have

630A2(τ) + 343M(7τ)− 13M(τ)(9.14)

= 960k(τ)4/3 (1 + 7h(τ))
(
1 + 13h(τ) + 49h2(τ)

)1/3
.

From [1, pp. 24, 48, 69] we know that

η(−1/τ) =
√
−iτη(τ),(9.15)

L(−1/τ) = −6τi

π
+ τ2L(τ),(9.16)

M(−1/τ) = τ4M(τ),(9.17)

N(−1/τ) = τ6N(τ).(9.18)

It follows that

η(−1/7τ) =
√
−7iτη(7τ),(9.19)

A(−1/7τ) = −7τ2A(τ),(9.20)

M(−1/7τ) = (7τ)4M(7τ),(9.21)

N(−1/7τ) = (7τ)6N(7τ),(9.22)

h(−1/7τ) = 7−2h−1(τ).(9.23)

Replacing τ by −1/7τ in (9.14) and then using (9.20), (9.21), and (9.23) in
the resulting equation we deduce that:

Lemma 9. We have

90A2(τ)− 91M(7τ) + M(τ)(9.24)

= 960k(τ)4/3
(
7h(τ) + h2(τ)

) (
1 + 13h(τ) + 49h2(τ)

)1/3
.

By solving the linear system of equations, (9.14) and (9.24), for M(τ) and
M(7τ) we deduce the following theorem:
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Theorem 10. We have

7M(7τ) = 15A2(τ)− 8k(τ)4/3
(
1 + 20h(τ) + 91h2(τ)

)
(9.25)

·
(
1 + 13h(τ) + 49h2(τ)

)1/3

M(τ) = 105A2(τ)− 8k(τ)4/3
(
13 + 140h(τ) + 343h2(τ)

)
(9.26)

·
(
1 + 13h(τ) + 49h2(τ)

)1/3
.

Substituting (1.17) into the above equations, respectively, we obtain (1.8)
and (1.9).

10. The proofs of (1.10) and (1.11).

Let

f(z) =
θ1(z|q)θ1(2z|q7)

θ11
1 (z|q7)

.(10.1)

It is easy to check that f(z) is an elliptic function with periods π and 7πτ .
Also, f(z) has only one pole at 0, and its order is 9. From lemma 2 we have

res(f ; 0) = 0.(10.2)

Set

F (z) := z9f(z), φ(z) :=
F ′(z)
F (z)

.(10.3)

Using (2.10) we find that

φ(z) =
9
z

+
θ′1
θ1

(z|q)− 11
θ′1
θ1

(z|q7) + 2
θ′1
θ1

(2z|q7)(10.4)

= 2z − 2
15

z3 − 4
35

z5 − 246
4725

z7 + 4
∞∑

n=1

qn

1− qn
sin 2nz

+ 4
∞∑

n=1

q7n

1− q7n
(2 sin 4nz − 11 sin 2nz) + O(z9).

It follows that

φ′(0) = 2A(τ),(10.5)

φ′′′(0) = − 2
15

(M(τ) + 5M(7τ)) ,(10.6)

φ(5)(0) = −16
63

(N(τ) + 53N(7τ)) ,(10.7)

φ(0) = φ′′(0) = φ(4)(0) = φ(6)(0) = 0,(10.8)



124 ZHI-GUO LIU

and

φ(7)(0) = −16
15

(
1 + 480

∞∑
n=1

n7qn

1− qn
+ 245 + 245× 480

n7q7n

1− q7n

)
.(10.9)

Employing the identity [1, p. 199], [19]

M2(τ) = 1 + 480
∞∑

n=1

n7qn

1− qn
,(10.10)

Equation (10.9) can be written as

φ(7)(0) = −16
15
(
M2(τ) + 245M2(7τ)

)
.(10.11)

Using the fact that φ(0) = φ′′(0) = φ(4)(0) = φ(6)(0) = 0, we find that by
a direct computation,

res(f ; 0) =
1
8!

F (0)
(
105φ′(0)4 + 210φ′(0)2φ′′′(0)(10.12)

+ 28φ′(0)φ(5)(0) + 35φ′′′(0)2 + φ(7)(0)
)
.

Substituting (10.5), (10.6), (10.7), and (10.11) into (10.12) and then us-
ing (10.1) yields

N(τ) + 53N(7τ)(10.13)

=
63
8

A2(τ) (15A(τ)−M(τ)− 5M(7τ))

− 1
32A(τ)

(
M2(τ)− 14M(τ)M(7τ) + 553M2(7τ)

)
.

Replacing τ by −1/7τ in the above equation and then applying (9.20)-
(9.23) in the resulting equation, we deduce that

53N(τ) + 76N(7τ)(10.14)

= −441
8

A(τ)
(
15× 72A2(τ)− 5M(τ)− 74M(7τ)

)
+

1
32A(τ)

(
79M2(τ)− 2× 74M(τ)M(7τ) + 77M2(7τ)

)
.

Solving the above two equations for N(τ) and N(7τ) we obtain the fol-
lowing lemma:
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Lemma 11. We have

N(τ) =
49

2320
A(τ)

(
135× 72A2(τ)− 2× 74M(7τ)− 388M(τ)

)
(10.15)

− 1
27840A(τ)

(
77M2(7τ)− 6× 74M(τ)M(7τ)

+ 923M2(τ)
)
,

N(7τ) =
7

2320
A(τ)

(
−135A2(τ) + 2M(τ) + 388M(τ)

)
(10.16)

+
1

27840A(τ)

(
M2(τ)− 42M(τ)M(7τ)

+ 6461M2(7τ)
)
.

Substituting (1.8), (1.9), and (1.16) into the above two equations, respec-
tively, we obtain (1.10) and (1.11).

11. The proof of (1.18).

In this section we first evaluate some elementary trigonometric sums. Let
ω =exp(2πi

7 ). It is well-known that

(1− x)
6∏

r=1

(1− xωr) = 1− x7.(11.1)

It follows that for x 6= 1,(
1− 2x cos

2π

7
+ x2

)(
1− 2x cos

4π

7
+ x2

)(
1− 2x cos

6π

7
+ x2

)
(11.2)

=
1− x7

1− x
.

Letting x → 1 gives

26 sin2 π

7
sin2 2π

7
sin2 3π

7
= 7,(11.3)

and from this we obtain

sin
π

7
sin

2π

7
sin

3π

7
=

1
8

√
7.(11.4)

Similarly, setting x = −1 in (11.2), we have

cos
π

7
cos

2π

7
cos

3π

7
=

1
8
.(11.5)

Combining the above two equations we obtain

cot
π

7
cot

2π

7
cot

3π

7
=

1√
7
.(11.6)
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We recall the identity (see (8.13))

cot
π

7
+ cot

2π

7
− cot

3π

7
=
√

7.(11.7)

Taking q = 0 in (2.14), we obtain

cot2
π

7
+ cot2

2π

7
+ cot2

3π

7
= 5.(11.8)

From (11.6), (11.7), and (11.8), we readily find that

cot
π

7
, cot

2π

7
, and − cot

3π

7
(11.9)

are the roots of cubic equation

x3 −
√

7x2 + x +
1√
7

= 0.(11.10)

Let

sn = cotn π

7
+ cotn 2π

7
+ (−1)n cotn 3π

7
.(11.11)

Then from (11.10) we obtain the following recurrence formula:

sn+3 =
√

7sn+2 − sn+1 −
1√
7
sn, s0 = 3, s1 =

√
7, s2 = 5.(11.12)

It follows that

s3 =
25√

7
, s4 = 19, s5 =

103√
7

.(11.13)

It can be easily verified that

cot(4) x = 16 cotx + 40 cot3 x + 24 cot5 x.(11.14)

Therefore we have

cot(4) π

7
+ cot(4) 2π

7
+ cot(4)

3π

7
= 16s1 + 40s3 + 24s5 =

3584√
7

.(11.15)

Now we begin to prove (1.18). Using (2.4) we can verify that

f(z) =
θ1(2z|q)θ1(z + π

7 |q)θ1(z + 2π
7 |q)θ1(z − 3π

7 |q)
θ7
1(z|q)

(11.16)

is an elliptic function with only one pole, namely, at 0 with order 6.
Set

F (z) := z6f(z), φ(z) :=
F ′(z)
F (z)

.(11.17)
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We find that

φ(z) =
6
z
− 7

θ′1
θ1

(z|q) + 2
θ′1
θ1

(z|q)(11.18)

+
θ′1
θ1

(
z +

π

7
|q
)

+
θ′1
θ1

(
z +

2π

7
|q
)

+
θ′1
θ1

(
z − 3π

7
|q
)

= L(τ)z − z3

5
M(τ) +

θ′1
θ1

(
z +

π

7
|q
)

+
θ′1
θ1

(
z +

2π

7
|q
)

+
θ′1
θ1

(
z − 3π

7
|q
)

+ O(z5).

Setting z = 0 and then using (8.19), we find that

φ(0) =
θ′1
θ1

(π

7
|q
)

+
θ′1
θ1

(
2π

7
|q
)
− θ′1

θ1

(
3π

7
|q
)

(11.19)

=
√

7

(
1 + 2

∞∑
n=1

(n

7

) qn

1− qn

)
.

Differentiating (11.18) with repect to z and then setting z = 0 and finally
using (2.14), we obtain

φ′(0) = L(τ) +
(

θ′1
θ1

)′ (π

7
|q
)

+
(

θ′1
θ1

)′(2π

7
|q
)

+
(

θ′1
θ1

)′(3π

7
|q
)

(11.20)

= −7A(τ).

Differentiating (11.18) twice with repect to z , seting z = 0, and using (8.6)
and (8.7), we obtain

φ′′(0) =
(

θ′1
θ1

)′′ (π

7
|q
)

+
(

θ′1
θ1

)′′(2π

7
|q
)
−
(

θ′1
θ1

)′′(3π

7
|q
)

(11.21)

=
8√
7

(
8− 7

∞∑
n=1

(n

7

) n2qn

1− qn

)
.

Using (2.15), we find that

φ′′′(0) = −6
5
M(τ) +

(
θ′1
θ1

)′′′ (π

7
|q
)

(11.22)

+
(

θ′1
θ1

)′′′(2π

7
|q
)

+
(

θ′1
θ1

)′′′(3π

7
|q
)

= − 1
15

(7M(τ) + 2401M(7τ)) .
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From (11.16) and (8.7), we have

φ(4)(0) =
(

θ′1
θ1

)(4) (π

7
|q
)

+
(

θ′1
θ1

)(4)(2π

7
|q
)
−
(

θ′1
θ1

)(4)(3π

7
|q
)

(11.23)

= cot(4) π

7
+ cot(4)

2π

7
+ cot(4)

3π

7

+ 64
∞∑

n=1

n4qn

1− qn

(
sin

2nπ

7
+ sin

4nπ

7
− sin

6nπ

7

)

= 32
√

7

(
16 +

∞∑
n=1

(n

7

) n4qn

1− qn

)
.

By logarithmic differentiation we find that

res(f ; 0) =
1

120
F (0)

(
φ(0)5 + 10φ(0)3φ′(0) + 5φ(0)φ′′′(0)(11.24)

+ 10φ(0)2φ′′(0) + 15φ(0)φ′(0)2

+ 10φ′(0)φ′′(0) + φ(4)(0)
)
.

Substituting (11.19)-(11.23) into the above equation and then using (8.19)
in the resulting equation and finally using the fact that res(f ; 0) = 0, we
obtain

96

(
16 +

∞∑
n=1

(n

7

) n4qn

1− qn

)
(11.25)

=

(
1 + 2

∞∑
n=1

(n

7

) qn

1− qn

)
(17M(τ) + 2401M(7τ))

− 882

(
1 + 2

∞∑
n=1

(n

7

) qn

1− qn

)5

.

Substituting (1.8), (1.9), and (1.16) into the above equation we immediately
obtain (1.18).
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