
Pacific
Journal of
Mathematics

THE MEROMORPHIC CONTINUATION OF THE
RESOLVENT OF THE LAPLACIAN ON LINE BUNDLES

OVER CH(n)

Cynthia E. Will

Volume 209 No. 1 March 2003



PACIFIC JOURNAL OF MATHEMATICS
Vol. 209, No. 1, 2003

THE MEROMORPHIC CONTINUATION OF THE
RESOLVENT OF THE LAPLACIAN ON LINE BUNDLES

OVER CH(n)

Cynthia E. Will

Let G = SU(n, 1), K = S(U(n) × U(1)), and for l ∈ Z,
let {τl}l∈Z be a one-dimensional K-type and let El the line
bundle over G/K associated to τl. In this work we prove that
the resolvent of the Laplacian, acting on C∞

c -sections of El

is given by convolution with a kernel which has a meromor-
phic continuation to C. We prove that this extension has only
simple poles and we identify the images of the corresponding
residues with (g, K)-submodules of the principal series repre-
sentations. We show that for certain values of the parameters
these modules are holomorphic (or antiholomorphic) discrete
series.

1. Introduction.

In [9] the meromorphic continuation of the resolvent kernel of the Laplacian
acting on functions was studied in the case of the so called Damek-Ricci
spaces. These include, in particular, symmetric spaces of strictly negative
curvature. This meromorphic continuation has simple poles and the residues
are finite rank operators whose images can be explicitly described and their
dimensions determined. In the present paper, we shall prove similar results
in the case of the action of the Laplacian on line bundles over CHn. We use
work by Shimeno on the theory of spherical functions in this context. We
prove that in a certain open half-plane of C, the resolvent is given by convo-
lution with an explicit kernel and this has a meromorphic continuation to C.
We prove that this continuation has simple poles located at parameters of
reducibility of certain principal series representations of G. The correspond-
ing residues are convolution operators and their images are isomorphic to
(g,K)-submodules of the principal series representations. For some values
of the parameters, these modules are finite dimensional and for others they
are holomorphic, antiholomorphic or limits of discrete series representations,
hence infinite dimensional. This is in contrast with the case of the trivial
K-type, studied in [9].

An outline of the paper is as follows: In Sections 2 and 3 we introduce
notation and describe some results due mainly to Shimeno, to be used in
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the rest of the paper. In Section 4 we study the meromorphic continua-
tion of the resolvent kernel, and we describe the images of the residues as
(g,K)-submodules of the principal series. We show in particular that any
holomorphic or anti-holomorphic representation occurs as image of a residue,
as well as any limit of discrete series and any finite dimensional representa-
tion whose contain a one dimensional K-type. Moreover, in the last case,
we also prove that this module is the kernel of the standard intertwining
operator of the principal series representation.

We finally discuss in Section 5, in detail, the case when G = SU(1, 1).
This paper is part of my thesis work. I am very grateful to my advisor,

R. Miatello, for his guidance and constant support. I also wish to thank J.
Vargas for helpful conversations.

2. Preliminaries.

2.1. Basic notation. We begin by introducing notation that will be used
throughout this paper. As is customary, we will denote a Lie group by an
upper case letter and its Lie algebra by the corresponding lower case gothic
letter.

If G = SU(n, 1), then the Lie algebra of G is given by g = {X ∈ sl(n +
1,C) : XJ + JX

t = 0}, where J =
[

0 0 1
0 Id 0
1 0 0

]
.

Let g = k + p be the Cartan decomposition associated to the Cartan
involution θ(X) = X

t. Thus

k =
{[

A 0
0 y

]
: A ∈ u(n), tr(A) + y = 0

}
and

p =
{[

0 b

b
t 0

]
: b ∈ Cn

}
.

If we put H0 =
[

0 0 1
0 0 0
1 0 0

]
, it is easy to see that a = RH0 is a maximal abelian

subalgebra of p and z = R
[

i
n

I 0

0 −i

]
is the center of k, where i =

√
−1. We

have that k = ks + z, where ks = [k, k] is the semisimple part of k. Let M be
the centralizer of A in K, that is for n > 1

M =


 eis 0 0

0 U 0
0 0 eis

 : U ∈ U(n− 1), det(U)e2is = 1

 .

If t is the set of diagonal matrices of k, then tc is a Cartan subalgebra of gc.
The corresponding root system is

∆ = {γi,j = εi − εj : 1 ≤ i 6= j ≤ n+ 1}
where εi(Diag(h1, . . . , hn+1)) = hi. We choose an ordering in the dual space
of it such that the system of positive roots is ∆+ = {γi,j : i < j}. Let ∆c
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and ∆n be the set of compact and noncompact roots respectively. We fix a
bilinear form B on g, given by a multiple of the Killing form of g such that
B(H0,H0) = 1, and for γ ∈ t∗c we denote by Hγ the element of t defined by
γ(H) = B(H,Hγ) for all H ∈ t. Denote by

t− = RHγ1,n+1 , and t+ = {H ∈ t : γ1,n+1(H) = 0}.

Since {γ1,n+1} is a basis of ∆n, we have that t = t−⊕ t+, and there exists an
automorphism c of gc, such that c maps it− bijectively to a, fixing t+ (see
[10, p. 281]). Therefore, h = t+ + a is a Cartan subalgebra of g, where

h =

H =


iu1 0 0 t

0
. . . 0 0

0 0 iun 0
t 0 0 iu1

 :

n∑
j=2

uj + 2u1 = 0,

t, uj ∈ R

 .

Let εj be the linear funtional on a∗c defined by

ε1(H) = iu1 + t, εn+1(H) = iu1 − t, and εj(H) = iuj (1 < j ≤ n).

Thus, with the natural ordering, the corresponding set of positive roots is

R+ = {αi,j = εi − εj+1 : 1 ≤ i ≤ j ≤ n}.

We denote by Σ the set of restricted roots of the pair (g, a), and we use a
compatible ordering in the dual space of a. Hence, for n > 1, Σ+ = {α, 1

2α}
is the set of positive restricted roots, where α is the restriction of α1,n+1.
The corresponding root spaces are given by

gα/2 =
{[

0 tx 0
−x 0 x
0 tx 0

]
;x ∈ Cn−1

}
and gα = R

[−i 0 i
0 0 0
−i 0 i

]
,

and thus mα = dim gα = 1 and mα/2 = dim gα/2 = 2(n− 1).
We will identify the dual space a∗c with C under the correspondence ν =

z 1
2α 7→ z. In other words, since α(H0) = 2, we are identifying ν with
ν(H0). As usual, let ρ be the linear functional on a defined by ρ(H) =
1
2

∑
β∈R+

mββ(H). Hence, under the above convention, ρ is identified with n.

We denote by W the Weyl group of G, and we note that in this case
W = {±Id}.

If A+ = {exp(tH0) : t > 0 }, then we have the Cartan decomposition
of G, G = KCl(A+)K. We take on A the measure da = dt, on K we use
the Haar measure so that the total mass is one, and on G we use the Haar
measure such that∫

G
f(g)dg =

∫
KA+K

δ(t)f(k1ak2)dk1dadk2

where δ(t) = 22n−1(sinh t)2(n−1) sinh 2t.
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For any g ∈ G, let g = κ(g) expH(g)n(g) be the Iwasawa decomposition
of g.

2.2. Representations. We denote by K̂ and M̂ the set of irreducible uni-
tary representations of K and M , respectively. For l ∈ Z let τl be the one-
dimensional representation of K associated to the character χl

([
A 0
0 y

])
= yl.

We note that every one-dimensional representation of K is of this form. We
set σl = τl|M .

For each l ∈ Z, we define mα(l) = 1 − 2l, mα/2(l) = 2(n − 1) + 2l and

ρ(l) = 1
2

∑
β∈R+

mβ(l)β. Thus, under the above identification ρ(l) = n− l (see

§2.1).
Let El denote the homogeneous line bundle over G/K associated with τl.

We identify the space of C∞-sections of El with the space C∞(G/K; τl) of
C∞-functions onG such that f(xk) = τl(k)−1f(x) for any x ∈ G, k ∈ K. We
denote by Dl = Dl(G/K), the space of left invariant differential operators
on G which leave C∞(G/K; τl) invariant. We note that for l = 0, τl is the
trivial representation of K, and D0 = D(G/K). Recall that we have the
isomorphism (see for instance [12, Thm. 2.1])

Dl ' U(g)K/U(g)K ∩ U(g)kl

where kl = {X + τl(X) | X ∈ z}.
Since τl is a one-dimensional representation, τl|M is clearly multiplicity

free (i.e., no constituent occurs twice), then by [1, Thm. 3] Dl is commuta-
tive.

Definition 2.1. A complex valued function f on G is said to be τl-radial if

f(k1xk2) = τl(k1)−1f(x)τl(k2)−1 for all g ∈ G, k1, k2 ∈ K.

The space of τl-radial C∞-functions on G will be denoted by C∞l (G). We
note that C∞l (G) is an algebra with the following convolution product:

f ? g(x) =
∫

G
f(y−1x)g(y)dy.

Let f− denote the restriction to A+ of a function f ∈ C∞l (G). It follows from
the Cartan decomposition G = KCl(A+)K that f ∈ C∞l (G) is determined
by f−. For D ∈ U(g), we denote by ∆l(D) the τl-radial component, that is,
∆l(D) is a differential operator on A+ satisfying

(Df)− = ∆l(D)(f−) ∀ f ∈ C∞l (G).

We will now recall some facts on the radial component of C, the Casimir
operator of gc with respect to B. Let X1, . . . , X2(n−1) and X0 be basis of
gα/2 and gα respectively, such that −B(Xi, θ(Xj)) = δi,j . Let {U1, . . . , Ur}
be an orthonormal basis of m with respect to −B|m.
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Proposition 2.2. If f ∈ C∞l (G) and Cm denotes the Casimir element of
m with respect to −B|m, then

∆l(C)f(at)

=
(
d2

dt2
− τl(Cm) + ((2n− 1) coth t+ 2 coth 2t)

d

dt
− l2

(cosh t)2

)
f(at).

Proof. If we define, as usually, for j = 0, . . . , 2(n− 1)

Zj = 2−
1
2 (Xj + θ(Xj)), Yj = 2−

1
2 (Xj − θ(Xj)),

then, it is easy to see that

C = H2
0 − Cm +

2(n−1)∑
j=0

Y 2
j −

2(n−1)∑
j=0

Z2
j .

Using arguments analogous to those in [13, p. 280] (see also [3, Lemma 22]),
we can see that in our case we obtain for f ∈ C∞l (G/K):

Cf(at) =
d2

dt2
f(at)− τl(Cm)f(at) + (2(n− 1) coth t+ 2 coth 2t)

d

dt
f(at)

+ (sinh t)−2

2(n−1)∑
j=1

τl(Z2
j )f(at) + (sinh 2t)−2τl(Z2

0 )f(at)

+ (coth t)2
2(n−1)∑

j=1

f(at)τl(Z2
j ) + (coth 2t)2f(at)τl(Z2

0 )

− 2(sinh t)−1(coth t)
2(n−1)∑

j=1

τl(Zj)f(at)τl(Zj)

− 2(sinh 2t)−1(coth 2t) τl(Z0)f(at)τl(Z0)−
2(n−1)∑

j=0

τl(Z2
j )f(at).

Here, we have used that α(H0) = 2, and therefore α(log(at)) = 2t.

On the other hand, it is easy to see that if X =
[

0 tx 0
−x 0 x
0 tx 0

]
∈ gα/2, then

(X + θ(X)) =
[

0 2tx 0
−2x 0 0

0 0

]
.

Hence, by the definition of τl, τl(Zj) = 0 for j = 1, . . . , 2(n − 1). We also
have that Z0 = −i(E1,1 − En+1,n+1), and then τl(Z0) = il. Therefore, the
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above equation becomes

Cf(at) =
d2

dt2
f(at)− τl(Cm)f(at) + (2(n− 1) coth t+ 2 coth 2t)

d

dt
f(at)

− l2
(
(sinh 2t)−2 + (coth 2t)2 − 2(sinh 2t)−1 coth 2t− 1

)
f(at)

and the last term of the right-hand side of the above equation equals l2

(cosh t)2
,

as was to be shown. �

Remark. In the case l = 0, a τ0-radial function corresponds to a K-
biinvariant function on G, and Proposition 2.2 generalizes the formula for
the action of ∆(C) in this case given in [8, §1, p. 667].

3. Spherical functions.

Definition 3.1. If l ∈ Z and φ is a complex valued τl-radial continuous
function on G, then φ is said to be a τl-spherical function if φ(e) = 1 and
Dφ = χ(D)φ for each D ∈ Dl, with χ(D) ∈ C.

We have the following description of the τl-spherical functions (see for
instance [12, Prop. 6.1]), as an Einsenstein Integral (see [13, 8.12.2]).

Proposition 3.2. For l ∈ Z, g ∈ G and ν ∈ a∗, define

Φν,l(g) =
∫

K
e−(ν+ρ)(H(g−1k))τl(k−1κ(g−1k))dk.

The function φν,l is a τl-spherical function on G and every τl-spherical func-
tion is of this form, for some ν ∈ a∗c . Furthermore, φν,l = φµ,l if and only
if µ = sν for some s ∈W, and the map ν → φν,l(g) is holomorphic for each
g ∈ G.

In order to give another characterization of τl-spherical functions, we will
recall some facts on the principal series representations of G. Let P = MAN

be the minimal parabolic subgroup of G. For ν ∈ a∗c and l ∈ Z, let (πν,l,H
l,ν
P )

be the induced representation from P to G of the representation (πl,ν ,Hν)
of P , given by πl,ν(man)v = a(ν+ρ)σl(m)v.

Since [τl : σl] = 1, by Frobenius reciprocity, τl appears in the K-decom-
position of H l,ν

P , and then we can define 1ν,l ∈ H l,ν
P such that 1ν,l|K = τl.

Moreover. we have that

〈πν,l(g)1ν,l, 1ν,l〉 =
∫

K
1ν,l(g−1k)1ν,l(k)dk

=
∫

K
e−(ν+ρ)H(g−1k)τ−l(k−1κ(g−1k))dk
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This means that φν,−l(g) = 〈πν,l(g)1ν,l, 1ν,l〉, and so it can be shown that
the restriction Φ−ν,l of Φν,l to A+ satisfies the differential equation:

∆l(C)Φ−ν,l = χ(ν, l)Φ−ν,l

where χ(ν, l) = ν2 − ρ2 + τ−l(Cm) ([13, p. 280]).
As in the case of the trivial K-type, these spherical functions are also

related with hypergeometric functions, as we will now see.

Proposition 3.3 ([11, Prop. 2.6]). Let u(t) = 2 cosh t, then we have that

u(t)l · (∆l(C) + ρ2 − τl(Cm)) · u(t)−l = L(l) + ρ(l)2

where L(l) = d2

dt2
+ ((2n− 1) coth t+ (1− 2l) tanh t) d

dt .

Using this proposition one can see that the function

ψ(t) = ul(t)Φ−ν,l(exp(tH0))

is an even smooth function on (0,+∞) satisfying ψ(0) = 1 and

L(l)ψ = λ(ν, l)ψ(1)

where λ(ν, l) = ν2−ρ(l)2. Furthermore, it is known that the Jacobi function

φ
(n−1,−l)
iν = 2F1

(
n− l + ν

2
,
n− l − ν

2
, n,−(sinh t)2

)
is the unique solution satisfying these conditions (see [6, §2.1]). Therefore

Φν,l(exp tH0) = (2 cosh t)−lφ
(n−1,−l)
iν (t).

It can also be seen (see [6, p. 7] and [11, p. 384]) that for ν /∈ −N, a
second solution of (1) in (0,+∞) is given by

Q̃ν,l(t) = (2 cosh t)−(ν+ρ(l))
2F1

(
n− l + ν

2
,
n+ l + ν

2
, 1 + ν, (cosh t)−2

)
.

(2)

As a function of ν, Q̃ν,l is holomorphic on C \ N, and for ν /∈ Z, Q̃ν,l and
Q̃−ν,l are linearly independent, and so, as in the case l = 0, we can write

(2 cosh t)lΦν,l(exp(tH0)) = c(ν, l)Q̃−ν,l(t) + c(−ν, l)Q̃ν,l(t)(3)

where

c(ν, l) =
2n−l−ν(n− 1)! Γ(ν)
Γ(ν+n+l

2 )Γ(ν+n−l
2 )

,(4)

and if Re ν > 0 , the asymptotic behavior of Φν,l, as t→∞, is given by:

Φν,l(exp(tH0)) ∼ c(ν, l) et(ν−ρ).(5)
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We will also need the following fact (see [4, Prop. 2.2]):

δ1/2·(∆l(C) + ρ2) · δ−1/2(6)

=
d2

dt2
+ τ−l(Cm) +

∑
β∈R+

1
4
mβ

2
(l)(2−mβ

2
(l)− 2mβ(l))4 sinh (2t)−2.

With all these elements in place, we can adapt most of the arguments in
[8, 9], to obtain generalizations of the results of [9, §3].

Theorem 3.4. If ν ∈ C, ν /∈ −N, then there exists a function Qν,l ∈
C∞−l(G−K) with the following properties:

(a) ∆l(C)Qν,l = χ(ν, l)Qν,l. Qν,l(x) is holomorphic for ν /∈ −N and if
ν ∈ −N, Qν,l(x) has at most a simple pole.

(b) Φ−ν,l = c(−ν, l)Q−ν,l + c(ν, l)Q−−ν,l.

(c) As t 7→ 0, Qν,l(exp(tH0)) ∼ d(ν)t−2(n−1)| log t|δn,1 , for some meromor-
phic function d(ν) on C, holomorphic if ν /∈ −N. Furthermore, if ν ∈
C \−N, then Qν,l(g) lies in L1

loc(G), and if Re ν > ρ, Qν,l(g) ∈ L1(G).
(d) limt7→0+ δ(t) d

dtQν,l(exp(tH0)) = −2νc(ν, l).
(e) If f ∈ C∞c (G/K, τl) and ν /∈ −N then for Re ν > ρ∫

G
Qν,l(x−1y)(C − λ(ν, l)Id)f(y)dy = −2ν c(ν, l)f(x).(7)

Proof. Let Qν,l(katk
′) = τl(k)u(t)−lQ̃ν,l(t)τl(k′). As we noted before, since

Q̃ν,l is a solution of L(l)g(t) = λ(ν, l)g(t), Qν,l is a solution of ∆l(C)f− =
χ(ν, l)f−.

It is clear from the definition that Qν,l ∈ C∞−l(G \K), and by the above
observations, it satisfies (a). From our definition, it is also clear that (b) is
equivalent to (3).

The proof of (c) is similar to that in the case of the trivial K-type, so
it will be omitted (see [9]). Note that (2) implies that Q̃ν,l(t) ∼ e−t(ν+ρ(l))

when t 7→ ∞, therefore Qν,l(exp(tH0)) ∼ e−(ν+ρ) when t 7→ ∞. This fact
allows us to prove (d) as in the case of l = 0.

In order to see (e), we first note that since if f ∈ C∞c (G/K, τl), so is
Lx−1f , then it suffices to see that∫

G
Qν,l(y)(C − λ(ν, l))f(y) dy = −2νc(ν, l)f(e).

The left-hand side equals∫ ∞

0
Qν,l(at)(C − λ(ν, l))

∫
K
τl(k)f(kat) dk δ(t) dt.
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If f ∈ C∞c (G/K, τl), then f l(at) :=
∫
K τl(k)f(kat) dk is a τl-radial function

on G. Hence we can replace C by its radial part to obtain∫ ∞

0

(
δ

1
2 (t)Qν,l(at)δ

1
2 (t)∆l(C)f l(at)− δ

1
2 (t)∆l(C)Qν,l(at)δ

1
2 (t)f l(at)

)
dt.

Now using the radialization (6) and arguing as in [9, pp. 1225], we obtain
that the above is equal to∫ ∞

0

d

dt

(
δ(t)Qν,l(exp(tH0))

d

dt
f l(at)− δ(t)

d

dt
Qν,l(exp(tH0))f l(at)

)
dt.

Therefore, looking at the asymptotic behavior as t 7→ 0, and as t 7→ ∞,
we obtain that the above integral equals limt7→0+ δ(t) d

dtQν,l(exp(tH0))f l(e).
Then, using (d) we are done. �

4. The residues of the resolvent kernel.

Let R̃(λ(ν, l)) denote the kernel operator with kernel Kν,l(x, y) :=−Qν,l(x
−1y)

2νc(ν,l)

and let R(λ(ν, l)) denote the resolvent of C acting on L2(G/K, τl). By
Theorem 3.4, if Re ν > ρ, then R̃(λ(ν, l)) = R(λ(ν, l)).

Since ν 7→ Kν,l is defined also for Re ν ≤ ρ, we are interested in R̃(λ(ν, l))
acting on C∞c (G/K, τl) as a meromorphic continuation of R(λ(ν, l)). In the
next theorem, we will give a description of the singularities of R̃(λ(ν, l)).

Theorem 4.1. R̃(λ(ν, l)) has simple poles lying at ν = ν±k,l with ν−k,l =
−|l| − n − 2k, k ∈ N0, and ν+

k,l = |l| − n − 2k, for k ∈ N0 such that
|l| − n − 2k ≥ 0. If ν is a pole and we set, for f ∈ C∞c (G,K, τl), Tν(f) :=
Resz=ν R̃(λ(z, l))(f), then Tν(f) = p(ν) f ∗ Φ̌ν,−l.

Proof. We know that Φν,l(g) is everywhere holomorphic as a function of ν.
Hence, using (a) and (b) of Theorem 3.4, we find that the poles of Kν,l are
precisely the zeros of 2νc(ν, l).

Furthermore, it is easy to see from (4) that the zeros of c(ν, l) are at
ν = ν±k,l, as in the statement of the theorem. On the other hand, we have

that |ν+
k,l| < |ν−0,l|, when |l| > n, so that ν+

k,l is defined. Hence Q−ν,l

2νc(−ν,l) is
analytic at ν±k,l. Thus, for f ∈ C∞c (G/K, τl), using Theorem 3.4(b), we get
that if ν is a pole, then

Resz=ν R̃(λ(z, l))(f) = p(ν) f ∗ Φ̌ν,−l,

where p(ν) = −Resz=ν(2νc(ν, l)c(−ν, l))−1. �

Now we want to study the image of these operators, and in order to do
this, we will introduce certain irreducible representations of K, for n > 1.
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For p, q ∈ N0, we denote by Vp,q, the set of harmonic polynomials in
z ∈ Cn of bidegree (p, q), and define on this space the action of K given by

τl,p,q

([
A 0
0 y

])
f(z) = yq−p+lf(tzA).

Proposition 4.2 ([2, § 2]). Let τ be an arbitrary K-type which contains
the M -type σl. Then there exist p, q ∈ N0 such that τ is equivalent with Vp,q.

Actually, if we put Fp,q(z) = zp
1z

q
1 2F1(−p,−q, n − 1,−(|z2|2 + · · · +

|zn|2)/|z1|2) then Fp,q ∈ Vp,q, and it is easy to see that τl,p,q(X)Fp,q =
σl(X)Fp,q for X ∈M .

For any P ∈ HomM (Vp,q,Hl) and ν ∈ a∗c we can define a K-intertwining
operator from Vp,q to H l,ν

P by L(P, f, ν)(g) = e−(ν+ρ)H(g)P (τl,p,q(κ(g)−1)f),
for f ∈ Vp,q (see [13, 8.11.4]). Furthermore, since [τl,p,q : σl] = 1, we have
that f 7→ L(P, f, ν) is an injective K-intertwining operator.

Let P denote the linear map from Vp,q to C defined by P (f) = f(1, 0, . . . ,
0). It is clear that P ∈ HomM (Vp,q,Hl), and then we have the related ho-
momorphism L(P, f, ν). Let Ṽp,q ⊂ H l,ν

P denote the image of Vp,q under this
homomorphism and let A(w, l, ν) : Hν,l

P 7→ H−ν,l
P denote the standard inter-

twining operator, where w = diag (−1,−1, 1, . . . , 1) ∈ K is a representative
of the nontrivial element of W .

In particular, from [2, § 3] we have that

A(w, l, ν)L(P, Fp,q, ν) = (−1)p+qcτl,p,q
(σl, ν)L(P, Fp,q,−ν)

where cτl,p,q
(σl, ν) is given by

cτl,p,q
(σl, ν) =

kΓ(ν)
∏p−1

j=0(ν − n+ l − 2j)
∏q−1

j=0(ν − n− l − 2j)

Γ(ν+n−l+2p
2 )Γ(ν+n+l+2q

2 )
.

If ν 6= 0, let Dl
ν = {(p, q) ∈ N2

0 : cτl,p,q
(σl, ν) = 0}. If (p, q) ∈ Dl

ν , it is
clear that L(P, Fp,q, ν) ∈ KerA(w, l, ν) which is a G-module. Hence Ṽp,q ⊂
KerA(w, l, ν), and moreover, by Frobenius reciprocity and Proposition 4.2
we have that

KerA(w, l, ν) = ⊕(p,q)∈Dl
ν
Ṽp,q.

It is easy to see that

Dl
ν−k

=
{

(p, q) ∈ N2
0 : p ≤ k +

l + |l|
2

, q ≤ k +
|l| − l

2

}
,

and therefore KerA(w, l, ν−k ) =
∑

(p,q)∈Dl

ν−
k

Ṽp,q is a finite dimensional (g,K)-

module. It is clear that its restriction contains τl = τl,0,0.

For ν = 0, since we know that c(ν, l) has a pole, we can consider the
normalized intertwining operator B(w, l, ν) = Γ(ν)−1A(w, l, ν); now, since
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Γ(ν)−1cτl,p,q
(σl, ν) is holomorphic at ν = 0, then as in the other cases, we

have that KerB(w, l, 0) =
∑

(p,q)∈Dl
0

Ṽp,q, where

Dl
0 =

{
(p, q) ∈ N2

0 : Γ(ν)−1cτl,p,q
(σl, ν)|ν=0 = 0

}
.

We note that since ν = 0 is a pole, then |l| − n = 2k with k ∈ N and one
can verifies that

Dl
0 =

{
(p, q) ∈ N2

0 : p ≤ k =
l − n

2

}
, if l > 0,

Dl
0 =

{
(p, q) ∈ N2

0 : q ≤ k =
−l − n

2

}
, if l < 0.

It is well-known that H l,ν
P is equivalent to H l,−ν

P
and the intertwining

operator is R(w), where R is the right regular representation of G. It is
also known that if A(P , P, σl, ν) denotes the standard intertwining operator
from H l,ν

P to H l,ν

P
, then A(w, l, ν) = R(w)A(P , P, σl, ν) (see [5, VII §4]).

Let V (µ, l) denote the image of the residue of R̃(λ(ν, l)) at ν = µ, and
V (µ, l)K the space of K-finite vectors in V (µ, l). Now, using a generalization
of Helgason’s theorem ([10, §7]), we can give a very explicit description of
V (µ, l)K .

Theorem 4.3. If µ is a pole of R̃(λ(ν, l)), then V (µ, l)K is a (g,K)-module.
This module is of finite dimension only in the case when µ = ν−k,l for k ∈ N0.
The modules corresponding to µ = ν+

k,l are equivalent, as (g,K)-modules, to
holomorphic discrete series representations. Moreover, in the case when
µ = ν−k,l and µ = 0 these (g,K)-modules are isomorphic to KerA(w, l, ν−k,l)
and KerB(w, l, 0) respectively.

Proof. If f ∈ C∞c (G/K, l) and x ∈ G, by Theorem 4.1 we have that:

Tν±k,l
(f)(x) = p(ν±k,l) f ∗ φ̌ν±k,l,−l(x)

= p(ν±k,l)
〈
πν±k,l

(x−1)πν±k,l,l
(f)1ν±k,l,l

, 1ν±k,l,l

〉
.

Hence, V (ν, l)K is isomorphic to the (g,K)-module generated by 1l,ν , so
we will now describe this module.

In order to do this, we will give a condition on ν for 1l,ν to generate a
finite dimensional (g,K)-submodule of H l,ν

P .
For λ ∈ h∗c we define

m0 = λ(iX) and m1 =
2〈λ, α〉
〈α, α〉

,
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where as in [10, 4.4], X =
[−1

2
n−1

Id

−1

]
.

If λ|t+∩k1
= 0, then by [10, Prop 7.1] , λ is dominant integral if and only

if m0 and m1 are integers such that |m0| ≤ m1 and (−1)m0 = (−1)m1 .
We note that {α, ε1, . . . , εn} is a basis of h∗c , then straightforward calcu-

lation shows that if λ = a1α+
∑n

i=2 aiεi ∈ h∗c , then λ|t+∩k1
= 0 if and only

if a2 = a3 = · · · = an. Hence, if we denote β =
∑n

i=2 εi, and λ = a1α+ a0β,
then we have that m0 = −2a0 and m1 = 2a1.

On the other hand, by [10, Thm. 7.2], λ = a1α+a0β, is a highest weight
of a finite dimensional irreducible representation of G, whose restriction to
K contains the one-dimensional K-type χm0 with multiplicity one.

Furthermore, in the proof of the theorem, we can see that this represen-
tation is equivalent to ImA(P , P, σl, µ), a subrepresentation of H l,ν

P
, where

µ = λ|a + ρ.
Therefore, 1l,ν generates a finite dimensional G-submodule of H l,ν

P (with
highest weight λ) if and only if ν = −λ|a − ρ, where λ = l

2β + (|l|+ 2k)α
2 .

We note that because of our identification, ν = νk,l, as we want to show.
On the other hand, we have proved that KerA(w, l, ν−k,l) is a finite dimen-

sional submodule of H
l,ν−k,l

P which contains 1l,ν−k,l
. We also know that H

l,ν−k,l

P

is equivalent to H
l,−ν−k,l

P
, and it has only one irreducible representation ([5,

p. 273]). Therefore, it is clear that the (g,K)-submodule of H
l,ν−k,l

P generated
by 1l,ν−k,l

is KerA(w, l, ν−k,l).

We will now study the case when ν = ν+
k,l. We begin by observing that

in the rank one case, [11, Thm. 5.1] states that if λ ∈ a∗c , λ = ν.α2 , with
ν ≥ 0, then Φλ,l belongs to L2(G/K, τl) if and only if

〈−λ− ρ(|l|), α〉
〈α, α〉

∈ N.(8)

In particular, there exists λ ∈ a∗c such that Φλ,l belongs to L2(G/K, τl) if and
only if |l| > n. We note that (8) means that −ν− (n− |l|) = 2k with k ∈ N,
or equivalently, ν = ν+

k,l for some k. Hence the (g,K)-module generated by

1l,ν in H l,ν
P is infinitesimally equivalent to a discrete series representation if

and only if ν = ν+
k,l

Moreover, Shimeno proves in [11, Thm 5.10], that these are actually
infinitesimally equivalent to holomorphic discrete series representations.

For ν = 0, it is known that if H l,0
p is reducible, it is a sum of two inequiv-

alent irreducible representations. These representations are called limits of
discrete series. Since they are inequivalent and B(w, l, 0) is an intertwining
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operator, it is easy to see that KerB(w, l, 0) is the (g,K)-submodule of H l,0
P

generated by 1l,0, concluding the proof. �

Remark 4.4. We wish to point out that every (irreducible) finite dimen-
sional, discrete series, or limit of discrete series representation of G, con-
taining a one-dimensional K-type can be seen as a residue of the resolvent
kernel. That is, if (π,Hπ) is a finite dimensional representation of G con-
taining a one-dimensional K-type χm, then there exists a line bundle over
G/K such that this representation is isomorphic to the residue of the mero-
morphic continuation of the resolvent of the Casimir operator acting on that
line bundle. In fact, if λ is the highest weight of π, then by [10, Thm 7.2]
λ = aα + bβ, where a = |b| + k. Then by the above, Hπ is isomorphic to
Vk,2b, the image of the residue of R(λ(ν, 2b)) at ν = ν−k,2b.

In the case that (π,Hπ) is a discrete series, this implies that Φλ,m be-
longs to L2(G/K, τm), and then by [11, Thm 5.1] λ = ν+

k,m. Hence, Hπ is
isomorphic to V (ν+

k,m,m).
Finally, if (π,Hπ) is a limit of discrete series containing the one-dimensional

K-type τm, it means that Hm,0
P is reducible, and so m ≡ n (2) and

|m| > n ([5, p. 621] ). Thus, Hπ is isomorphic to the image of the residue
of R(λ(ν,m)) at ν = ν+

|m|−n
2

,m
.

Remark 4.5. We observe that ν = 0 is not a pole of the resolvent kernel
R̃l(λ(ν, l)), in the case when l = 0.

We will now use the Weyl dimension formula to calculate the dimension
of the representation V (ν−k,l). The fundamental weights of gc are Λj =
ε1 + · · · + εj , 1 ≤ j ≤ n, hence α = Λ1 + Λn and β = Λn − Λ1. Hence,
we are interested in the dimension of the gc-module asociated to Λk,l =
l
2β +

(
|l|+2k

2

)
α =

(
|l|−l

2 + k
)

Λ1 +
(
|l|+l

2 + k
)

Λn. Then we have that

dim(Vk,l) =
∏

1≤i<j≤n+1

〈Λk,l + ρ, εi − εj〉
〈ρ, εi − εj〉

=
∏

1<j≤n

|l|−l
2 + k + j − 1

j − 1
·

∏
1<i≤n

|l|+l
2 + k + n+ 1− i

n+ 1− i

· 1
n

(
|l|+ l

2
+
|l| − l

2
+ 2k + n

)
and so

dim(Vk,l) =
( |l|−l

2 + k + n− 1
|l|−l

2 + k

)
.

( |l|+l
2 + k + n− 1

|l|+l
2 + k

)
.
|l|+ 2k + n

n
.
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5. The case G = SU(1, 1).

We will consider now the case when G = SU(1, 1). We shall see that the
results will be entirely similar to those in the case of SU(n, 1), n > 1, but
we shall analyze this case separately, because the notation and some of the
definitions are different.

We have that θ(X) = X
t and g = k + p, where

k =
{[

it 0
0 −it

]
: t ∈ R

}
and p =

{[
0 b

b 0

]
: b ∈ C

}
.

If H0 =
[

0 1
1 0

]
and a = RH0, then M = {±I} and in this case, K̂ =

{τl : l ∈ Z} and M̂ = {1, ε}, where ε denotes the nontrivial character of
M . Therefore, for each ν ∈ C we have two principal series representations,
Hν,+ and Hν,− corresponding to 1 and ε, respectively and τl|m = I if and
only if l ≡ 0 (2), τl|m = ε, otherwise. Now, Proposition 2.2 may be stated
as follows:

∆l(C) =
d2

dt2
+ 2 coth t

d

dt
+ l2(cosh t)−2.(9)

Furthermore, Proposition 3.3 becomes

u(t)l ◦ (∆l(C) + ρ2) ◦ u(t)−l =
d2

dt2
+ (coth t+ (1− 2l) tanh t)

d

dt
+ ρ(l)2,

where u(t) = 2 cosh t.
We now define a differential operator on R+, as in Proposition 3.3:

L(l) =
d2

dt2
+ (coth(t) + (1− 2l) tanh(t))

d

dt
.

As in the case when n > 1, one can relate the spherical functions Φν,l with
the solutions of L(l)f = (ν2−ρ(l)2)f , where ρ(l) = 1− l (see §2.1), and find
that they are given by

Φν,l(exp(tH0)) = (2 cosh t)−lφ
(0,−l)
iν (t).

In the same way, we can see that if we take the solution in (2) of the above
equation for n = 1 and ν /∈ −N, we get the following eigenfunction of ∆l(C)
on A+:

Qν,l(exp tH0)

= (2 cosh(t))−(ν+ρ(l))
2F1

(
1− l + ν

2
,
1 + l + ν

2
, 1 + ν, cosh(t)−2

)
,

which satisfies

(2 cosh t)lΦν,l(exp(tH0)) = c(ν, l)Q−ν,l(at) + c(−ν, l)Qν,l(at)
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where

c(ν, l) =
21−l−νΓ(ν)

Γ(ν+1+l
2 )Γ(ν+1−l

2 )
.

With all this in place, we can prove Theorem 3.4 in our case, obtain-
ing in the same way the meromorphic continuation of the resolvent kernel
Kν,l(x, y) = −Qν,l(x

−1y)
2νc(ν,l) , hence we have the following theorem, which gives

results analogous to those in Theorem 4.1 and Theorem 4.3 in the present
case.

Theorem 5.1. R̃(λ(ν)) has simple poles lying at ν = ν±k,l, where ν−k,l =
−|l| − 1 − 2k, with k ∈ N0, and ν+

k,l = |l| − 1 − 2k, with k ∈ N such that

|l| − 1− 2k ≥ 0. If ν is a pole, Resz=ν R̃(λ(z))(f) = p(ν) f ∗ φ̌ν,−l.
Moreover, the rank of the residue of R̃(λ(ν)) at ν = ν−k,l is a finite dimen-

sional (g,K)-module. The residues at ν = ν+
k,l are infinitesimally equivalent

to holomorphic discrete series representations.

Proof. Since the proof can be done as in the general case, we will only prove
the representation theory assertion. As in the general case, we have that
φν,−l(g) = 〈πν,l1l,ν , 1l,ν〉, where 1l,ν(kan) = a−(ν+ρ)τl(k)−1 belongs to Hν,+

(resp. Hν,−) if l is even (resp. l odd).
If we denote k(θ) =

[
eiθ 0
0 e−iθ

]
, then τl(k(θ)) = e−ilθ, and therefore

1ν,l(k(θ)an) = a−(ν+ρ)eilθ. On the other hand, since g is isomorphic to
g̃ = sl(2,R), for each ν ∈ C, 1ν,l can be identified with the function of
SL(2,R) defined by

φ−l

([
e−it 0
0 e−it

] [
e2it e2itx
0 1

] [
cos θ sin θ
− sin θ cos θ

])
= e(ν+1)te−ilθ.

This function belongs to H(ν) = {f : Sl(2,R) 7→ C : f(ank) = aν+1f(k),
f|K ∈ L2(K)} (see [7, p. 116]) and the (g,K)-modules of Hν,± generated by
1ν,l are isomorphic to the (g̃,K)-modules of H(ν) generated by φ−l.

We note that the difference in the sign (with [7]) is due to the different
choices in the Iwasawa decompositions.

We thus have that Vν−k,l,l
'
|l|−1+2k∑

j=1

〈φ−(|l|+2(k−j))〉, and therefore Vν−k,l,l
is

finite dimensional. If ν+
k,l 6= 0, then we obtain the discrete series:

Vν+
k,l,l

'



∑
j≡l (2)

j≤−l+2k

〈φj〉 l > 0

∑
j≡l (2)

j≥−l−2k

〈φj〉 l < 0.
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Finally, we can see that if ν = 0 is a pole then l is odd, and therefore we
obtain the so called ‘Mock discrete series’ or limit of discrete series repre-
sentations:

V0,l '



∑
j≡l (2)
j≤−1

〈φj〉 l > 0

∑
j≡l (2)

j≥1

〈φj〉 l < 0

thus concluding the proof. �
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