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In this paper we use the method of stochastic integral due
to Gaveau to construct the heat kernel for the quaternionic
Heisenberg groups, and then follow the line of Coulhon et al.
to deduce the uniformly boundedness of the Riesz transforms
on these nilponent Lie groups.

0. Introduction.

As the heat kernel plays an important role in many problems in harmonic
analysis, an explicit usable expression is very much desirable.

An explicit expression for the heat kernel for the Heisenberg group H" =
C" x R was obtained by Hulanicki [9] and by Gaveau [7]. Gaveau [7] also
obtained the heat kernel for free nilpotent Lie groups of step two. Cygan [4]
obtained the heat kernel for all nilpotent Lie groups of step two. But neither
Gaveau’s expression for free nilpotent Lie groups nor Cygan’s expression for
arbitrary nilpotent Lie groups of step two were as explicit as in the case of
Heisenberg groups.

The Hulanicki-Gaveau’s formula for the heat kernel for the Heisenberg
group has many interesting applications: Hueber [8] et al. used it to describe
the Martin boundary corresponding to the sublaplacian of the Heisenberg
group, Garofalo [6] et al. used it to study the regularity of boundary points
in the Dirichlet problem for the heat equation on the Heisenberg group,
while Coulhon [3] et al. used it to show the uniform boundedness of Riesz
transforms on the Heisenberg group. Although these applications are very
impressive, they depend heavily on explicit expressions for the heat kernel.
All of these works motivate the following question: Are there other nilpotent
Lie groups for which the expressions for the heat kernel are as explicit as in
the case of the Heisenberg group?

The first aim of this paper is to look for such formulae for the heat kernel
for the quaternionic Heisenberg groups. These groups are defined by replac-
ing the complex field C by the field of quaternions H in the definition of
H". More precisely, we make H” x R? into a nilpotent Lie group of step two
by suitably defining the group operation. On this group there is a natural
sublaplacian with an associated heat kernel. We use the method of Gaveau
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[7], i.e., the stochastic integral, to calculate the heat kernel for the quater-
nionic Heisenberg group and obtain a closed form expression which closely
resembles that of the heat kernel for Heisenberg groups. As we know, apart
from the standard Heisenberg group, the quaternionic Heisenberg group is
the only nilpotent Lie group on which an explicit formula for the heat kernel
has been obtained up to now.

The second aim of this paper is to use the explicit formula for the heat
kernel to study the uniform boundedness of the Riesz transforms on the
quaternionic Heisenberg group. That is, the Riesz transforms are bounded
on LP spaces with norms independent of the dimension of the group. On the
standard Heisenberg group this problem was addressed by Colhon [3] et al..
We apply their method to the quaternionic groups and by overcoming con-
siderable difficulties in the process of calculation, finally prove the uniform
boundedness of Riesz transforms on the quaternionic Heisenberg group.

We hope that we can use this explicit expression of the heat kernel to solve
other problems in the harmonic analysis on the quaternionic Heisenberg

group.

1. Prelimilaries.

We identify the division ring H of quaternions with R x R3. For p =
(z0,%),q = (yo,y) € H, the quaternionic multiplication is defined as:

Pa = (z0,%)(Y0,y) = (Toyo — X.¥, Toy + yoX + X X y),

where x.y and x X y are the inner and exterior product of x and y respec-
tively. For p = (x9,x) € H, we use the notations xp = Rep, x = Imp. The
conjugate of p is denoted as p = (29, —x) and |p| = (p.p)'/? is the norm of

p.
The product space H" x R? together with the multiplication

(pla o 7p1’17u)‘(q17 ce. 7qnav)

n
= (pl +q17---apn+qn7u+v+2zlm(qr~pr)>
r=1

constitutes a Lie group, called the quaternionic Heisenberg group, and de-
noted by HH™ (Allcock’s notation [1]).
We know [2] that if

Pr = (xr‘Oer) = (xr07 (xrlal‘r%x?ﬂ)) S Hn’

for 1<r<n and u= (uy,us,us) € R?,
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then the vector fields

X0 = &(zo - 2167«1831 - 2367«28(22 - 2337«3((;)%7
X1 = &Zl + 22,9 88 + 22,3 88 2;1372(;;,
Xpo = 822 — 2%3 88 + 220 88 + 221 663
Xr3 = 8:(3,.3 + 22,0 831 — 2w 86 + 2z, 663

form a basis of the Lie algebra of HH". The commutators of these vector
fields satisfy

0
[Xro, Xsl] = 4571387?,61 = [XT'27 Xs3]7

0
Xr 7Xs =4 rs§o._ XraXs ;
[Xro, Xso] = 46 By [Xr3, Xs1]
0
XraXs :47‘87:X7’7XS
(X0, Xs3] = 46 s (X1, Xoo]

with all other brackets equal to zero. So the quaternionic Heisenberg group
is a nilpotent Lie group of step two.

Following the case of the Heisenberg groups [5], we introduce on HH"
the group {d; : 0 < ¢t < oo} of dilations defined by

de(p,u) = (tp,tQu) = (tp1,. .. ,tpn,tzu).

These dilations satisfy the distributive law

6t((p7 u)'(qa V)) = 6t(p7 U)-(St(q, V).
We also define the norm function on HH™ by

1/4

n 3 2 3
(p,u)| = (Jp/* + [u?)/* = (ZZWMZ) +D U ’
7j=1

r=1 =0

which satisfies

Let e = (0,0) be the identity element of the group HH™.
We know [5] that Kohn’s sublaplace operator on the quaternionic Heisen-
berg group is defined as

n 3
2-Yyow

r=1 =0
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A simple calculation shows that

62
A= Z Z SU + 1 Z Z <37r0 8557“2(9@% i 8557@81”)

r=11i=0 r=1i=1
3 82
+4r§:11§%x3128 2+4Z Ej;)x” <6xm8uk 8.%'rkauj>’

where (i, 7, k) means the cyclic permutation of (1,2, 3).

2. The heat kernels of the quaternionic Heisenberg groups.

In this section we shall use the method developed by Gaveau [7] and Hulan-
icki [9] to derive an explicit expression of the heat kernel of the quaternionic
Heisenberg group. Firstly we have:

Lemma 2.1. The diffusion of the infinitesimal generator %A starting at e
1$ the process

9(s) = (wri(s),u;(s))1<r<n, 0<i<3, 1<j<3,
where (x,i(8))1<r<n, 0<i<3 are 4n standard Brownian motions, and

5) =2 Z/o Trodyj(t) — Tpjdaro(t) + Trpday () — xrida, ().

Proof. As in [7], the projection on H" = R*" of the diffusion to be found is

the diffusion of the infinitesimal generator 3 Z Z 2.2 Which is given by
r=14=
4n standard Brownian motions (x1(s),. xn(s)). Hence it is sufficient to

compute the stochastic differentials duj(l <7 <3).
We observe that the matrix of principal symbols of A is given by

Iy ... 0 A
G — : o :
0o ... I A,
A, ... A, C
where, for 1 <r <n,

—2wr1 —2Tp2  —2%3
A — 2270 2xr3  —2@p0
" —2xr3 2Ty 22
2Tpp —2mp 2%

and

= (4271: ’Xr’2> 13
r=1
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In these expressions, I denotes the identity matrix of order k. Let

Iy ... 0 A
R
0 ... Iy A,
It is obvious that
tyy =@,

and we know that [7] the matrix ¥ gives stochastic differentials of the dif-
fusion %A:

Iy ... 0 A4
(dx1,...,dxn,duy, dus, dug) = (dx1,...,dxy) :

It is easy to obtain

n
du; = 2 Z(xr[)dxri — Tpidyo + $rjd$rk - xrkdxrj)-

r=1
Let

277 s

be the equation of propagation of heat, where s(> 0) denotes the time.
Assume that ps(e, g), for g € HH™, be the heat kernel with pole at e. From
the definition we have

ps(ea g)dg = Prob (gw(s) € dg),

where dg is the left-invariant measure on HH™. Let

1A 0

y:(YI7-~~7Yn):(3/107---;9137~--7yn07---7yn3)

and v = (v1,v2,v3) be the dual variables of x = (x1,...,%,) and u =

n 3
(u1, ug, u3) respectively. We write [x|? = > Y 22, and

r=14=0
0 V1 V2 v3
—v 0 v —v
a=4 1 3 2 ,
—Vy —U3 0 (%1
—7U3 (%) —V1 0
A = diag(a,...,a).

~—

n

If X is a skew-symmetric matrix of order 4n and w € R*", we write

1 2x2\ ! x\!
Ys(X,w) =exp |— —\W\Q—I—tw Iy — i w | | det I4n—s—
s 472 27
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where ‘w is the transpose of the vector w.
With these preparations, we have:

Theorem 2.2. The Euclidean Fourier transform of ps(e,g) is given by the
formula

ps(e, )(y,v)

= (2rs)~2" / exp (ﬁiim_ [x? ) H Vs < X)

Rin r=11i=0
Proof. By the definition, we have

ﬁs(ea -)(Ya V)
— ridry s 9 9 d d
/R4n+gexp ZZ@/ T +ZUJUJ ps(e, (x,u))dxdu

r=1 =0

n 3 3
= Fy | exp \/7 Z Z ml'm'(s) + Z ’Uj’LLj(S)
=0 i=0 j=1

= Ep (eXP \/jl Z Z yri$ri(s))

r=1 i=0

-Ey | expv— ZUJUJ |, 2ri(8) = @i | s

where Eo(...|zi(s) = z;) denotes the conditional expectation given the
xri(8). So it is sufficient to evaluate

3
Ep | exp \/—IZvjuj(s) |zri(S) = Tpi
j=1

We express the 4n standard real Brownian motions as the Fourier series with
independent Gaussian variables as their coefficients, i.e., when s # 27,

_ Sg('r’i) S 1 (r4) '(ri) o
xri(s) = o + mzl p—" < (cosms — 1) — &, smms) ,

where ffﬁi) and 5%7%) are one-dimensional standard normal distributions
which are independent of each other, and z,;(27) = U,;.
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From Lemma 2.1 we get immediately

_ (ri) _ Uri\ _ gi) (o) _ Uro
20 42 Lo (e - ) e (e - 32)

iy _ Uk \ _ cow) (/i) _ Uri
e (6 - ) e (- 2]
(exp FZUJ'LL] 27) | |xri(27) = Uy

I (expm{ihi{ (-%)

el r7) =
m < 7T +€ ’ < ﬁ)
e (669 - 22 | owten =02

In the last expression, all conditional information is exhausted, so the con-
ditional expectation is actually reduced to the expectation. Hence it is
sufficient to consider the terms

ner(t 2 B e ) (e )

wi) 'tk _ Urk N _ comy (i) _ Uri
o -2 e - )

Setting §;l(ri) = ;7(1”) Ui we first integrate with respect to 5 , which

Thus

\/77
yields
_ M)
where
r0 ”(r0
Mv(n) 0 U1 Vg V3 &rg )
(r) _ /’L’S:Ll) .y —Uq 0 U3 —9 g;f”) - f”(r)
Hon” = ufff) = N T 5:,5’”2) =a
M%S) —v3 V9 -1 0 5;;57‘3)

written briefly as .
The skew-symmetric matrix A is more simple than that in [7], which
makes the calculation from now on easier than that in [7], and causes the
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heat kernel of the quaternionic Heisenberg groups to be more simple and
more concrete than those of the general nilpotent Lie groups of step two.

Thus
n 3 .
SN WS = (Apy,, Aply) = —(A%u,, ).
r=1 7=0
Let B = -1; A% asin [7]. Then we have

1 1 U, U,
T = Z1(Be" ¢y — no_Ym o Ym e’
(27‘(‘)2” /R4" exp 2 |:( fma m) < m \/77_’ m \/77_>:| m
Unl> 1
= exp (—' 27r| + %tUm(IAm - B)_lUm> /\/det(Lln - B).

3
B (o0 (VI 032 Y an(e) | () = 2 st< )

Thus the proof of Theorem 2.2 is finished.
We may explicitly give the diagonalization by 2 x 2 block matrices of the

skew-symmetric matrix A as follows: Let p = \/v% + v% + v%, o= \/U% + v%,

and set
1 0 0 0
0 11w 1 —o? 1 0
}/b — 0 ayi = - ! 7Y2 - sy 13 — — _
pl v2 po V1V o V3
0 U3 V103 V2

It is easy to see that these vectors are orthonormal and
aYy = —4pY1,aY1 = 4pYy, aYs = —4pY3,aYs = 4pYs.

Now we introduce an orthogonal matrix w = (Yp, Y7, Y2, Y3). It is readily

seen that
waw = diag << —ap 0 )24y 0 =p.

Furthermore, if we set

Q = diag(w,...,w),
——

n

QAQ = diag <4p 0 )\ —4p 0 = P.

2n
Now we can give the explicit expression of the heat kernel:

then
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Theorem 2.3. The heat kernel on the quaternionic Heisenberg group HH™
s given by

ps(X, u) = p8(€> (Xv u))

= (2775)2"(277)_(4”+3)/ exp(—(vV—1u.v + |x|>pcoth2sp))
R3

2 2n
| = p dv.
sinh2sp

Proof. After the orthogonal transformation represented by matrix €,
Theorem 2.2 can be rewritten as

(D psle, )y, v)
= (27s)™ 2" ex Tpi — ﬁ
- (2 ) /R4" p <Fzzym i )

r=1 i=0
0o -1
1 2p?
. H exp | — —|X|2 + tXQ <I4n - 522> tQX
e s 4mem

P —1
- det (Lm 2 ) dx.
2mm

It is easy to verify that

sP 452 p? n
det (Lm — 27rm> = <1 + 71'2m2) ,

tOx = (fwxy, ..

Xn),
1 > ’
(th’f')(% + (thr)% = ? p xfrO + (Z UZ:CTZ) )

1 V10V2 V103 2 —pU3 2 2
=3 <_O'$r1 + —Tr2 + 7377‘3) + P Tro + Ll‘ri}
g g g g

p .
1 [ 3 3 2
= p7 P2 Z»’C?«Z - (Z Uﬂm) )
i=1 =
and hence

> (wxn)f =3 ol ['Ox® =[x

1=0 =0
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From the expression of matrix P we have
-1
1 9 4 52 P2 ‘
- - Ql Iy — —— Q
exp [ ( X[ + ' ( =
1 — s2p? !
= exp {S ; <|X7~|2 + txrw (_[4 — 47(_277?/2> th’l”

r=1 =0
since
U a w2 \ 7!
= 1
sinhu H ( + 772m2) ’
m=1
and
> 2u
thuy = —
cothu = = + > TZmZ -2’
m=1
therefore
[ele] —1 —1
1 2p? P
H exp | = [ —|xPP+xQ (I - i tOx | | det (I — =
ke s 472m? 2m

|X2(1 2spcosh2sp) 25p ™"
=exp [ — (1 — 2spcosh2s .
P 2s peoshasp sinh2sp

Substituting this equality into the right-hand side of (1) and taking the
Euclidean Fourier transform, we obtain at once the desired result.

3. The Green functions of the quaternionic Heisenberg groups.

It is known that the Green function can be derived from the heat kernel by
the formula
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So using Theorem 2.3, the Green function of the quaternionic Heisenberg
group can be written as

+o0

G(x,u) = /ps(e, (x,u))ds
0
+00
= (27) (07 +3) / s_znds/exp (= (V=1v.u+ |x[*pcoth2sp))
0 R3
() e
sinh2sp i v

First by performing the change of variables v;—sv;, then it follows that
p—sp, and

G(x,u)
+o0

1
= (27)(6n+3) / 3_(2”+3)ds/ exp {8(\/—1v.u+ ]x|2pcoth2p)}
R3

0

2 2n 3
' <sinh2p> Hdvj

=1

= (27r)_(6”+3)F(2n +2) / (|x[2coth2p + v/ —lv.u)_(2”+2)

R3
3
2,0 2n
. duv.
( sinh2p) H vp

Jj=1

where I'(.) is Euler’s Gamma-function.

In Euclidean space R3, we use polar coordinates and let the positive
direction of the z-axis coincide with that of vector u, i.e., we set

u = |u/(0, 0, 1), v = p(sinfcosy, sinfsinp, cosf).

Thus
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—+00

2n
_9n —(6n+3) 2 p d
2"(2m) F(2n+2)/p <sinh2p> p
0

2 pm
: / / (1x? pcoth2p + v/—1p|u|cosd) =" 2sinfdfd¢
o Jo

o0 2n
_ 22n(27_r)—(6n+2) F(Qn + 2) /+ 1 1
2n+1 Jp sinh2p Vv—1|u|

[(Peothzp — V=Tl =) — (xeoth2p + v=Tul)~)] dp.

For n =1 it is easy to complete the last integration, and we obtain:

Proposition 3.1. The Green function G(x,u) of the quaternionic Heisen-
berg group HH" is

G(x,u) = 4(2m)~*(jx|* + [u]*) 72

Proof. When n = 1, performing the integral in the right-hand side of Equa-
tion (2) gives us

1
V—1lul[x|?
(Ix|2coth2p — v—T|u|)~2 — (|x|2coth2p + \/—llu\)_ﬂ

= 4(2m) S (x* + |u?) 72

G(x,u) = (2m)8

p=+o0
p=0

For general n € N, there is some difficulty to evaluate the integration in
Equation (2), while the above proposition and the corresponding results for
the Heisenberg groups [5] motivate us to pose:

Theorem 3.2. The Green functions G(x,u) of the quaternionic Heisenberg
groups HH" are

G(x, ) = ea(lx|* + [ul?) =Y,

where
el = d(n+ 1)(n +2) / (1] + Juf? + 1)~ d(x, ).
HH™

The method of proof is completely analogous to that for the Heisenberg
groups [5].
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4. Riesz transforms on the quaternionic Heisenberg groups.

In this section we shall study the uniformly boundedness of the Riesz trans-
forms with respect to the dimensions of the quaternionic Heisenberg groups.

Stein [11] first studied the Riesz transforms on Euclidean spaces. After-
ward various authors investigated the Riesz transform on Riemannian man-
ifolds. Although the boundedness of the Riesz transform on every nilpotent
Lie group is well-known [10]. It was Coulhon [3] et al. who first showed the
uniform boundedness of Riesz transforms with respect to the dimensions of
the Heisenberg groups.

In our investigation there are many properties analogous to that in [3],
and for completeness we quote briefly these points. One part which differs,
however, is the so called “main estimate” in [3], so this part is presented in
detail.

4.1. The vector of the Riesz transforms. For the quaternionic Heisen-
berg groups, the skew-adjoint Riesz transforms are defined analogously to
that in [3] by

Ryi= XA V2 4 AY2X, 1<r<n 0<i<S3.
In [3] Coulhon et al. proved the following results:

Lemma 4.1. The skew-adjoint Riesz transform has the expression

Erif(xa u) = — Xm'pl(ev (ya v)>H(y7v)f(Xa u)d(Y7 V),

where

+oo
gy (%, 1) = /0 (G0 wa((y,v) 1) — F((x w)yly, v)) o

.
In fact, this formula is valid for every stratified Lie group.

Lemma 4.2. For every pe(1,400), there exists ¢ > 0 depending only on p,
such that

HH(y,v)Hp_)pSc, VneN, Y(y,v)eHH".
Lemma 4.3. There exists ¢ > 0 such that
| Xrip1ll o apny < ¢ ¥ne N, V1 <r<n, 0<i<3.

This follows from the fact that one can express the heat kernels for the
quaternionic Heisenberg groups HH™ as p?, then it is easy to verify that

PUKL, .. X, 1) = [ph(xy,.) * -k ph(Xn, )] (0).
For feCg°(HH") and (x,u)eHH", we define a vector field

Rf(x,u) = (Riof(x,u), ..., Rusf(x,u))
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and its Euclidean length

n 3 1/2
’ﬁf(}g u)’ = <ZZ ‘fim‘f(x7 u)’2> .

r=1 i=0

Let S™ be the unit sphere in the quaternionic Heisenberg group HH", i.e

= (21,...,2,) € H", w € R,

St = {h: (z,w) € HH"

As in [3], we can deduce that

~ oo 1
IRf(x,u)| = / ) /0 ZZ)\mepl (0¢(h))H ) £ (x, u)t*" B dtdo(h),

r=1 =0

where do’(h) is the surface element on S”, the \,; are dependent on f and

(x,u), and z z A2, = 1(we have also used the fact that H;, yv) = Hiyv))-

r=1i=0

Applying Holder’s inequality with respect to do, we get, for 1/p+1/q =1,
3)
[Rf(x, )|

+oo 3
Z )\erzpl 5t ))t4n+5dt
r=1 =0

[Hnf (%, W) 2o (do(n)) -

La(do(h))

n 3

After a rotation on S™(H", one can send Y > A\;X,; to Xjg, and it is
r=14i=0

clear that the heat kernel p;(d;(h)) is invariant under this rotation, hence

+oo M
(4) / S A Ko 6 ()
r=1 i=0 Li(do(h))
= ‘ X10p1 (5t(h))t4n+5dt
0 L4(do(h))

Via Lemma 4.2, the argument analogous to that in [3] implies that there
exists ¢(p) > 0 such that

() 10 f (%, W)l o (@ | 2y < @S2I | o (@s)-



THE HEAT KERNEL AND THE RIESZ TRANSFORMS 189

4.2. The main estimate. Let

+oo
®(h) = X10p1(8:(h))t*"2dt, hes™.
0
Theorem 2.3 gives us
pi(x,u)= 1/ exp {—(\ﬁv u+ |X|2pcoth2p)} 2p 2nﬁ du:
BT @m)ints s ' sinh2p g

3
Since X109 = 8%0 -> 23:11'8%1_, it follows that
i=1

1

(6) Xiop1(x,u) = (2n)on3

3
/ —2x19pcoth2p + 2v/—1 Z VT,
R3

Jj=1

9 2n 3
~exp{—(\/—1v.u+|x|2pc0th2p)}< P > Hdvj

sinh2p i
2
= W(—Fl(x, u) + vV —].F‘Q(}(7 u)),
where
Fi(x,u) = 3310/ exp{—(vV—1v.u + |x|*pcoth2p)}
R3
2 2n 3
: h2 ,
(sinh2p) pcot p]l;[l dvj,
Fy(x,u) = / exp{—(v—1v.u + |x|*pcoth2p)}
R3
2p 2n 3 3
. <Sinh2p> Z K H 4o
7j=1 7j=1
Thus
2 oe 4n+5
M) W) = o [ R + VIR W)
0
2

—®; +V/~1®5)(h).

" G
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Let h = (z,w) = (210, - - . , 2n3, W1, W2, w3)€S™. So we get

—+00
®(h) = Fi(6:(h))t"T5at
0

+oo
= 210/ / exp{—t*(v/—1v.w + |z|>pcoth2p)}
R3 Jo

20 \*" 4n+6 &
: th2pt ™ toat | | do;
<Sinh2p> peoriEp ]1:11 K

1 7 n
=_T <n_2|_ > 2’10/ (’Z\Qpcotth /v, ),4 7
R3 W

2 2n 3
: th2 dv;.
< sinh?2 p) peothiep ]1;[1 K

Taking the polar coordinates in R? as in the proof of Proposition 3.1, the
above function becomes

1 4 +o0o T 2T n
®1(h) = 51‘ ( n2+ 7) 210/ / / (|z|*coth2p + \/—1‘W‘COS€)74 2
0 o Jo

2 S
( P ) p~ 5 coth2psinddfdadp
sinh2p

22n An +7 oo p \r 1
- onT h2 S —
dnt+5 " < 2 )ZIO/O peos p<sinh2p> <.E1\w)

4n+5

- [(|z|2cosh2p— V/—1|wlsinh2p)~ %

— (|z|*cosh2p + \/—1|w|s.inh2p)_4 2

} dp.
On S™ we perform the change of variables given by |z|?> = cosy, |w| =

siny. Then

(8)
4nt5 4n45

(]z|2005h2,0 — v —1|w[sinh2p)” "2~ — (|z|2cosh2p + v —1|wlsinh2p)™ 2
= cosh™ (2p V- ¢) — cosh™ (2,0 +v-—1v)
= 2(4n + 5)vV—1cosh™ 2psmh2p¢ + O(|y)).

Noting that ‘WJ" = Ib‘lﬂbl < ¢, we obtain the inequality:

" dn +7
@1(1)| < 27 “(%)r( ) bl

“+o00 p —1/2
/ cosh™ 2psmh22p< - ) dp.
0 sinh2p
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Since % = 2cosh(20p) < 2cosh2p, with 0 < 6 < 1, we finally obtain an
estimation for ®;(h):

n dn+7 oo Zom
© e <2 (Ml [ o2y
0

dn+7

< e2'(2m)r ( ) |z10|B(n,n),

where B(n,n) is Euler’s Beta-function, since f0+oo cosh™" 2pdp =
22"=2B(n, n).

Now we begin to estimate ®y(h). This is different from the case of
the Heisenberg groups. In the present situation the method to evaluate
®y(h) is not analogous to that for ®;(h), so we record its details. Let
z} = (z11, 212, z213). Then

®y(h) = /0 m F(8¢(h))t*"dt
= _\/—71/0Jroo /R3 exp{—t*(v/—1v.w 4+ |z|>pcoshp)}
( 2p )2nt4"+6§:v-zl-dtﬁdv4
sinh2p ~ I e J

= 1F 4 7 n
V-1 < n -+ >/ (|Z|2pcoth2p+ﬁ ‘ )_%
R3 —1lv.w

2 2

2p 2n 3

/
. . dv;.
(sinh2p> “1 le_I1 K

In the w-space we take polar coordinates, and let the positive direction of
the z-axis coincide with that of the vector w, i.e.,

w = |w|(0, 0, 1),
v = p(sinfcosep, sinfsing, cosh),

z) = |z} |(sinf'cos¢’, sinf'sing’, cosd’),

where 0’ is the angle between vectors w and z). Therefore
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ba(w) =~V (2T

+oo pm p2m A7
/ / / (|z[*pcoth 2p + v/—1p|w|cos )~ 2
0 0o Jo

- (sin Bsing’ cos ¢ cos ¢’ + sin @ sin @’ sin ¢ sin ¢’ + cos B cos ') p? sin 6

2p 2n
. d¢ do dp.
(sinh 2p> ¢ db dp

First, integrating with respect to ¢ yields

dn+7

®y(h) = —22771(2 )FF( >\z’1|cos9’

oo 9 an+7
/ / (|z|* cosh2p + v —1|w|sinh2pcos )™ 2
0 0

7/2
: (Smh 2p> psin 0 cos 0 db dp.

Let

K(p) = /O(|z]2cosh2p+\/ 1|w|sinh2pcos) ™ 57 sinfcosdo.

Then a simple calculation gives us

1
v —1|wlsinh2p
—|z|*cosh2p(|z|*cosh2p + v/—1|w|sinh2pcosf) ~ 57| sinddo

K(p) = / [(|z]2008h2p + \/—1|w|sinh2pcos0)_47Jr5

1 2 4n+3
_(ﬁ|w|sinh2p>2{4n+3[“Z'zwsh?ﬂ V=T|wlsinh2p) ="
4n+3}

—(|z|*cosh2p + v/ —1|w|sinh2p) ™ 2

4n+5

|z|?cosh2p [(|z]2cosh2p — v —1|w|sinh2p)” "2

dn+5

+5

—(|z|*cosh2p + \/—1\W]sinh2p)_4n2 } }
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Similar to (8), we have

K(p)

1 2
T \/—71|w|2 sinh? 2p { dn +3
. [CObh (2p v/ —1v) — cosh™ (2,0 + Fw)}

|z|% cosh 2p

_4n+5

i

2 (2p = V=10) — cosh ™5 (2p + V1) + <>}
4y/—1

LS it ) O}

and hence we obtain the estimation

1 v—1
|K(p)| < ¢.———5—|cosh™ 2,osmh2p L4
|w| sinh” 2p siny

\z\Qcosh 2ps1nh 2p <

Hw)’

sin
(1—|z?) _ants c ants
LA h™ 2 2p < h™ 2
|w| sinh 2p €08 P= Sinh 2p o8 P
The last inequality follows from the fact that 1 — |z|? = 1+|‘z|2 < |w|? <1,

since (z, w)€S™. Substituting the estimation of K(p) into the expression of
®4(h), we finally obtain

(10)
4 +oo n —5/2
r<1>2<h>\Sc.22“<2w>r("2”)|z’11/ cosh“fzp(.p) dp
0

sinh2p

An+7 oo

< c.22”(27r)F< n2—i— ) |z'1]/ cosh™2"2pdp
0

dn+7

< c.2'm(2m)0 ( ) |2, | B(n,n).

Lemma 4.4. The surface measure of the unit sphere S™ of the quaternionic
Heisenberg group HH™ is

a(S™) = 272" / F(TL)
(8") = 2m™ ™ 2P(Qn)r(n+3/2)'
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Proof. Let fe L'*(HH™) and

1) = [ foxwie

+oo  ptoo
:/o /0 /2 By (Rz, pw) R*" ™ p*dwdz dp dR,

where
n
D {x = (21,...,2,)ER" Zx? = 1}
i=1
is the unit sphere in Euclidean space R". Performing the change of variables
R? = [%cosf, p = [*sinf, we get

400 pm/2
I(f) = / / / f(lzcos'’? 0, 1?wsin 0)
0 0 yén—1 J¥2

45 00821 9 sin? 0 dw dz df dl.

Hence

(11)
w/2
f(h)do(h) —/ / f(zcos'/%0, wsind)cos? ' sin®0dwdzdo.
Sn 0 yén—1 J¥2

In particular,

w/2
o(S™) = / / / cos?" 10sin®0dwdzd0
0 san—1 Jy2

/2 1
= |24”—1y.yz2|/ cos® 19sin0dh = 5\24"—1\.\2213(n, 3/2).
0

Then Lemma 4.4 follows from the expression of the surface measure

|-l = lgern//;) of the unit sphere in Euclidean space R".

Now we turn to evaluate the following integral:
Lemma 4.5. We have
21210 (n + /4T (43L
gn I'(n+q/4+3/2)L'(2n + q/2)
Proof. Let ¥4l = {z = (21,2 )eR* x R4 | |22 + |Z/|> = 1}. We
introduce new polar coordinates by setting z; = acos¢, z’ = bsing with
acy?, bex* 5 0 < ¢ < /2. Then formula (11) reads as

f(h)do(h)
Sn

/2 /2
- / / / / f(acosl/2ecosgz5, beos!/20sing, wsinf)
0 0 »3 Jydn—5 Jy¥2
- cos™" " BsinBeos® gsin'" P pdwdbdadodg.
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In particular, we have
w/2 /2
(12) |z10|%do(h) = |agcos'/20cosg|?
n 0 0 »3 Jy4n—5 J92
¢

052" 19sin?Ocos’® psin™ ~° pdwdbdadfd .

Furthermore, on the unit sphere X2 of the a-space, we employ the spherical
coordinates, i.e.,

aop sinyy
al costp1sinyo
a= = . ,
as COst1 CoSYasings
as COS11 COSY2CoSY3

with —7/2 < )y, 9 < m/2 and —7 < 13 < 7. Then the integral on X3 in
(12) becomes

/ lap|%da

w/2 /2
/ / / [sing: [Zcos? i costbadibndibadin — 47 B (q 1 g) .
w/2J—m/2 -7

Finally we obtain

[ Jzsoftdo)
— 4rB <q+ 1 3)
2 72
w/2 /2
: / / / / cos? /271 ggin?0cos?3 psin®™ ° pdwdbdpdo
0 0 san—5 /532

+1 3 q 3 q+4
— x5 2B (L2 2 B T2V (912 9y o
— a2 (0 3) B (v 4, 3) B (15 ),

as required.
Corollary 4.6. We also have

n +1
[ tetrtaoy = 5L (TR EATC)
sn 2 I'(n+ #)F(Qn—i— 3

Proof. Since

3 1/2
|z} | = (Z a%i) cos'/2 6 cos ¢ = cos cos'/2 6 cos o,
i=1
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an analogous calculation to that in the proof of Lemma 4.5 gives:

JRERAS

1 1 4
= 7|24 75||22B (qg?’ 2) B (n+ 4 ) B <q+,2n - 2) :

which is exactly the conclusion of Corollary 4.6.

Lemma 4.7. There exists a constant ¢ = ¢(q) > 0, such that, VneN,

</n !@(h)qdo—(h)>1/q < elo(s™)] 7P,

Proof. We know ([10]) that when x—+o0,

I(z)

13 ~r? 0
(13) Iz +a) 5 e>b
and Stirling’s formula
(14) D(z)~V 22" 2exp(—x).

From Equations (7), (9), (10), it follows that

24n

2(h)| < €55

['(2n + 7/2)B(n, n)max{|z10|, |2}|}.

Via Lemmas 4.4 and 4.5 and Corollary 4.6 we get
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o ([ \@(hwda(h))”q

24n

< C.WF(QTL +7/2)B(n, n)

( 72T (n 4 ¢ /4)0 (L )>1/q( 222D () )1/1’
)

I'(n+ 29020 + ¢/2) T(n+3/2)0(2n
24n

< C.WF@?@ +7/2)B(n, n)

_ ( L(n+ q/4) >1/q< I'(n) )1/1’
I'(n+q/4+3/2)L'(2n + q/2) I'(n+3/2)'(2n)
1 1/q 1 1/p
<eI'(2n+17/2)B(n, n) (I‘(Qn—}—q/2)> <F(2n))

T(2n +7/2) ren) \Y
<c¢.B(n, n) < T'(2n) ) <F(2n+q/2)>
< c.(2n)®B(n, n)

(vV2rn" =2 exp(—n))?
< c.(2n)’ <\/ﬂ(2n)2n1/2 eXP(_Qn)>

<c,

which completes the proof of Lemma 4.7. (In the proof of this Lemma, we
have used formulas (13) and (14).)
Due to Lemma 4.7 and the inequalities (3), (4), (5) we have proved:

Proposition 4.8. For every pe(0, +00), there exsists a constant c(p) > 0,
such that

||Rf”LP uuny < ) fllLe@mny, VECT(HH™), YneN.

4.3. The full Riesz transforms. We consider the full Riesz transform
Rf(X, u) = (Rlof(x7 11), s 7Rn3f(X7 u))a where

Rif (x,u) = (X,sA7Y2 ) (x, 1)

1/e d
=i [ Xaw) [ W) ) T, v).
E— HH" 2

Analogous to (6), we have

2 2

Xrip1(y,v) = W(_Fl +V-1R)(y,v) = WF(Y,V%



198 FULIU ZHU

hence
(X2 f)(x,0)
— G i [ (B = VIR
l/e dt
[ ey )
where

Fi(x,u) = 9310/ exp{—(v—1v.u + |x|>pcoth2p)}
R3

2p 2n 3
: th2 dv;
(sinh2p> peo pjl;[l Kk

Fy(x,u) = /R exp{—(v—1v.u + |x|*pcoth2p)}

2n 3
. (Slnh2p> lejvj H de

From these equations it is easy to see that

F(—x,u) = —F(x,u),

and hence we can write
(XnATV2f)(x, 1)
1

+o0o
) = (G, ) Ty
Similar arguments to those in [3] show that:

Theorem 4.9. For every pe(1, +00), there erists a constant ¢ = ¢(p) > 0,
such that for all n€N,

1 o0 n
EHfHLP(HH") < |IRf[ler@any < el fllor@mny, VFEC(HH™).
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