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Let X denote a finite nonempty set, and let W denote a
matrix whose rows and columns are indexed by X and whose
entries belong to some field K. We study three planar algebras
related to W . Briefly, a planar algebra is a graded vector
space V = ∪n∈Z+∪{+, −}Vn which is closed under “planar”
operators.

The first planar algebra which we study, FW = ∪FW
n , is

defined by the group theoretic properties of W . For n ∈ Z+,
FW

n is the vector space of functions from Xn to K which are
constant on the Aut(W )-orbits of Xn, and FW

+ , FW
− are iden-

tified with K. The second planar algebra, PW = ∪PW
n , is the

planar algebra generated W . We define it combinatorially:
PW

n is spanned by functions from Xn to K defined via sta-
tistical mechanical sums on certain planar open graphs. The
third planar algebra, OW = ∪OW

n , differs from PW only in
that the open graphs defining the functions need not be pla-
nar.

It turns out that PW ⊆ OW ⊆ FW . We show that PW =
OW if and only if PW

4 contains a single special function known
as the “transposition”. We show that OW = FW whenever
|X|! is not divisible by the characteristic of K.

1. Introduction.

Planar algebras were introduced by V.F.R. Jones [15] to study the structure
of subfactors. A planar algebra is a graded vector space V = ∪n∈Z+∪{+,−}Vn

over some field K which is closed under certain operators. True to its op-
erator algebra origins, an emphasis is placed upon the interactions of the
operators. These operators are defined diagrammatically by objects known
as planar tangles. We recall relevant definitions in Section 2. The study of
a planar algebra via the dependencies of these operators has a knot theo-
retic flavor, very much like Conway’s tangles and skein relations [4]. This is
no coincidence, as planar algebras were influenced by the deep relationship
between subfactors and knots [12] and [14].

When dimVn is finite for all n, it is natural to ask for the exact value.
We shall consider this problem for some combinatorial planar algebras. In
our examples, Vn is a vector space of functions from Xn to K for some fixed,
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finite, nonempty set X. The action of the planar tangles is defined via the
statistical mechanical construction known as a partition function.

In Section 3 we introduce three planar algebras related to a matrix W
whose rows and columns are indexed by X and entries are in K. In the
first planar algebra defined from W , FW = ∪FW

n , the vector space FW
n

consists of those functions from Xn to K which are constant on the orbits
of Xn under the action of Aut(W ). The second is a singly generated planar
algebra, PW = ∪PW

n , whose vector space PW
n is spanned by functions from

Xn to K defined via statistical mechanical state sums on the planar graphs
derived from planar tangles. The third planar algebra, OW = ∪OW

n , differs
from PW only in that the graphs defining the functions need not be planar.

It turns out that PW
n ⊆ OW

n ⊆ FW
n . It is easy to compute dimFW

n using
the Cauchy-Frobenius-Burnside formula for group characters. However, we
are more interested in dimPW

n , and it is generally very difficult to compute.
Thus we consider when PW

n = FW
n for all n. The planar algebra OW plays

an important role in this problem. In Section 4, we show that PW = OW if
and only if PW

4 contains a particular element called the “transposition”. The
proof of this result is essentially skein theoretic in nature. Then in Section 5,
show that OW = FW whenever |X|! is not divisible by the characteristic
of K. Since this condition holds in characteristic zero, the most important
case is thus treated. To prove this result, we encode OW

n into polynomials
and then appeal to results concerning the polynomial invariants of a finite
group.

These results are related to Theorem 4.3 of [16] concerning a certain
planar algebra Pσ which contains PW . This result asserts that any planar
subalgebra of Pσ which contains a transposition is the set of elements of
Pσ which are fixed under the action of some group G such that Aut(W ) ⊆
G ⊆ SX . This result relies on the theory of subfactors, and so it is only
applicable when the ground field is the real or complex numbers and when
the matrix W is symmetric. By introducing the intermediate planar algebra
OW we have extended this result (as applied to PW ) to almost any field and
to any matrix. In this case we also know precisely which group is involved.
Moreover, the proof given here is combinatorial in nature, where the original
was very non-combinatorial.

2. Planar algebras: Definitions.

Planar algebras were introduced to study the structure of subfactors. True
to their operator algebra origins, planar algebras are defined in terms of
operators on vector spaces. These operators are defined diagrammatically by
objects known as planar tangles. A planar tangle can be presented in several
ways. We shall use a slight variation of the operadic definition of [15] (see
also [16]). From this point of view, a planar tangle consists of a collection
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of disjoint disks which are joined by disjoint smooth curves, together with a
coloring of the regions formed by the strings and disks. Various constraints
on this collection arise from their subfactor origins; however, no knowledge
of subfactors is necessary to proceed.

We begin with a definition of a planar tangle. Let D0 denote the unit
disk. Pick disjoint disks D1, D2, . . . , Dn in the interior of D0. Form a
finite collection of disjoint “strings” (simple smooth curves) in the interior
of D0\ ∪n

i=1 Di, all of whose endpoints meet the boundary of some disk
transversally. There may be some closed loops which touch no disk. Further
assume that an even number of strings touch each disk, say 2ki touching Di.
Color the regions interior to D0\ ∪n

i=1 Di formed by the strings black and
white so that regions on either side of a string have opposite colors. Call
the points on the boundary of each disk where a string touches “marked”.
The marked points divide the boundary of each disk into intervals. On
each disk, one of the intervals which touches a white region is chosen to
be “privileged”. The entire boundary of a disk with no marked points is
either privileged or not according to whether it touches a white region or
a black region. Specifying the privileged intervals makes the coloring data
redundant. It will sometimes be convenient to number the marked points
on each disk consecutively in a clockwise direction where the marked point
at the clockwise end of the privileged interval is numbered one.

The smooth isotopy class of this collection of disks, strings, coloring,
and privileged intervals is called a planar k0-tangle. There is a natural
composition for planar tangles. If S is a planar k-tangle with an internal
disk Di with 2ki marked points and T is a planar ki-tangle, then we may
replace Di with a rescaled and isotoped version of T without its unit disk, by
matching corresponding marked points (first to first, etc.) and smoothing
the connections of the strings. The coloring conventions are preserved by
composition. The collection of planar tangles with this composition is called
the planar operad.

A general planar algebra is a graded vector space Vk for k > 0 and two
vector spaces V+ and V− such that every element T of the planar operad
determines a multilinear map from a tensor product of these vector spaces,
one for each internal disk of T , to the vector space corresponding to the
boundary of T . We require a natural homomorphism property. Given planar
tangles T1, T2, T3 which admit compositions of T2 into T1 and T3 into this
composition, the net result of these compositions in the planar operad does
not depend upon the order in which they are carried out: The same must
be true for the corresponding multilinear maps on the planar algebra. We
also impose a condition on V+ and V−. We view these two vector spaces
as corresponding to the two colorings of any planar 0-tangle–V+ to those
colored black next to the unit disk and V− to those colored white next
to the unit disk. Observe that surrounding the interior component with a
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closed string reverses its coloring. We require that surrounding the interior
components of a planar 0-tangle with two closed strings yields a multilinear
map to V+ or V− which differs from the original multilinear map only by a
fixed scalar multiple.

Let V denote a planar algebra. Then V is said to be finite dimensional
whenever the vector spaces V+, V−, and Vk (k > 0) are all finite dimensional.
All of the examples that we shall consider in this paper are finite dimensional.
In fact, V+ and V− will both be one-dimensional, making the examples
planar algebras in the sense of [15]. Given that V is finite dimensional, it is
natural to compute dimVk for all k. This problem motivates the results of
this paper. We are interested in a singly generated planar algebra PW which
is contained in a planar algebra FW whose dimensions we can compute. We
shall consider when these two planar algebras are equal. We now describe
the planar algebras which we shall study.

3. Planar algebras: Examples.

3.1. The planar algebra of functions on a finite set. We present a
very simple planar algebra. We are more interested in some of its planar
subalgebras, but we take this opportunity to describe the multilinear map
corresponding to each planar tangle with no other distractions. This corre-
spondence will be the same in all planar algebras which follow.

Let X denote a finite, nonempty set, and let K denote a field. For each
positive integer k, let Xk be the vector space of all functions from Xk to
K (k > 0), with X+, X− identified with K. Then X = ∪Xk is a planar
algebra. Let T denote a planar k0-tangle with internal disks D1, D2, . . . ,
Dn with respectively 2k1, 2k2, . . . , 2kn many marked points. Then T defines
a multilinear map

⊗n
i=1Xki

→ Xk0 as follows. Index the black regions of T
by 1, 2, . . . , m. For all i (0 ≤ i ≤ n) and for all j (1 ≤ j ≤ ki), let Sij be
the index of the jth black incident with Di when traversing the boundary of
Di clockwise so that the privileged interval is traversed last. Given fi ∈ Xki

(1 ≤ i ≤ n), define a function Z
(f1,f2,...,fn)
T : Xk0 → C which, when evaluated

at (x1, x2, . . . , xk0), returns∑
σ

∏n

i=1
fi(σ(Si1), σ(Si2), . . . , σ(Siki

)),(1)

where σ runs over all maps from {1, 2, . . . ,m} to X with σ(S0j) = xj .
Extend ZT multilinearly to a map

⊗n
i=1Xi → Xk0 . The homomorphism

property of planar algebras follows since the function only depends upon
the incidences of the black regions and composition merges regions with the
same color. Enclosing a planar 0-tangle with two closed strings preserves the
color of the interior (reverses it twice) but adds an isolated black band. This
modified tangle gives a multilinear map which is |X| times the multilinear
map corresponding to the original tangle. Thus X is a planar algebra.
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3.2. Planar algebras constructed via finite group action. Let X
denote a finite, nonempty set. Let SX denote the symmetric group on
X. For each positive integer k, extend the action of SX to Xk in the
natural fashion: For all g ∈ SX and for all (x1, x2, . . . , xk) ∈ Xk, let
g(x1, x2, . . . , xk) = (g(x1), g(x2), . . . , g(xk)). Let G ⊆ SX denote a sub-
group so that G is a permutation group on X. By a G-orbit of Xk, we mean
a nonempty subset Y ⊆ Xk such that ~x, ~y ∈ Y if and only if there exists
g ∈ G such that ~x = g(~y).

Let K denote a field. For each positive integer k, let Fk(G, X) denote
the vector space of functions from Xk → K which depend only upon the G-
orbit of their inputs. We identify the vector spaces F+(G, X) and F−(G, X)
with the field K (constant functions). Together, these vector spaces form
a planar algebra F(G, X) with the same planar structure as X. That is
to say, (1) defines a map

⊗n
i=1Fki

(G, X) → Fk0(G, X). To see that this
is so, pick fi ∈ Fki

(G, X) (1 ≤ i ≤ n), and define f0 : Xk0 → K by (1).
To see that f0 is constant on each G-orbit of Xk0 , consider replacing each
map σ in (1) by g ◦ σ. The effect of this change on the boundary leads (1)
to return f0(gx1, gx2, . . . , gxk0) = f0(x1, x2, . . . , xk0) since fi ∈ Fki

(G, X)
(1 ≤ i ≤ n). Thus f0 ∈ Fk0(G, X). Hence F(G, X) = ∪Fk(G, X) is a planar
algebra. F(G, X) is called the fixed-point planar algebra of G acting on X.
This planar algebra is discussed in [15].

The vector spaces of Fk(G, X) are finite dimensional, and their dimension
can be computed via the Cauchy-Frobenius-Burnside formula for the char-
acters of the group, which we briefly recall now. See [11], for example. The
permutation representation of G acting on X is the map g 7→ R(g) ∈MX(C)
with (x, y)-entry equal to 1 if y = g · x and 0 otherwise (x, y ∈ X). The
permutation character of G acting on X is the map π : G → C given by
π(g) = Tr R(g) (g ∈ G). Fix a positive integer k. Then the number of
orbits of Xk under the action of G is

dimFk(G, X) =
1
|G|

∑
g∈G

(π(g))k.(2)

3.3. A planar algebra PW . Fix a field K. Let X denote a finite, non-
empty set. Let MX(K) denote the set of matrices with rows and columns
indexed by X and entries in K. Pick W ∈MX(K). Given k > 0, we describe
a rule using W which maps any planar k-tangle all of whose internal disks
have exactly 4 marked points to a function Xk → C. The vector space PW

k
spanned by these functions will be part of the grading of a planar algebra
PW . A similar rule gives the vector spaces PW

+ and PW
− , which turn out to

be isomorphic to K.
Let T denote planar k-tangle in the unit disk D0 with n internal disks

D1, D2, . . . , Dn each having exactly 4 marked points. As in Subsection
3.1, label the black regions of T with indices 1, 2, . . . , m and for all i
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(0 ≤ i ≤ n) and for j = 1, 2, let Sij denote the index of the jth black region
incident with Di when traversing the boundary of Di clockwise so that the
privileged interval is traversed last. Define a function ZW

T : Xk → K which,
when evaluated at (x1, x2, . . . , xk), returns

ZW
T (x1, x2, . . . , xk) =

∑
σ

n∏
i=1

W (σ(Si1), σ(Si2)),(3)

where σ runs over all maps from {1, 2, . . . ,m} to X with σ(S0j) = xj . Let
PW

k denote the K-linear span of all functions which arise in this fashion from
a planar k-tangle. For k = 0, we use the same rule to define functions, but
place them in PW

+ or PW
− when the color of the 0-tangle near the unit circle

is black or white, respectively.
Now PW = ∪PW

n is a planar subalgebra of X with closure under (1) as-
sured since the composition of planar tangles yields a planar tangle. The
planar algebra PW is called the planar algebra generated by W . This pla-
nar algebra is also discussed in [15]. Singly generated planar algebras are
considered in [3] as well. Not all of the planar algebras considered in [3] are
generated by a matrix, however.

By an automorphism of W , we mean a permutation s of X such that
W (u, v) = W (s(u), s(v)) for all u, v ∈ X. Let Aut(W ) denote the full
group of automorphisms of W . Observe that PW ⊆ F(Aut(W ), X) since
the definition of the functions in PW depend only upon the structure of
W . Thus (2) gives an upper bound for dimPW

k . Our main result concerns
the case of equality. The proof compares PW and F(Aut(W ), X) to an
intermediate planar algebra which we now describe.

3.4. A planar algebra OW . We use the language of graph theory to
generalize the construction of PW of the previous subsection. We begin
with some graph theoretic terminology.

By a multi-digraph, we mean a pair ∆ = (V,E), where V is a nonempty
set and E is a multiset of ordered pairs of (not necessarily distinct) elements
of V . Let ∆ = (V,E) be a multi-digraph. The elements of V are called the
vertices of ∆, and an ordered pair (u, v) ∈ E is called a (directed) edge
from u to v. We say that there are multiple edges from u to v whenever the
multiset E contains two or more copies of (u, v). Throughout this paper we
shall assume that all multi-digraphs have finite vertex and edge sets. Fix
a nonnegative integer n. By an open graph of boundary size n, we mean a
triple Γ = (V,E,~b), where (V,E) is a multi-digraph and ~b is an n-tuple of
elements of V , called the boundary vector of the open graph. Let On denote
the set of all open graphs of boundary size n.

Let Γ = (V,E,~b) denote an open graph of boundary size n. Γ is said to
be planar if the multi-digraph (V,E) has a plane embedding (no crossing
edges) into the interior of an n-gon with clockwise ordered vertices b′1, b′2,
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. . . , b′n such that each bi can be joined to b′i in a planar way. A planar
open graph may be viewed as a patch which has been cut out of a plane
embedded planar graph: The boundary vertices may have neighbors in the
larger graph, while all neighbors of non-boundary vertices must appear in
the open graph. Let Pn denote the set of all planar open graphs of boundary
size n.

As in the previous subsection, we fix a field K, a finite, nonempty set
X, and a matrix W ∈ MX(K). The planar tangles which define PW

can be interpreted as open graphs. Let T denote a planar k-tangle all
of whose internal disks have exactly 4 marked points, and adopt the nota-
tion of Subsection 3.1. Define a multi-digraph whose vertex set V consists
of the black regions of T , whose edge set E consists of the pairs (Si1, Si2)
as i runs over indices of the internal disks, and whose boundary vector is
~b = (S01, S02, . . . , S0k). It is not difficult to see that (V,E,~b) is a planar
open graph and that every planar open graph arises in this way.

The data Γ = (V,E,~b) suffices to define the multilinear map ZW
Γ : Xk →

K corresponding to the planar k-tangle T as in (3). The evaluation of ZW
Γ

at (x1, x2, . . . xk) ∈ Xk is

ZW
Γ (x1, x2, . . . , xk) =

∑
σ

∏
(u,v)∈E

W (σ(u), σ(v)),(4)

where σ runs over all maps from V to X with σ(bi) = xi (0 ≤ i ≤ n).
The construction (4) is well-known in statistical mechanics [1], [2], [23]

and [24]. Thus we adopt the following terminology: The elements of X are
called spins, and W is called the Boltzman weight matrix. A map σ : V → X
with σ(bi) = xi (1 ≤ i ≤ n) is called a state compatible with the boundary
condition σ(bi) = xi. The formula (4) is called the partition function of Γ
with respect to W .

If we restrict Γ to planar open graphs, then (4) and (1) agree when Γ is
produced from T as above. Thus PW

k is the vector space spanned by the
functions defined by (4) as Γ runs over all planar open graphs of boundary
size k. However, the planar structure is not necessary in (4). Let OW

k denote
the vector space of functions Xk → K spanned by the functions defined by
(4) as Γ runs over all open graphs of boundary size k. Then OW = ∪OW

k

is a planar subalgebra of X. The closure of OW under the multilinear maps
defined by planar tangles follows since such operations just combine graphs
to form a new graph. We call OW the open graph planar algebra of W .

By construction PW
k ⊆ OW

k ⊆ Fk(Aut(W ), X). Our main results describe
when PW

k = OW
k and when OW

k = Fk(Aut(W ), X). Before proceeding to
these results, we present a graph theoretic interpretation of the partition
function. Let Γ = (V,E) and Ξ = (X, R) denote graphs. By a graph
homomorphism from Γ into Ξ, we mean a map σ : V → X such that if
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(u, v) ∈ E then (σ(u), σ(v)) ∈ R. (Graph homomorphisms are surveyed in
[7].)

Lemma 3.1. Suppose W is the adjacency matrix of a graph Ξ = (X, R),
and let Γ = (V,E,~b) denote an open graph of boundary size n for some fixed
nonnegative integer n. Then for all ~p ∈ Xn, ZΞ

Γ (~p) equals the number of
graph homomorphisms from (V,E) to Ξ which map ~b to ~p coordinate-wise.

Proof. Each state σ over which the sum in (4) runs maps ~b to ~p element-
wise. If σ is not a graph homomorphism, then (σ(u), σ(v)) 6∈ R for some
(u, v) ∈ E, so W (σ(u), σ(v)) = 0 and the state contributes nothing to the
partition function. If σ is a graph homomorphism, then W (σ(u), σ(v)) = 1
for all (u, v) ∈ E, so the state adds one to the partition function. �

The problem of determining if there is a graph homomorphism into a
fixed graph H (the so-called H-coloring problem) is NP-complete in general
[9] and [10]. In particular, one cannot expect to find a particularly efficient
means of computing the partition functions of open graphs with respect to
a fixed matrix W .

4. When PW = OW .

We consider when PW = OW . Of course this is the case when the partition
function with respect to W of every open graph is a linear combination of
the partition functions with respect to W of some planar open graphs. We
give a more practical characterization involving just one special open graph.

Let Φ denote the (non-planar) open graph of boundary size 4 consisting
two isolated vertices v1 and v2 and boundary vector (v1, v2, v1, v2). We call Φ
the transposition. We picture Φ as a 4-tangle in Figure 1(b)–two black “rib-
bons” which cross, one above the other, without interacting. When drawing
our tangles, we shall avail ourselves of the fact that they are determined
only up to isotopy and draw the disks as squares. We mark the privileged
interval on each with a �, so it is unnecessary to draw the coloring of the
regions.

s3
1 s

4
2 �

A
A
A
AA

A
A
A
AA

�� �
��

�
��
��

(a) open graph (b) tangle

Figure 1. Two views of Φ.

We now use the transposition Φ to build (non-planar) tangles which define
operators on open graphs which transpose elements of the boundary vector.
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For all n ≥ 4 and m (1 ≤ m ≤ n), form an n-tangle Φn
m with one interior disk

D1 with 2n-marked points by joining the ith marked point of D1 to the ith

marked point of on the unit circle of Φn
m for all i except 2m, 2m+1, 2m+2,

and 2m + 3 (taken mod 2n). The 2mth, 2m + 1st, 2m + 2nd, and 2m + 3rd

marked points of D1 are joined to the 2m+2nd, 2m+3rd, 2mth, and 2m+1st

marked points on the unit disk of Φn
m, respectively (see Figure 2). Observe

that each Φn
m is formed by composing a planar n-tangle with Φ–simply cut

out a disk around the transposition.
An examination of the tangle presentation of Φn

m reveals that it transposes
the order in which the mth and m + 1st black regions are encountered when
the unit disk is traversed clockwise versus their order on the interior disk.
Taking composition of planar tangles as the product, the Φn

m generate the
symmetric group on the n black regions incident with the unit disk. In
particular, the various compositions of the Φn

m give rise to all permutations
of the black regions when considering the order in which they appear around
the unit disk versus the interior disk. Note that the construction (3) can
be used to define an operator on open graphs from Φn

m. By the above
observations, we see that the resulting open graph operator, swaps the mth

and m + 1st (mod n) boundary vertices of its input.

� �

q q q
2m + 3 2m + 3
�����
�����
PP

PPP

PPP
PP

2m 2m

q q q
Φn

m(V,E, (b1, b2, . . . , bm, bm+1, . . . , bn)) =
(V,E, (b1, b2, . . . , bm+1, bm, . . . , bn))

Figure 2. The transposition operator Φn
k .

Theorem 4.1. Let W denote a matrix over any field. Then the following
are equivalent:

(i) PW = OW .
(ii) There exists n ≥ 4 such that PW

n = OW
n .

(iii) PW
4 = OW

4 .
(iv) ZW

Φ ∈ PW
4 .

Proof. (i) ⇒ (ii): Clear.
(ii) ⇒ (iii): Let Γ denote an open graph of boundary size 4. Form an

open graph Γ′ of boundary size n by extending the boundary vector of Γ by
repeating the last vertex n−4 times. This is a planar operation correspond-
ing to the planar tangle of Figure 3(a) (this is not the preferred inclusion of
[15]). Composing Figure 3(a) into Figure 3(b) returns the original planar
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tangle along with some closed loops with white interiors, which can be re-
moved with no effect in our planar algebra. By (ii), there exist open graphs
Γ1, Γ2, . . . , Γk ∈ Pn such that ZW

Γ′ =
∑k

j=1 αjZ
W
Γj

for some scalars αj . The
same is true of Γ since we may apply the restriction to these functions.

� �

q q q
	� qqq����q q q��

��

q q q
����q q q�� q q q

(a) An inclusion (b) Its inverse restriction

Figure 3. Two planar tangles.

(iii) ⇒ (iv): Clear.
(iv) ⇒ (i): Fix a nonnegative integer n and pick Γ ∈ On. We shall show

that there are open graphs Γ1, Γ2, . . . , Γk ∈ Pn such that ZW
Γ =

∑k
j=1 αjZ

W
Γj

for some scalars αj . This will prove that OW
n = PW

n .
In order for an open graph to be planar, it must be possible to embed it in

the plane so that the positions of its boundary vertices are incident with the
exterior and ordered clock-wise as they appear in the boundary vector. This
may not be the case for Γ. However, by permuting the boundary vector this
can be corrected. By (iv) and the remarks at the beginning of the section,
there exist transposition operators such that

Γ = Φn
m1

(Φn
m2

(. . .Φn
mj

(Γ̂) . . . )),

where Γ̂ is an open graph with the same vertex and edge sets as Γ and
boundary vector a re-ordering of that of Γ so that all repetitions occur in
cyclically successive positions. It is now possible to embed Γ̂ with the desired
boundary property. There remains the possibility that Γ̂ has crossing edges
in any plane embedding with the boundary vertices incident with the exterior
face.

In light of (iv), we now only need to prove that ZW
Γ̂

∈ PW
n . Indeed,

suppose that this is the case. Then there exists a set of planar open graphs
Γ̂1, Γ̂2, . . . , Γ̂̂ such that ZW

Γ̂
=

∑̂
i=1 βjZ

W
Γ̂i

. Now by (iv) there exists a set

of planar open graphs Γ̃1, Γ̃2, . . . , Γ̃e such that

ZW
Φn

mj
(Γ̂i)

=
e∑

`=1

ZWeΓ`
∈ PW

n .

Proceeding by induction, we find that ZW
Γ ∈ PW

n .
To show that ZW

Γ̂
∈ PW

n , it is enough to show that ZW
∆ ∈ PW

n for any open
graph ∆ whose boundary vector is such that all repetitions occur in cyclically
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successive positions. Embed ∆ in the plane such that all of its vertices lie
evenly spaced on a circle and its boundary vertices are ordered clock-wise
as they appear in the boundary vector. If no edges cross in this embedding,
we are done. Suppose that some edges cross. Among all vertices p and q
which are incident with crossing edges (p, p′) and (q, q′) pick those which are
cyclically nearest according to their positions on the circle. Observe that p
and q partition the remaining vertices into two sets according to which sides
of p and q they lie. Moreover, by the choice of p and q nearest, there are no
edges between these two sets. By deforming the edges of this embedding, we
can can make it so that all edges which cross (p, p′) and (q, q′) do so between
p′ and x or between q′ and x without creating any new crossings, where x is
the point in the plane where (p, p′) and (q, q′) cross. Factor this crossing as
two non-crossing edges (through which all edges crossing (p, p′) and (q, q′)
pass as if nothing has changed) and a transposition–see Figure 4. Now by
(iv), the transposition belongs to PW

4 . Thus there exist open graphs ∆1,
∆2, . . . , ∆h such that

ZW
∆ =

h∑
`=1

γ`Z
W
∆`
∈ PW

n ,

and which differ from ∆ only in that under a similar embedding the crossing
(p, p′) and (q, q′) has been replaced by a planar graph. Proceeding by in-
duction (on the number of vertices between the endpoints of crossing edges
as one takes the shortest path along the circle), we may remove all crossings
in ∆. Thus ZW

∆ ∈ PW
n , as desired. �

s4

s1 s3s2@@�� = s4

s1 s3s2 × s3
1 s

4
2
,

where × =

�
� 1

� 2

Figure 4. Factoring crossing edges.

The arguments of this section suggest the relations of the planar algebras
OW and PW be interpreted as a graph rewriting system. Let ∆1, ∆2, . . . ,
∆k be open graphs with the same boundary size, and say

∑k
i=1 αi∆i = 0

(modulo W ) when
∑

αiZ
W
∆ = 0. The homomorphism property for planar

algebras make this relation a “local rewriting rule”. Suppose Γ1, Γ2, . . . ,
Γk are graphs which are identical everywhere except on patch where the
subgraph of Γi is isomorphic to ∆i. Then

∑k
i=1 αiΓi = 0 (modulo W ).

Moreover, by construction the linear extension of the partition function is
an invariant of the associated graph rewriting system. This sort of graph
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relation is similar to the formal combinations of diagrams used by knot the-
orists, such as in Conway’s tangles and skein relations [4] and the invariant
is like a spin model [8] and [13]. Thus, planar algebras provide a founda-
tion for a skein theoretic approach to certain graph rewriting problems (this
not the standard notion of graph rewriting [20], [5] and [6], although open
graphs are used in [17] to study graph rewriting).

5. When OW = FW .

Let K denote a field, let X denote a finite, nonempty set, and pick W ∈
MK(X). Write FW in place of F(Aut(W ), X). We show that OW = FW

whenever the characteristic of K does not divide |X|!. In particular, OW =
FW whenever K has characteristic zero.

Lemma 5.1. Pick W ∈ MK(X), and fix a nonnegative integer n. Then
the following are equivalent:

(i) OW
n = FW

n .
(ii) For all ~p, ~q ∈ Xn, ZW

∆ (~p) = ZW
∆ (~q) for all ∆ ∈ On implies that ~p and

~q belong to the same Aut(W )-orbit of Xn.

Proof. For all ~p, ~q ∈ Xn, ~p and ~q belong to the same Aut(W )-orbit of
Xn if and only if f(~p) = f(~q) for all f ∈ FW

n by the definition of FW
n . The

equivalence of (i) and (ii) follows since OW
n ⊆ FW

n and OW
n = span{ZW

Γ |Γ ∈
On}. �

We shall prove that Condition (ii) of Theorem 5.1 holds whenever the
characteristic of K does not divide |X|!. In fact, we only need to consider ~p,
~q ∈ Xn which differ by a permutation of X.

Lemma 5.2. Pick ~p, ~q ∈ Xn. If ZW
∆ (~p) = ZW

∆ (~q) for all ∆ ∈ On, then
there exists s ∈ SX such that ~p = s~q.

Proof. Observe that there exists s ∈ SX with ~p = s~q precisely when pi = pj

if and only if qi = qj (1 ≤ i, j ≤ n). Suppose there exists some i, j (1 ≤
i < j ≤ n) such that pi = pj but qi 6= qj . Let Γ denote the open graph of
boundary size n consisting of n − 1 isolated vertices, each appearing once
on the boundary except one that is both the ith and jth boundary vertex.
Then ZW

Γ (~p) = 1 and ZW
Γ (~q) = 0. �

The idea behind the following argument is to fix some nonnegative integer
n and some ~p ∈ Xn and then reconstruct W from the data {(Γ, ZW

Γ (~p)) |Γ ∈
On}. This means that this information is sufficient to determine the Aut(W )-
orbit of ~p. We do this reconstruction by encoding this data as a set of
polynomials and then showing that W is essentially the only simultaneous
zero of these polynomials (at least when the characteristic of K does not
divide |X|!).
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Let K denote the algebraic closure of K. Let L denote the polynomial ring
over K in the variables `uv (u, v ∈ X). We evaluate these polynomials over
MK(X) since the variables are indexed by X ×X. Let L ∈ML(X) denote
the matrix whose (u, v)-entry is the variable `uv. Observe that s ∈ SX

acts on L by s(`uv) = `s(u)s(v) (u, v ∈ X). Similarly, s acts on MK(X) by
(sM)u,v = Msu,sv (u, v ∈ X) for all M ∈MK(X).

For any nonnegative integer n and for all ~p ∈ Xn, let E(~p) = {ZL
∆(~p) −

ZW
∆ (~p) |∆ ∈ On}. Let Z(~p) denote the affine variety over K defined by E(~p)

(the common zeros of all polynomials in E(~p)). We view Z(~p) as a subset
of MK(X). Observe that W ∈ Z(~p).

There is a trivial symmetry of E(~p) and Z(~p) which arises because the
polynomial ZL

∆(~p) will not change if we permute the spins not in ~p. Let
stabSX

(~p) denotes the subgroup of SX which fixes the spins in ~p pointwise.
Note that stabSX

(~p) is isomorphic to SX\~p. When n = 0, ~p is the empty
vector and stabSX

(~p) = SX .
The next result shows that Condition (ii) of Theorem 5.1 can be restated

in terms of Z(~p) and Z(~q). In light of Lemma 5.2, we need only consider ~q
of the form s~p for some s ∈ SX .

Lemma 5.3. Pick s ∈ SX and ~p ∈ Xn. The following are equivalent:
(i) ZW

∆ (~p) = ZW
∆ (s~p) for all ∆ ∈ On.

(ii) sE(~p) = E(s~p).
(iii) sZ(~p) = Z(s~p).

Moreover, (i)-(iii) hold when s ∈ stabSX
(~p) and when s ∈ Aut(W ).

Proof. Observe that for all s ∈ SX , sZL
∆(~p) = ZL

∆(s~p) since the sum defining
the partition function runs over all states satisfying the boundary condition.
Thus s(ZL

∆(~p)−ZW
∆ (~p)) = ZL

∆(s~p)−ZW
∆ (~p) ∈ sE(~p), and ZL

∆(s~p)−ZW
∆ (s~p) =

ZL
∆(s~p) − ZW

∆ (s~p) ∈ E(s~p). The equivalence of (i)-(iii) follows. Clearly (i)
holds when s ∈ stabSX

(~p) and when s ∈ Aut(W ). �

Our problem is now reduced to showing that if sZ(~p) = Z(s~p) for some
s ∈ SX , then ~p and s~p belong to the same Aut(W )-orbit of Xn. If s is in
either of the groups identified in Lemma 5.3, then ~p and s~p belong to the
same Aut(W )-orbit of Xn. We shall show that if the characteristic of K does
not divide |X|!, then Aut(W )stabSX

(~p) := {st | s ∈ Aut(W ), t ∈ stabSX
(~p)}

is the complete set of permutations s such that sZ(~p) = Z(s~p). We will
then use this fact to complete our proof. Our goal now is to describe Z(~p)
exactly. To do so, we use some facts about polynomial invariants of finite
groups as applied to L.

For all subgroups G ⊆ SX , let LG denote the ring of invariants of L
under the action of G:

LG = {f ∈ L | f(M) = (s(f))(M) for all s ∈ G, M ∈MK(X)}.
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See [21] and [22] for more on polynomial invariants of finite groups. Noether’s
original work on the subject can be found in [18] and [19].

We shall show that under suitable conditions, E(~p) actually spans the
ring of invariants of L under the action of stabSX

(~p). We will then be able
to appeal to the following result to describe Z(~p) exactly:

Lemma 5.4. Pick M ∈ MK(X). Then the set of common zeros of {f −
f(M) | f ∈ LG} is G ·M := {gM | g ∈ G}.

Proof. Suppose M ′ 6∈ G ·M . Then G ·M and G ·M ′ are disjoint finite sets.
Thus there exists a polynomial h ∈ L such that h(gM ′) = 1 and h(gM) = 0
for all g ∈ G. Now f =

∏
g∈G gh ∈ LG has the property that f(M) = 0

and f(M ′) = 1. Thus every zero of {f − f(M) | f ∈ LG} is in G ·M . The
reverse containment is clear, so the result follows. �

We now describe a simple criterion which ensures that we may apply
the previous theorem. We deduced such a condition from Noether’s work.
Let [LG] ⊆ LG denote the K-linear span of the polynomials of the form∑

g∈G gm, where m runs over all monomials in the variables `uv (u, v ∈ X).
This sum is, up to a normalization constant, the so-called Reynolds operator
of the group G applied to m. We have the following result of Noether:

Theorem 5.5 ([19] (Noether)). If Char K - |G|, then [LG] = LG.

It is this criterion of Noether which leads to our condition that the char-
acteristic of K does not divide |X|!. We now sandwich span(E(~p)) between
[LG] and LG for G = stabSX

(~p). With the previous two results this gives
an exact description of Z(~p) when the characteristic of K does not divide
|X|!.

Lemma 5.6. With the above notation,

[LstabSX
(~p)] ⊆ span(E(~p)) ⊆ LstabSX

(~p).

Proof. We first show that [LstabSX
(~p)] is contained in the linear span of E(~p).

Pick f ∈ [LstabSX
(~p)], and let m = `n1

u1v1
`n2
u2v2

. . . `
nj
ujvj denote a monomial

appearing in f (say with coefficient α ∈ K) having the maximal number
of distinct indices not in ~p appearing on the variables. Let ∆ = (U,D, ~p)
denote the open graph with U the set of spins which appear in ~p or as a
subscript of some variable in m and D the multiset which contains ni copies
of (ui, vi) (1 ≤ i ≤ j). We show that f − α(|X| − |U |)!ZL

∆(~p) has fewer
monomials with as many distinct indices on the variables as m does. It will
then follow from induction that f ∈ span(E(~p)).

If every element of U appears in ~p, then ZL
∆(~p)= m and

∑
s∈stabSX

(~p) sm=
|stabSX

(~p)|m since m is fixed by stabSX
(~p). This is the base case of the

induction. Now suppose that not all indices of the variables in m are in ~p,
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and consider the states σ over which the sum in (4) runs. Observe that σ is
simply a map from U to X with the appropriate boundary condition, and it
is either an injection or it is not. Suppose σ is an injection. Then there are
(|X| − |U |)! many ways to extend σ to a permutation of X. Any such per-
mutation belongs to stabSX

(~p) by the boundary condition, and conversely
any element of stabSX

(~p) restricts to a valid, injective state. In particular, if
(|X|−|U |)! = 0, then m cannot appear in f with nonzero coefficient because
this number is a factor of the number of repetitions of m. If σ is not an injec-
tion, then fewer indices of variables appear in the corresponding summand
of ZL

∆(~p) than in m because two or more have been identified by σ. Thus∑
s∈stabSX

(~p) sm−α(|X|− |U |)!(ZL
∆(~p)−ZW

∆ (~p)) consists only of monomial
terms with fewer distinct indices appearing on the variables than in m. By
the definition of [LstabSX

(~p)], every summand of
∑

s∈stabSX
(~p) sm appears

in f . It follows by induction that f ∈ E(~p), thus proving the containment
[LstabSX

(~p)] ⊆ span(E(~p)).
We now prove the containment span(E(~p)) ⊆ LstabSX

(~p). Pick an open
graph Γ = (V,E,~b) of boundary size n and a permutation s ∈ stabSX

(~p).
Then applying s to ZL

∆(~p)−ZW
∆ (~p) has the same effect as applying s to each

state σ over which the sum defining ZL
∆(~p) runs. Since s fixes ~p pointwise,

the map sσ is also another state satisfying the boundary condition. Thus
ZL

Γ (~p)− ZW
Γ (~p) ∈ LstabSX

(~p). �

Suppose the characteristic of K does not divide |X|!. Then Theorem 5.5
and Lemma 5.6 imply that span(E(~p)) = LstabSX

(~p), so Z(~p) = stabSX
(~p) ·

W by Lemma 5.4. It is this fact about Z(~p) which we shall use to complete
our proof. We note that the condition on the characteristic of the field is
sufficient but it is not necessary. However, this condition always holds in
characteristic zero, which we consider the most important case. For the
moment, we leave the problem of improving this sufficient condition as an
open problem, but proceed with this in mind. Let us say that ~p ∈ Xn is
SSS if Z(~p) = stabSX

(~p) ·W . The above discussion gives us the following:

Lemma 5.7. Pick ~p ∈ Xn. If Char K - |X|!, then ~p is SSS.

Lemma 5.8. Pick s ∈ SX and ~p ∈ Xn. Suppose that ~p is SSS. Then the
following are equivalent:

(i) s ∈ Aut(W )stabSX
(~p).

(ii) W ∈ sZ(~p).

Proof. (i) ⇒ (ii): Since s ∈ Aut(W )stabSX
(~p), the equivalent conditions of

Lemma 5.3 hold for s ∈ SX and ~p ∈ Xn. In particular sZ(~p) = Z(s~p).
Since W ∈ Z(s~p), (ii) follows.
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(ii)⇒ (i): Since s−1W ∈ Z(~p), SSS implies that there exists t ∈ stabSX
(~p)

such that s−1W = tW . Thus, stW = W , so st ∈ Aut(W ) by definition. Now
(i) follows. �

Lemma 5.9. Pick ~p, ~q ∈ Xn, and suppose that ~p and ~q are SSS. If ZW
∆ (~p) =

ZW
∆ (~q) for all ∆ ∈ On, then ~p and ~q belong to the same Aut(W )-orbit of

Xn.

Proof. By Lemma 5.2, there exists s ∈ SX with s~p = ~q. Now ZW
∆ (~p) =

ZW
∆ (s~p) for all ∆ ∈ On, so sZ(~p) = Z(s~p) by Lemma 5.3. In particular, W ∈

sZ(~p) since W ∈ Z(s~p). Now Lemma 5.8 implies that s ∈ Aut(W )stabSX
(~p).

If s ∈ stabSX
(~p), then ~p = ~q. Otherwise, s 6∈ stabSX

(~p), so there must be
an automorphism of W which maps ~p to ~q. In either case, ~p and ~q belong
to the same Aut(W )-orbit of Xn. �

Theorem 5.10. Let K denote a field, let X denote a finite, nonempty set,
and pick W ∈MK(X). Suppose that Char K - |X|!. Then OW = FW .

Proof. Immediate from Lemmas 5.1, 5.7 and 5.9. �

This completes our main results. We now give an example which shows
that OW need not equal FW if |X|! is divisible by the characteristic of K.

Example 5.11. Take as the ground field F2, the integers modulo 2. Let
W denote the adjacency matrix of the complete bipartite graph K1,3 on
vertex set X. Each partite set is an orbit of K1,3 under the action of its
automorphism group, so dimF1(X, Aut(W )) = 2. However, dimOW

1 = 1
since the symmetry of K1,3 implies that given an open graph ∆ = (V,E, b)
of boundary size 1, ZW

∆ (p) ≡ ZW
∆ (q) (mod 2) for all vertices p, q of K1,3. In

particular, OW
1 6= FW

1 over F2. Similar arguments show that when W is the
adjacency matrix of a complete multipartite graph Kn1,n2,...,nm over a field
K of characteristic k > 0, dimOW

1 is equal to the number of congruence
classes modulo k appearing among n1, n2, . . . , nm while dimFW

1 is equal
to the number of distinct numbers among n1, n2, . . . , nm.

The arguments used in this paper can be extended to planar subalgebras
of X generated by finitely many functions Ω = {fi : Xki → K}. Here the
elements of the planar algebra PΩ are the functions defined from the par-
tition function (1) starting from planar tangles all of whose internal disks
are labeled with compatible elements of Ω. (See [15] for more on labeled
planar tangles.) The planar algebra OΩ can be defined using “open hyper-
graphs” in a fashion similar to the definition of OW above. Then PΩ = OΩ

if and only if ΦΩ ∈ PΩ
4 . Moreover, OΩ = F(Aut(Ω), X) as long as the

characteristic of the ground field does not divide the order of Aut(Ω), where
Aut(Ω) = {s ∈ SX | sfi = fi for all fi ∈ Ω}.
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