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Ciprian Foiaş, Il Bong Jung, Eungil Ko, and Carl Pearcy

Volume 209 No. 2 April 2003



PACIFIC JOURNAL OF MATHEMATICS
Vol. 209, No. 2, 2003

COMPLETE CONTRACTIVITY OF MAPS ASSOCIATED
WITH THE ALUTHGE AND DUGGAL TRANSFORMS
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For an arbitrary operator T on Hilbert space, we study the
maps Φ̃ : f(T ) → f(T̃ ) and Φ̂ : f(T ) → f(T̂ ), where T̃ and T̂
are the Aluthge and Duggal transforms of T , respectively, and
f belongs to the algebra Hol(σ(T )). We show that both maps
are (contractive and) completely contractive algebra homo-
morphisms. As applications we obtain that every spectral set
for T is also a spectral set for T̂ and T̃ , and also the inclusion
W (f(T̃ ))− ∪ W (f(T̂ ))− ⊂ W (f(T ))− relating the numerical
ranges of f(T ), f(T̃ ), and f(T̂ ).

1. Introduction.

Let H be an arbitrary separable, complex Hilbert space whose dimension
satisfies 2 ≤ dimH ≤ ℵ0, and denote by L(H) the algebra of all bounded
linear operators on H. If T ∈ L(H) we shall always write, without further
mention, T = UP to be the unique polar decomposition of T (so P = |T | =
(T ∗T )

1
2 and U is the appropriate partial isometry satisfying kerU = ker T

and kerU∗ = kerT ∗). Also we write, as usual, σ(T ) for the spectrum of
such a T .

In this paper we consider the following two transforms of an arbitrary
T = UP in L(H):

(a) the Aluthge transform T̃ := P
1
2 UP

1
2 , which was first studied in [1]

and which has been studied extensively since, mostly in the context of p-
hyponormal operators. In particular, some of the present authors studied
the map T → T̃ for an arbitrary T in L(H) in [4], [5] and [6].

We obtained in [4] various spectral identities and showed that if T is a
quasiaffinity, then the invariant subspace lattice Lat(T ) is nontrivial if and
only if Lat(T̃ ) is nontrivial, and the same is true of the hyperinvariant sub-
space lattices HLat(T ) and HLat(T̃ ). Furthermore, we showed that the map
T → T̃ is (‖ ‖, ‖ ‖) continuous at every T in L(H) with closed range, and
we conjectured that for an arbitrary T in L(H), where H is finite dimen-
sional, the sequence {T̃ (n)} of Aluthge iterates of T , defined by T̃ (0) = T

and T̃ (n+1) = (T̃ (n))˜ for n ∈ N, converges to a normal operator. Our study
was continued in [5], in which we showed that if T is an arbitrary operator
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in L(H) such that the spectral picture SP(T ) of T (or that of T̃ ; cf. [9])
contains no pseudoholes, then SP(T ) = SP(T̃ ), and we derived connections
between T and T̃ as consequences of this equality (e.g., T is quasitriangular
if and only if T̃ is quasitriangular).

Moreover, in [6] we pursued the study of the sequence {T̃ (n)} of Aluthge
iterates of an arbitrary T in L(H), and we established the validity of [4,
Conjecture 1.11] in certain special cases. We also initiated a study of the
backward Aluthge iterates of an arbitrary T in L(H).

(b) The Duggal transform T̂ := PU (named after Professor B. P. Duggal,
who suggested its study to us), has been studied very little.

We will explore below various relations between T, T̂ , and T̃ by studying
maps between the Riesz-Dunford algebras associated with these operators.
It is well-known (and not difficult to see, cf. [4]) that

σ(T ) = σ(T̂ ) = σ(T̃ ), T ∈ L(H).

In what follows, when some T in L(H) is under consideration, we denote
by Hol(σ(T )) the algebra of all complex-valued functions which are analytic
on some neighborhood of σ(T ), where linear combinations and products in
Hol(σ(T )) are defined (with varying domains) in the obvious way. Moreover,
the (Riesz-Dunford) algebra AT ⊂ L(H) is defined as

AT = {f(T ) : f ∈ Hol(σ(T ))},

(where f(T ) is defined by the Riesz-Dunford functional calculus). As our
main theorem (Th. 1.1) shows, it is possible to obtain useful information
about T̃ and T̂ by studying maps between the algebras AT , A eT , and A bT .

Theorem 1.1. For every T in L(H), with T̂ , T̃ , and Hol (σ(T )) as defined
above:

a) The maps Φ̂ : AT → AbT and Φ̃ : AT → AeT defined by

Φ̂(f(T )) = f(T̂ ), Φ̃(f(T )) = f(T̃ ), f ∈ Hol (σ(T )),

are well-defined contractive algebra homomorphisms; in particular,

max{‖f(T̂ )‖, ‖f(T̃ )‖} ≤ ‖f(T )‖, f ∈ Hol (σ(T )).(1)

b) More generally, the maps Φ̂ and Φ̃ in a) are completely contractive,
meaning that for every n ∈ N and every n×n matrix (fij) with entries
from Hol (σ(T )),

max{‖(fij(T̂ ))‖, ‖(fij(T̃ ))‖} ≤ ‖(fij(T ))‖.

c) Every spectral set [M -spectral set (for fixed M > 1)] for T is also a
spectral set [respectively, M -spectral set ] for both T̂ and T̃ .
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d) If W (S) denotes the numerical range of an operator S in L(H), then

W (f(T̂ ))− ∪W (f(T̃ ))− ⊂ W (f(T ))−, f ∈ Hol (σ(T )),

and, moreover, if T belongs to some class Cρ, then T̂ and T̃ belong to
Cρ also (see [7, p. 45] for the definition of these classes).

The result d) verifies (except for the closure bar) an earlier conjecture of
the authors [4, Conjecture 1.9] and extends recent work of T. Yamazaki [10],
who showed that W (T̃ ) ⊂ W (T ) if T acts on a finite dimensional space and
that w(T̃ ) ⊂ w(T ) in complete generality, where, of course, w(T ) denotes
the numerical radius of T .

The proof of a) of Theorem 1.1 requires some lemmas and will be given
in Section 2. On the other hand, c) follows immediately from a) and the
definitions of spectral and M -spectral sets, so no proof of c) need be given.
The result d) is also an easy consequence of c), but a proof will be given in
Section 3. Finally, b) will be established in Sections 4 and 5.

2. Proof of Theorem 1.1 a).

It is obvious that the maps Φ̂ and Φ̃ are algebra homomorphisms provided
that they are well-defined, and this will follow from the inequalities (1).
Thus it sufficies to establish (1). As noted above, the proof depends upon
several lemmas. The first of these summarizes some easy calculations, so no
proof need be given.

Lemma 2.1. For every T = UP in L(H), we have

a) PT = T̂P,

b) TU = UT̂ ,

c) P
1
2 T = T̃P

1
2 , and

d) P
1
2 T̃ = T̂P

1
2 .

Lemma 2.2. For every T = UP in L(H) and every f ∈ Hol (σ(T )), we
have

a) Pf(T ) = f(T̂ )P,

b) f(T )U = Uf(T̂ ),
c) P

1
2 f(T ) = f(T̃ )P

1
2 , and

d) P
1
2 f(T̃ ) = f(T̂ )P

1
2 .

Proof. If f is a polynomial, the desired relations follow from Lemma 2.1 by
trivial calculations. Next suppose that f = p/q is a rational function, where
p and q are polynomials such that q doesn’t vanish on σ(T ). Then q(T ) and
q(T̂ ) are invertible (for example) and the equation Pq(T ) = q(T̂ )P yields
immediately Pq(T )−1 = q(T̂ )−1P (for example), so the desired relations
are valid for all rational functions in Hol(σ(T )). The lemma now results



252 CIPRIAN FOIAŞ, IL BONG JUNG, EUNGIL KO, AND CARL PEARCY

easily from Runge’s theorem and the well-known continuity properties of
the Riesz-Dunford functional calculus (cf., e.g., [2, Prop. 17.26]). �

Lemma 2.3. For every T = UP in L(H) and every f ∈ Hol (σ(T )), f(T̂ )
is the (orthogonal ) direct sum

f(T̂ ) = EU∗f(T )UE|(ker T )⊥ ⊕ f(0)1ker T ,(2)

where E is the (orthogonal) projection U∗U on (ker T )⊥, and, consequently,

‖f(T̂ )‖ ≤ ‖f(T )‖.(3)

Proof. If T has trivial kernel, then U is an isometry, and thus E = 1H
and f(T̂ ) = U∗f(T )U , so (2) and (3) are satisfied. Thus we may suppose
that 0 ∈ σ(T ), and hence f is analytic at z = 0 and f(0) ∈ σ(f(T )). An
easy calculation shows that ET̂ = T̂E = T̂ , and thus (by writing f(z) =
f(0) + zg(z), where g ∈ Hol(σ(T ))) that f(T̂ )E = Ef(T̂ ). Hence

f(T̂ ) = Ef(T̂ )E|(ker T )⊥ ⊕ f(0)1ker T

= EU∗f(T )UE|(ker T )⊥ ⊕ f(0)1ker T ,

from b) of Lemma 2.2, and thus

‖f(T̂ )‖ ≤ max{‖f(T )‖, |f(0)|} = ‖f(T )‖.
�

Lemma 2.4. For every T = UP in L(H) such that P has trivial ker-
nel (which implies, of course, that U is an isometry) and for every f ∈
Hol (σ(T )), ‖f(T̃ )‖ ≤ ‖f(T )‖.

Proof. Suppose first that P is invertible. We use the fact from [3] that if
X ∈ L(H) and A and B are positive semidefinite operators in L(H), then

‖A
1
2 XB

1
2 ‖ ≤ ‖AXB‖

1
2 ‖X‖

1
2 .(4)

We know from c) of Lemma 2.2 that

f(T̃ ) = P
1
2 f(T )P−

1
2 ,

so applying (4) with A = P and B = P−1 we obtain

‖f(T̃ )‖ = ‖P
1
2 f(T )P−

1
2 ‖ ≤ ‖Pf(T )P−1‖

1
2 ‖f(T )‖

1
2 .(5)

Moreover, we know from a) of Lemma 2.2 that

Pf(T )P−1 = f(T̂ ),

and thus (5) becomes

‖f(T̃ )‖ ≤ ‖f(T̂ )‖
1
2 ‖f(T )‖

1
2 ≤ ‖f(T )‖,

by Lemma 2.3, and the case in which P is invertible is done.
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Now let P be an arbitrary quasiaffinity. Define the sequence {Qn} of
positive invertible operators by Qn = P + (1/n)1H, and set An = UQn

(polar decomposition of An). Then Ãn = (Qn)1/2U(Qn)1/2, and since ‖Qn−
P‖ → 0 and ‖(Qn)1/2 − P 1/2‖ → 0, we obtain that ‖An − T‖ → 0 and
‖Ãn − T̃‖ → 0. By what was proved above, we have ‖f(Ãn)‖ ≤ ‖f(An)‖
for all n sufficiently large that f(An) is defined. The result follows from the
facts that ‖f(An)− f(T )‖ → 0 and ‖f(Ãn)− f(T̃ )‖ → 0 (cf., for example,
[2, Prop. 17.26]). �

Lemma 2.5. For every T = UP in L(H) such that

dim(kerU∗) ≥ dim(kerU) > 0

and for every f ∈ Hol (σ(T )), ‖f(T̃ )‖ ≤ ‖f(T )‖.

Proof. Choose a partial isometry V such that the initial space of V is kerU
and the range of V is a subspace of ker U∗. Define An = T + (1/n)V for
n ∈ N, and note that each |An| is a quasiaffinity and that ‖An − T‖ → 0.
Since the polar decomposition of An is (U + V )|An| where |An| is the direct
sum P |(ker T )⊥ ⊕ (1/n)1ker T , it follows easily that ‖Ãn − T̃‖ → 0. From
Lemma 2.4 we know that ‖f(Ãn)‖ ≤ ‖f(An)‖ and the result now follows as
before from, e.g., [2, Prop. 17.26]. �

To complete the proof of a) of Theorem 1.1, it suffices, in view of Lem-
ma 2.5, to deal with the case in which T = UP and U satisfies dim(ker U∗) <
dim(kerU). Moreover, if kerU∗ is nontrivial, by choosing a partial isometry
W whose range is kerU∗ and whose initial space is a subspace of kerU , and
considering the sequence {T + (1/n)W} as in Lemma 2.5, we can reduce
what is to be shown to the case in which U is a nonunitary coisometry.

Lemma 2.6. For every T = UP in L(H) such that U is a nonunitary
coisometry and for every f ∈ Hol (σ(T )),

‖f(T̃ )‖ ≤ ‖f(T̂ )‖ ≤ ‖f(T )‖.

Proof. Let U∗ := {z : z ∈ U}, and let f̃ be the analytic function on U∗
defined, as usual, by f̃(z) := f(z), z ∈ U∗. Recall that in this situation,
σ(T ∗) ⊂ U∗ and f(T )∗ = f̃(T ∗), so ‖f̃(T ∗)‖ = ‖f(T )‖. Note that T̂ = PU ,
and thus that (T̂ )∗ = U∗P with U∗ an isometry. Define, for n ∈ N,

Sn = U∗(P + (1/n)1H).(6)

Since P +(1/n)1H is invertible, (6) gives the polar decomposition of Sn, and
hence

S̃n = (P + (1/n)1H)
1
2 U∗(P + (1/n)1H)

1
2 , n ∈ N.(7)
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It follows easily that ‖Sn − (T̂ )∗‖ → 0 and that ‖S̃n − (T̃ )∗‖ → 0. Thus we
have

‖f(T̃ )‖ = ‖f̃((T̃ )∗)‖ = lim
n
‖f̃(S̃n)‖,

and

‖f(T̂ )‖ = ‖f̃((T̂ )∗)‖ = lim
n
‖f̃(Sn)‖

(again by, e.g., [2, Prop. 17.26]). But Lemma 2.4 applies to each Sn, and
thus

‖f̃(S̃n)‖ ≤ ‖f̃(Sn)‖, n ∈ N.

Thus ‖f(T̃ )‖ ≤ ‖f(T̂ )‖ and the other inequality follows from Lemma 2.3.
This completes the proof of Theorem 1.1 a). �

3. Proof of Theorem 1.1 d).

In view of Theorem 1.1 c), which follows immediately from Theorem 1.1 a)
as noted above, the first statement in d) follows trivially from the following
known fact, and the other statements are immediate from Remarks 1, 2 and
3 on pp. 48 and 49 of [7]:

Proposition 3.1. For every T ∈ L(H), W (T )− is the intersection of all
closed half-planes H containing W (T ) such that H is a spectral set for T.

Proof. Since W (T )− is convex, and is thus the intersection of all closed half-
planes containing W (T ), it suffices to show that if H is any closed halfplane
containing W (T ), then H is a spectral set for T . By a harmless rota-
tion and translation, we may suppose that H is the closed right-halfplane
{z : Re z ≥ 0}. Thus, writing T = K + iL, with K and L Hermitian, we see
that K is positive semidefinite, and therefore that the Cayley transform of
T,

c(T ) = (T + 1H)−1(T − 1H),

is a contraction (cf., e.g., [7, p. 167]). Hence, by von Neuman’s inequality,
the closed unit disc D in C is a spectral set for c(T ), and thus, by taking
inverse Cayley transforms, we obtain that H is a spectral set for T , as
desired. �

4. Complete contractivity of Φ̂.

In this section we prove the following theorem, which establishes a part of
Theorem 1.1 b):

Theorem 4.1. For every T in L(H), the map Φ̂ : AT → AbT defined in
Section 1 is completely contractive.
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Recall that this means, by definition, that for every n ∈ N and for every
n× n matrix (fij), where each fij ∈ Hol(σ(T )), the inequality

‖(fij(T̂ ))‖ ≤ ‖(fij(T ))‖(8)

is satisfied. (Here of course, the n × n operator matrices in (8) act on the
Hilbert space H(n), the direct sum of n copies of H, and the norm indicated
is the operator norm on L(H(n)).)

Proof of Theorem 4.1. Let T ∈ L(H), let n ∈ N, and let (fij) be an arbitrary
n × n matrix with entries from Hol(σ(T )). Then, with the notation as in
Lemma 2.3, it is immediate from (2) that we have the matricial identity

(fij(T̂ )) = (EU∗fij(T )UE|(ker T )⊥)⊕ (fij(0)1ker T ),(9)

where, of course, the first [second] matrix on the right acts on the space
{(ker T )⊥}(n) [respectively, {ker T}(n)]. As in the proof of Lemma 2.3, if T
has trivial kernel, then E = 1H and U is an isometry. Since it is obvious
that the inequality

‖(U∗fij(T )U)‖ ≤ ‖(fij(T ))‖(10)

holds (the matrix on the left is the product of two diagonal matrices of
norm at most one and the matrix on the right), it suffices to treat the case
in which ker T 6= (0). Moreover, from (9), one sees easily that it is enough
to show that

‖(fij(0)1ker T )‖ ≤ ‖(fij(T ))‖.(11)

Since fij(0) ∈ σ(fij(T )), fij is analytic at z = 0 for i, j = 1, . . . , n. Upon
writing

fij(z)− fij(0) = gij(z)z, z ∈ domain fij ,

we see that gij(z) ∈ Hol(σ(T )) for i, j = 1, . . . , n, and hence we get the
matricial identity

(fij(T )− fij(0)1H) = (gij(T )T ) = (gij(T )) Diag (T, . . . , T ).(12)

Observe next that the matrix (fij(0)1ker T ) has the same norm as the
matrix M = (fij(0)) acting on Cn. Moreover, there exists a unit vector
w = (ξ1, . . . , ξn)t in Cn such that ‖Mw‖ = ‖M‖. Now let x be a unit vector
in ker(T ) and note that if s is the unit vector

s = (ξ1x, . . . , ξnx)t ∈ H(n),

then, from (12), we have (fij(T ))s = (fij(0)1H)s. Write Mw = (γ1, . . . , γn)t,
and observe that

‖M‖ = ‖Mw‖ =
∥∥(γ1, . . . , γn)t

∥∥ =
∥∥(γ1x, . . . , γnx)t

∥∥
= ‖(fij(0)1H)s‖ = ‖(fij(T ))s‖ ≤ ‖(fij(T ))‖ ,
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which is the desired inequality. �

5. Complete contractivity of Φ̃.

In this section we prove the following analog of Theorem 4.1 for the mapping
Φ̃, and thus complete the proof of Theorem 1.1 b).

Theorem 5.1. For every T in L(H), the map Φ̃ : AT → AeT defined in
Section 1 is completely contractive.

Let n ∈ N and let (fij) be an arbitrary n × n matrix with entries from
Hol(σ(T )). As noted above, we must show that

‖(fij(T̃ ))‖ ≤ ‖(fij(T ))‖.(13)

To establish (13) we need some lemmas. The following lemma will simplify
greatly the remainder of the argument:

Lemma 5.2. Suppose n ∈ N and (fij) is an n×n matrix with entries from
Hol (σ(T )). Let T ∈ L(H) and suppose that there exists a sequence {An} in
L(H) such that:

a) ‖An − T‖ → 0,

b) ‖Ãn − T̃‖ → 0, and
c) ‖(fij(Ãn))‖ ≤ ‖(fij(An))‖ for all n sufficiently large.

Then (13) is satisfied.

Proof. By the upper semicontinuity of the spectrum,

σ(An) ⊂ ∩n
i,j=1(domain fij)

for n sufficiently large, so fij(An) and fij(Ãn) are defined for such n. More-
over, as noted several times above,

‖fij(An)− fij(T )‖ → 0, ‖fij(Ãn)− fij(T̃ )‖ → 0, i, j = 1, . . . , n.

Since there are only a finite number of functions fij , it follows easily that

‖(fij(An))− (fij(T ))‖ → 0, ‖(fij(Ãn))− (fij(T̃ ))‖ → 0,

and these facts, together with c) above, yield the result. �

Lemma 5.3. With the notation as above, if T = UP and P has trivial
kernel, then (13) holds.

Proof. Suppose first that P is invertible. By c) of Lemma 2.2,

(fij(T̃ )) = (P
1
2 fij(T )P−

1
2 )

= Diag (P
1
2 , . . . , P

1
2 )(fij(T ))Diag (P−

1
2 , . . . , P−

1
2 ).
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Thus, utilizing (4), Lemma 2.2 a), and Theorem 4.1, we obtain

‖(fij(T̃ ))‖ ≤ ‖(Pfij(T )P−1)‖
1
2 ‖(fij(T ))‖

1
2

= ‖(fij(T̂ ))‖
1
2 ‖(fij(T ))‖

1
2

≤ ‖(fij(T ))‖,

as desired. Now let P be an arbitrary quasiaffinity, and let the sequences
{Qn} and {An} be as defined in the proof of Lemma 2.4, so we have a) and
b) of Lemma 5.2 satisfied. Since each |An| is invertible by construction, by
what was just shown,

‖(fij(Ãn))‖ ≤ ‖(fij(An))‖,

so c) of Lemma 5.2 is satisfied and the result follows from that lemma. �

Lemma 5.4. Let n ∈ N, let (fij) be any n × n matrix with entries from
Hol (σ(T )) and suppose T = UP is any operator in L(H) such that

dim(kerU∗) ≥ dim(kerU) > 0.

Then (13) is satisfied.

Proof. Let the sequence {An}∞n=1 be as defined in Lemma 2.5, and observe
that from the proof of that lemma, we know that a) and b) of Lemma 5.2
are satisfied. Moreover, since each |An| is a quasiaffinity, Lemma 5.3 yields
that c) of Lemma 5.2 is satisfied, and the result follows from Lemma 5.2. �

In view of the discussion preceding Lemma 2.6, the proof of Theorem 5.1
(and thus the proof of Theorem 1.1 b) is completed by the following:

Lemma 5.5. For every T = UP in L(H) such that U is a nonunitary
coisometry, for every n ∈ N, and for every n × n matrix (fij) with entries
from Hol (σ(T )), (13) is satisfied.

Proof. Let the sequence {Sn}∞n=1 be as defined in the proof of Lemma 2.6,
and observe from that proof that ‖Sn − (T̂ )∗‖ → 0 and ‖S̃n − (T̃ )∗‖ → 0.
Moreover, since |Sn| is an isometry for each n, Lemma 5.4 applies to give
that

‖(f̃ij(S̃n))‖ ≤ ‖(f̃ij(Sn))‖,

so that a), b) and c) of Lemma 5.2 are satisfied (with Sn → An (i.e., Sn

replaces An), T̂ ∗ → T, T̃ ∗ → T̃ , and f̃ij → fij), so

‖(f̃ij(T̃ ∗))‖ ≤ ‖(f̃ij(T̂ ∗))‖.(14)

Upon taking adjoints in (14) and using Theorem 4.1, the result follows. �
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Of course, one reason for establishing that the maps Φ̃ and Φ̂ are com-
pletely contractive is that the extension theorems of Arveson and Stinespring
can be applied to obtain the structure of such maps (cf., e.g., [8]), and thus
we get the following:

Theorem 5.6. Let T be an arbitrary operator in L(H), and let Φ̃ and Φ̂ be
the maps defined in Theorem 1.1. Then there exist Hilbert spaces K̃ = K̃T

and K̂ = K̂T containing H, and C∗-homomorphisms Ψ̃ : C∗(T ) → L(K̃)
and Ψ̂ : C∗(T ) → L(K̂) (where C∗(T ) is the smallest unital C∗-algebra
containing AT ) such that for every f in Hol (σ(T )),

Φ̃(f(T )) = PHΨ̃(f(T ))|H
and

Φ̂(f(T )) = P
(2)
H Ψ̂(f(T ))|H,

where P
(1)
H and P

(2)
H are the orthogonal projections of K̃ and K̂, respectively,

onto H.

The implications of Theorem 5.6 for the Aluthge and Duggal transforms
will be the subject of a forthcoming paper by the authors.
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