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In this paper, we investigate dynamical systems with flip
maps, which can be regarded as infinite dihedral group ac-
tions. We introduce a zeta function for flip systems, and find
its basic properties including a product formula. When the
underlying Z-action is conjugate to a topological Markov shift,
the flip system is represented by a pair of matrices, and its
zeta function is expressed explicitly in terms of the represen-
tation matrices.

1. Introduction.

Let (X,T ) be a topological dynamical system, where X is a topological
space and T : X → X a homeomorphism. A homeomorphism F : X → X
is called a flip map or simply a flip for (X,T ) if

TF = FT−1 and F 2 = id.

We call the triplet (X,T, F ) a flip system. It is easy to see that if (X,T, F )
is a flip system, then (X,Tm, TnF ) is also a flip system for any m,n ∈ Z.
Since the infinite dihedral group D∞ is generated by two elements a and b
such that

ab = ba−1 and b2 = 1,(1.1)

a flip system can be regarded as a D∞-action of homeomorphisms.
Two flip systems (X,T, F ) and (X ′, T ′, F ′) are said to be conjugate if

there is a homeomorphism Φ : X → X ′ such that

ΦT = T ′Φ and ΦF = F ′Φ.

In this case, we write (X,T, F ) ∼= (X ′, T ′, F ′), and Φ is called a conjugacy
from (X,T, F ) to (X ′, T ′, F ′). For an arbitrary flip system (X,T, F ), T is a
conjugacy from (X,T, F ) to (X,T, T 2F ) and F is a conjugacy from (X,T, F )
to (X,T−1, F ).

Since there is a dynamical system (X,T ) which is not conjugate to its
time reversal (X,T−1), not every dynamical system has a flip. See [3, p.
104] and also Example 4.1. On the other hand, any topological Markov shift
whose transition matrix is symmetric has a natural flip.

It is well-known that measurable D∞-actions are isomorphic if the under-
lying Z-actions are Bernoulli of the same entropy. In [7] it is shown that
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if the underlying Z-actions are Kolmogorov and isomorphic, there are ex-
amples of non-isomorphic D∞-actions. Unlike the measurable case, we can
construct infinitely many non-conjugate flips for a full shift in the topological
setting. See Example 4.2.

We establish a zeta function for flip systems which is a conjugacy in-
variant, and give a finite description of the function when the underlying
Z-action is conjugate to a topological Markov shift.

The Artin-Mazur zeta function ζT for a dynamical system (X,T ), found
in [1], is defined by

ζT (t) = exp

( ∞∑
n=1

pn
n
tn

)
,(1.2)

where
pn = |{x ∈ X : Tnx = x}| (n = 1, 2, . . . ).

(We assume that the sequence {(pn)1/n} is bounded.) The Artin-Mazur zeta
function has the product formula

ζT (t) =
∏
γ

1
1− t|γ|

,(1.3)

where the product is taken over all finite orbits γ of T .
In [5], D. Lind introduced a zeta function for Zd-actions that generalizes

the Artin-Mazur zeta function. It is straightforward to extend the notion
to the case of general group actions. Let G be a group, X a set and α :
G×X → X a G-action on X. Then the zeta function ζα of the action α is
defined formally by

ζα(t) = exp

(∑
H

pH
|G/H|

t|G/H|

)
.(1.4)

Here, the sum is taken over all finite-index subgroups H of G, that is,
subgroups H such that |G/H| <∞, and pH is defined by

pH = |{x ∈ X : ∀h ∈ H α(h, x) = x}|.
It is easy to see that this zeta function is automorphism-invariant in the
following sense: If Ψ : G → G is an automorphism and two G-actions
α : G × X → X and α̃ : G × X → X satisfy α̃(g, x) = α(Ψ(g), x) for all
(g, x) ∈ G×X, then ζα = ζeα.

We define the zeta function ζT,F of a flip system (X,T, F ) to be the zeta
function ζα of the D∞-action α : D∞ ×X → X that is given by

α(a, x) = Tx and α(b, x) = Fx (x ∈ X),(1.5)

where a and b are generators of D∞ which satisfy (1.1). Since the zeta
function is automorphism-invariant, our definition does not depend on the
choice of the generators a and b. Moreover, it is clear that this zeta function
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is a conjugacy invariant. There are, however, non-conjugate flip systems
with the same zeta function. See Examples 4.3 and 4.4.

In Section 2, we express the zeta function of flip systems in a more
tractable form, and establish some of its basic properties including the prod-
uct formula. In Section 3, we consider the flip systems (X,T, F ) such that
(X,T ) is conjugate to a topological Markov shift. We prove that such a sys-
tem can be represented by a pair of matrices (Representation Theorem), and
express its zeta function in terms of those matrices. Finally, in Section 4,
we conclude this paper with some examples.

2. The zeta function of a flip system.

Let (X,T, F ) be a flip system, and suppose that D∞ is generated by a and
b satisfying (1.1). Let α : D∞ × X → X denote the D∞-action defined
by (1.5). For a finite-index subgroup H of D∞ set pH = |{x ∈ X : ∀h ∈
H, α(h, x) = x}| and suppose that pH <∞ for all finite-index subgroups H
of D∞.

In order to express ζα explicitly, we need to identify all the finite-index
subgroups of D∞. Suppose that H is a finite-index subgroup of D∞. Then
there is an integer k 6= 0 such that ak ∈ H, since otherwise we must have
|H| ≤ 2. Hence, either H is generated by ai for some integer i 6= 0 or by ai

and ajb for some integers i and j with i 6= 0.
Let H(i) denote the subgroup generated by ai, and H(i, j) the one gener-

ated by ai and ajb. Then it is clear that H(i) = H(k) if and only if |i| = |k|,
and that H(i, j) = H(k, l) if and only if |i| = |k| and j − l is a multiple of i.
Moreover, |D∞/H(i)| = 2|i| and |D∞/H(i, j)| = |i| for i 6= 0. Therefore we
obtain the following:

Lemma 2.1. Let n be a positive integer. If n is odd, then

H(n, 0),H(n, 1), . . . ,H(n, n− 1)

are all the subgroups of D∞ with index n. In addition to these, there is one
more such subgroup H(n/2) if n is even.

For convenience, we set pi = pH(i) and pi,j = pH(i,j). Then we have

pi = |{x ∈ X : T ix = x}| and(2.1)

pi,j = |{x ∈ X : T ix = T jFx = x}|.
Hence (1.4) and Lemma 2.1 imply that

ζT,F (t) = exp

( ∞∑
n=1

pn
2n
t2n +

∞∑
n=1

n−1∑
k=0

pn,k
n
tn

)
.(2.2)

Now, observe that aH(i, j)a−1 = H(i, j + 2). From this, we see that
pi,j = pi,j+2. Moreover, it is clear that pi,j = pi,i+j . Hence we obtain the
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following:
n−1∑
k=0

pn,k
n

=

{
pn,0 if n is odd,
(pn,0 + pn,1)/2 if n is even.

(2.3)

By (1.2) we have

exp

( ∞∑
n=1

pn
2n
t2n

)
=
√
ζT (t2).(2.4)

Theorem 2.2. The zeta function ζT,F of the flip system (X,T, F ) is given
by

ζT,F (t) =
√
ζT (t2) exp (GT,F (t)) ,

where ζT is the Artin-Mazur zeta function of (X,T ), and

GT,F (t) =
∞∑
m=1

(
p2m−1,0t

2m−1 +
p2m,0 + p2m,1

2
t2m
)
.

Proof. The theorem is an immediate consequence of (2.2), (2.3) and (2.4).
�

Corollary 2.3. Let RT and RT,F denote the radii of convergence of the
Maclaurin series of ζT (t) and ζT,F (t), respectively. If pn > 0 for some n,
then we have

0 ≤ RT ≤ RT,F ≤
√
RT ≤ 1.

Remark 2.4. If (X,T ) is conjugate to a subshift, then it is easy to see that
the radius of convergence of GT,F is at least exp(hT /2), where hT is the
topological entropy of (X,T ). Moreover, if (X,T ) is conjugate to a sofic
shift, then hT = logRT (see [6, Chapter 4]), and hence RT,F =

√
RT .

In the remainder of this section, we establish the product formula of the
zeta function. Suppose that γ is a finite orbit of (X,T, F ). Then there is a
point x such that γ = {x, Tx, . . . , T |γ|−1x}, or there is a point x such that
γ = {x, Tx, . . . , T k−1x} ∪ {Fx, TFx, . . . , T k−1Fx} with |γ| = 2k. In the
first case, we write γ ∈ O1, and in the second case, γ ∈ O2. It is obvious
that O1 ∩ O2 = ∅. We denote by ζ(γ) the zeta function of the flip system
(γ, T |γ , F |γ).

Lemma 2.5. If γ ∈ O1,

ζ(γ)(t) =
√

1
1− t2|γ|

exp

(
t|γ|

1− t|γ|

)
,

and if γ ∈ O2,

ζ(γ)(t) =
1

1− t|γ|
.
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Proof. Let

p̃i = |{x ∈ γ : T ix = x}| and

p̃i,j = |{x ∈ γ : T ix = T jFx = x}|.
Assume that γ ∈ O1 and n is a positive integer. If n is not a multiple of

|γ|, then no elements of γ are fixed by Tn, and hence p̃n = 0 and p̃n,k = 0
for all k. Now suppose n is a multiple of |γ|. Then every element of γ is
fixed by Tn, so that p̃n = |γ|. We can see that if |γ| is odd, p̃n,0 = 1; if |γ|
even, either p̃n,0 = 2, p̃n,1 = 0 or p̃n,0 = 0, p̃n,1 = 2. Using (2.2) and (2.3)
with p̃n and p̃n,k in place of pn and pn,k respectively, we have

ζ(γ)(t) = exp

( ∞∑
m=1

1
2m

t2m|γ| +
∞∑
m=1

tm|γ|

)
,

from which the first assertion follows.
Next, assume that γ ∈ O2. Then for each integer j no elements of γ are

fixed by T jF . Hence p̃n,0 = p̃n,1 = 0 for all n. Moreover, it is easy to see
that p̃n = |γ| if n is a multiple of |γ|/2, and p̃n = 0 otherwise. Again using
(2.2) and (2.3) we have

ζ(γ)(t) = exp

( ∞∑
m=1

1
m
tm|γ|

)
,

from which the second assertion follows. �

Theorem 2.6. Let RT,F be the radius of convergence of the Maclaurin se-
ries of ζT,F , and suppose that RT,F > 0. Then we have

ζT,F (t) =
∏
γ∈O1

√
1

1− t2|γ|
exp

(
t|γ|

1− t|γ|

) ∏
γ∈O2

1
1− t|γ|

(|t| < RT,F ).

Proof. It is clear from the definition that

ζT,F (t) =
∏
γ

ζ(γ)(t) (|t| < RT,F ),

where the product is taken over all finite orbits γ. Now, the result follows
from Lemma 2.5. �

Let OT denote the set of all periodic T -orbits. It is clear that O1 ⊂ OT ,
but a periodic T -orbit may not be an orbit of the flip system (X,T, F ). We
restate Theorem 2.6 as follows:

Theorem 2.7. Let RT,F be the radius of convergence of the Maclaurin se-
ries of ζT,F , and suppose that RT,F > 0. Then we have

ζT,F (t) =
∏
β∈OT

√
1

1− t2|β|

∏
γ∈O1

exp

(
t|γ|

1− t|γ|

)
(|t| < RT,F ).(2.5)
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Proof. Since O1 ⊂ OT , we have∏
β∈OT

√
1

1− t2|β|
=
∏
β∈O1

√
1

1− t2|β|

∏
β∈OT \O1

√
1

1− t2|β|
.

Then the right-hand side of (2.5) is equal to∏
γ∈O1

√
1

1− t2|γ|
exp

(
t|γ|

1− t|γ|

) ∏
β∈OT \O1

√
1

1− t2|β|
.

In view of Theorem 2.6, we need only to prove the following:∏
β∈OT \O1

√
1

1− t2|β|
=
∏
γ∈O2

1
1− t|γ|

.(2.6)

We note that if β ∈ OT \ O1, then Fβ ∈ OT \ O1, β ∩ Fβ = ∅ and
β ∪ Fβ ∈ O2. Conversely, if γ ∈ O2, then there is an element βγ ∈ OT \ O1

such that γ = βγ ∪ Fβγ . In this case, we have |γ| = 2|βγ | = 2|Fβγ |. Thus∏
β∈OT \O1

√
1

1− t2|β|
=
∏
γ∈O2

√
1

1− t2|βγ |

√
1

1− t2|Fβγ |

=
∏
γ∈O2

√
1

1− t|γ|

√
1

1− t|γ|

=
∏
γ∈O2

1
1− t|γ|

.

This proves (2.6). �

Corollary 2.8. Let GT,F be as in Theorem 2.2. Then

GT,F (t) =
∑
γ∈O1

t|γ|

1− t|γ|
.

Proof. The result is an immediate consequence of (1.3), Theorem 2.2 and
the above theorem. �

3. Flips for topological Markov shifts.

Let A be a finite discrete topological space. For x ∈ AZ and i ∈ Z the
i-th coordinate of x is denoted by xi, and if i, j ∈ Z with i < j, the block
xixi+1 . . . xj is denoted by x[i,j]. For x ∈ AZ, we define σx and ρx by

(σx)i = xi+1 and (ρx)i = x−i (i ∈ Z).

Then σ and ρ are homeomorphisms of AZ onto itself, and satisfy

σρ = ρσ−1 and ρ2 = id,
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that is, ρ is a flip for the dynamical system (AZ, σ). This dynamical system
is called the full A-shift. The map σ is called the shift map, and ρ the
reverse map. When we express a point as a bi-infinite sequence, we will
underline the 0-th coordinate. For instance, if x = . . . x−2x−1x0x1x2 . . . ,
then σx = . . . x−2x−1x0x1x2 . . . and ρx = . . . x2x1x0x−1x−2 . . . .

Let A be a 0-1, A×A matrix, and (XA, σA) denote the topological Markov
shift whose transition matrix is A. If A = AT , then XA is ρ-invariant, and
hence ρ|XA

is a flip for (XA, σA). More generally, if there is a 0-1, A × A
matrix P such that

AP = PAT and P 2 = I,(3.1)

then there is a flip, denoted by φA,P , for (XA, σA) that is defined as follows:
Since P is 0-1 and P 2 = I, it is a symmetric permutation matrix, that is,
P = P T and for each a ∈ A there is a unique a∗ ∈ A such that P (a, a∗) = 1.
Then it is easy to see that

(a∗)∗ = a (a ∈ A)(3.2)

and

A(a, b) = 1 ⇔ A(b∗, a∗) = 1 (a, b ∈ A).(3.3)

For x ∈ XA we define φA,Px by

(φA,Px)i = (x−i)∗ (i ∈ Z).

Then from (3.2) and (3.3) it follows that φA,P is a flip for (XA, σA).
The following theorem states that every flip for a topological Markov shift

can be represented in this way:

Theorem 3.1 (Representation Theorem). Let (X,T, F ) be a flip system,
and suppose that (X,T ) is conjugate to a topological Markov shift. Then
there are 0-1 square matrices A and P satisfying (3.1) such that (X,T, F )
is conjugate to (XA, σA, φA,P ).

Proof. We suppose that (X,T ) is conjugate to a topological Markov shift
(XM , σM ) through a conjugacy Ψ. Set φ = ΨFΨ−1. Then this is a flip for
(XM , σM ), and (XM , σM , φ) is conjugate to (X,T, F ). We will construct a
finite set A and two 0-1, A×A matrices A and P satisfying (3.1) such that
(XM , σM , φ) ∼= (XA, σA, φA,P ).

Since φ is continuous, there is a positive integer N such that

x[−N,N ] = y[−N,N ] ⇒ (φx)0 = (φy)0 (x, y ∈ XM ).(3.4)

For x ∈ XM let x̃ denote the bi-infinite sequence defined by

x̃ = . . . (φx)2(φx)1(φx)0(φx)−1(φx)−2 . . . ,

that is, x̃ = ρφx. It should be noted that if M is symmetric, then x̃ ∈ XM
for all x ∈ XM , but in general, this is not the case. For x ∈ XM let [x]
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denote the ordered pair of the (2N + 1)-blocks x[−N,N ] and x̃[−N,N ], and we
express [x] as

[x] =
[
x−N . . . x0 . . . xN
x̃−N . . . x̃0 . . . x̃N

]
.

Note that if x, y ∈ XM and x[−2N,2N ] = y[−2N,2N ], then [x] = [y].

Now we define A. An ordered pair a =
[
a−N . . . a0 . . . aN
ã−N . . . ã0 . . . ãN

]
of (2N + 1)-

blocks is an element of A if and only if a = [x] for some x ∈ XM . It is clear

that A is a finite set. For a =
[
a−N . . . a0 . . . aN
ã−N . . . ã0 . . . ãN

]
∈ A we define

a∗ =
[
ãN . . . ã0 . . . ã−N
aN . . . a0 . . . a−N

]
,

l(a) =
[
a−N . . . a0 . . . aN−1

ã−N . . . ã0 . . . ãN−1

]
,

r(a) =
[
a−N+1 . . . a0 . . . aN
ã−N+1 . . . ã0 . . . ãN

]
,

c(a) = a−N . . . a0 . . . aN and

b0(a) = ã0.

Obviously [x]∗ = [φx] for all x ∈ XM . Hence a∗ ∈ A and (a∗)∗ = a for all
a ∈ A. Moreover, (3.4) implies that

c(a) = c(b) ⇒ b0(a) = b0(b) (a,b ∈ A).(3.5)

Next, define the matrices A and P by

A(a,b) = δ(r(a), l(b)) (a,b ∈ A)

and
P (a,b) = δ(a∗,b) (a,b ∈ A),

where δ denotes the Kronecker delta. Then it is straightforward to check
that A and P satisfy (3.1).

Finally, define Φ : XM → XA by

(Φx)i = [(σM )ix] (x ∈ XM , i ∈ Z).

Then Φ is an injective sliding block code of memory and anticipation 2N .
Moreover a direct calculation shows that Φφ = φA,PΦ. It remains only to
show that Φ is surjective. Let y = . . .a−2a−1a0a1a2 . . . be any point in XA.
Then there is a point x ∈ XM such that

x[−N+i,N+i] = c(ai) (i ∈ Z).(3.6)
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Let z = Φx, and write z = . . .b−2b−1b0b1b2 . . . . Then from the definition
of Φ, we have

x[−N+i,N+i] = c(bi) (i ∈ Z).(3.7)

Hence b0(ai) = b0(bi) for all i ∈ Z by (3.5), (3.6) and (3.7). This implies
y = z. �

Let ζA,P be the zeta function of the flip system (XA, σA, φA,P ). In The-
orem 3.2 below, we express ζA,P in terms of the matrices A and P . It is
well-known that the Artin-Mazur zeta function ζA of the topological Markov
shift (XA, σA) satisfies

ζA(t) =
1

det(I − tA)
.(3.8)

See Theorem 6.4.6 in [6].
We need some notations. For an A × A matrix B, the adjugate of B is

denoted by B?, so that BB? = (detB)I, the entry sum S[B] of B is defined
by

S[B] =
∑

(a,b)∈A×A

B(a, b),

and the diagonal projection B∆ of B is defined by

B∆(a, b) = B(a, b)δ(a, b) (a, b ∈ A).

Theorem 3.2. If A and P are 0-1, square matrices which satisfy (3.1),
then

ζA,P (t) =
√
ζA(t2) exp

(
ζA(t2)HA,P (t)

)
,

where HA,P is the polynomial defined by

HA,P (t) = S
[
tP∆(I − t2A)?(AP )∆

+
t2

2
{
P∆A(I − t2A)?P∆ + (PA)∆(I − t2A)?(AP )∆

}]
.

Proof. For i, j ∈ Z let pi,j denote the number of points in XA that are fixed
by (σA)i and (σA)jφA,P . Set

GA,P (t) =
∞∑
m=1

(
p2m−1,0t

2m−1 +
p2m,0 + p2m,1

2
t2m
)
.(3.9)

Then, in view of Theorem 2.2 and (3.8), we need only to prove the following:

GA,P (t) =
HA,P (t)

det(I − t2A)
.(3.10)
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Let Bn denote the set of all n-blocks that occur in points in XA. Then it
is easy to see that

p2m+1,0 = |{x0 . . . xm ∈ Bm+1 : x∗0 = x0, A(xm, x∗m) = 1}|,
p2m,0 = |{x0 . . . xm ∈ Bm+1 : x∗0 = x0, x

∗
m = xm}|, and

p2m,1 = |{x1 . . . xm ∈ Bm : A(x∗1, x1) = A(xm, x∗m) = 1}|.

Recall that for a ∈ B1, a∗ is the unique element of B1 such that P (a, a∗) = 1.
Moreover, for a, b ∈ B1 the following are obvious:

a∗ = b ⇔ P (a, b) = 1,

A(a, b∗) = 1 ⇔ AP (a, b) = 1, and

A(a∗, b) = 1 ⇔ PA(a, b) = 1.

Therefore we obtain

p2m+1,0 = S
[
P∆Am(AP )∆

]
,(3.11)

p2m,0 = S
[
P∆AmP∆

]
, and

p2m,1 = S
[
(PA)∆Am−1(AP )∆

]
.

On the other hand, we have

(3.12)
∞∑
m=0

smAm = (I − sA)−1 =
1

det(I − sA)
(I − sA)?

(s ∈ C, Λ|s| < 1),

where Λ denotes the spectral radius of A. Finally, put (3.11) into (3.9), and
use (3.12) to obtain (3.10). �

4. Examples.

In order for a dynamical system (X,T ) to have a flip, it is necessary that
(X,T ) is conjugate to its time reversal (X,T−1). However, it is not known
whether the condition is sufficient. The first example shows that there is a
dynamical system with no flips.

Example 4.1. Let

A =
[
19 5
4 1

]
,

and (XA, σA) denote the edge shift of A. It is known that A is not shift
equivalent to its transpose AT [3, p. 104]. Hence (XA, σA) is not conjugate
to its time reversal (XA, σ−1

A ) ∼= (XAT , σAT ). Consequently, (XA, σA) does
not admit a flip.
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In the remainder of this section, we consider various flips on full shifts. We
show that some of them are not conjugate by calculating their zeta functions
or counting the number of fixed points.

Example 4.2. Let (X,σ) be the full 2-shift. We will show that there are
infinitely many non-conjugate flips for (X,σ). For each positive integer n we
define the (2n+5)-block map Kn by Kn(1102n+111) = 1, Kn(110n10n11) =
0, and Kn(x−n−2 . . . x0 . . . xn+2) = x0 when the block is not equal to any
of the above two. Let κn denote the sliding block code on X induced by
the block map Kn. Then clearly κn is an automorphism of order 2. Let
ωn = ρκn, where ρ is the reverse map. It is easy to see that ωn is a flip map
for (X,σ). The flip systems (X,σ, ωn), n ≥ 1, are not conjugate to each
other. In fact, for 1 ≤ n < m,

|{x ∈ X : σ2m+5x = x, ωnx = x}| = 2m+3 − 2m−n+1,

and
|{x ∈ X : σ2m+5x = x, ωmx = x}| = 2m+3 − 2.

From this and Theorem 2.2, it also follows that ζσ,ωn , n ≥ 1, are all distinct.
A long but straightforward calculation using Theorem 3.2 yields that the
zeta function for (X,σ, ω1) is equal to√

1
1− 2t2

exp
(

2t+ 3t2 − 2t5 − 2t6 + 2t7 + 2t10 − 2t12 − 2t14

1− 2t2

)
.

Example 4.3. Let n ≥ 2 be an integer, (X,σ) the full n-shift, and ρ : X →
X the reverse map. As the zeta function is automorphism-invariant, the flip
systems (X,σ, ρ) and (X,σ, σρ) have the same zeta function, which is

ζσ,ρ(t) =

√
1

1− nt2
exp

(
nt+ (n+ n2)t2/2

1− nt2

)
.

They are, however, not conjugate. In fact, we have

|{x ∈ X : σ2x = x, ρx = x}| = n2,

whereas
|{x ∈ X : σ2x = x, σρx = x}| = n.

As we have seen in the above examples, a dynamical system may have
many non-conjugate flip maps. However the following question still re-
mains to be answered: Let A and B be symmetric 0-1 matrices such that
(XA, σA) ∼= (XB, σB). Does it follow that (XA, σA, ρA) ∼= (XB, σB, ρB)?

Example 4.4. Let (X,σ) be the full 2-shift, and ψ : X → X defined by

ψ(x) = . . . x∗2 x
∗
1 x

∗
0 x

∗
−1 x

∗
−2 . . . ,
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where 0∗ = 1 and 1∗ = 0. Then ψ is a flip for (X,σ). The flips ψ and σψ
are not conjugate since ψ has no fixed points but σψ has fixed points. But
they have the same zeta function

ζσ,ψ(t) =

√
1

1− 2t2
exp

(
t2

1− 2t2

)
.

On taking n = 2 in Example 4.3, we know that ρ and σρ are not conjugate,
and have the same zeta function

ζσ,ρ(t) =

√
1

1− 2t2
exp

(
2t+ 3t2

1− 2t2

)
.

Therefore the four flips ρ, σρ, ψ and σψ for (X,σ) are not conjugate to each
other.

Example 4.5. Let A = {0, 1, 2, 3}. Let A and P be 0-1, A × A matrices
defined by A(i, j) = 1 for all (i, j), and P (i, j) = 1 if and only if (i, j) ∈
{(0, 0), (1, 1), (2, 3), (3, 2)}. Then we find that the flip system (XA, σ, φA,P )
has the zeta function

ζA,P =

√
1

1− 4t2
exp

(
2t+ 4t2

1− 4t2

)
.

Now, we will show that the flips φA,P and σAφA,P for the full 4-shift
(XA, σA) are conjugate. Let X = {0, 1}Z, σ : X → X the shift map, and
ρ : X → X the reverse map. Let π1 : {0, 1}2 3 ab 7→ a ∈ {0, 1}, and
π2 : {0, 1}2 3 ab 7→ b ∈ {0, 1}. Define f : A → {0, 1}2 by f(0) = 00,
f(1) = 11, f(2) = 01 and f(3) = 10, and Φ : XA → X by

Φ(x) = . . . π1f(x−1)π2f(x−1)π1f(x0)π2f(x0)π1f(x1)π2f(x1) . . . .

We can easily check that Φ is a conjugacy from (XA, σA, φA,P ) to (X,σ2, σρ),
and so one from (XA, σA, σAφA,P ) to (X,σ2, σ3ρ). Trivially σ is a conju-
gacy from (X,σ2, σρ) to (X,σ2, σ3ρ). Therefore Φ−1σΦ is a conjugacy from
(XA, σA, φA,P ) to (XA, σA, σAφA,P ). This proves the assertion.
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