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We give an explicit description of all 16-dimensional lo-
cally compact translation planes admitting the unimodular
quaternion group SL2H as a group of collineations. Moreover,
we shall also determine the full collineation groups of these
planes.

1. Introduction.

In this paper, all 16-dimensional locally compact translation planes admit-
ting the unimodular quaternion group SL2 H as a group of collineations will
be determined explicitly. Besides the classical plane over the octonions there
are a vast number of planes having this property, cf. the Classification The-
orem (2.8). Indeed, the class of these planes covers an interesting borderline
case: Among all 16-dimensional locally compact translation plane, only the
classical plane admits the action of a noncompact almost simple Lie group
of dimension larger than dim SL2 H = 15, cf. [7, Theorem A].

The connected component Ge of the automorphism group G of a non-
classical example is composed of the translation group, the group of homo-
theties, the group SL2 H, and a compact group ∆ isomorphic to {e},SO2 R,
SO2 R× SO2 R, or SU2 C, cf. Theorem 3.8. Thus, dim G is at most 35.

It is worth mentioning that Γ = Ge leaves precisely one projective line
(namely the translation axis) invariant, but does not fix any projective
points. In general, a 16-dimensional compact projective plane whose auto-
morphism group contains a closed connected subgroup Γ having this prop-
erty and satisfying dim Γ ≥ 35 is necessarily a translation plane, thanks to
a theorem of H. Salzmann [10]. Recently, H. Hähl has shown in [4] that
there are precisely three families of such planes: A subfamily of the planes
considered here1 , and the planes admitting SU4 C ·SU2 C or SU4 C ·SL2 R as
a group of collineations, determined in Hähl [5]. In particular, dim Γ ≥ 36
implies that the plane is isomorphic to the octonion plane.

1More precisely: The planes for which the group ∆ mentioned above equals SU2 C; see
3.8(2) for further details.
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Organization. The second section is devoted to the proof of the Classifi-
cation Theorem (2.8) which is based on the general theory of noncompact
semisimple groups acting on locally compact translation planes. (See [7]
and [8], and compare 2.2, 2.3 and 2.5 for the particular applications.)

In 2.8, we shall assign to each continuous function σ : Spin(3) → Rpos a
16-dimensional translation plane Pσ admitting the action of SL2 H. One of
the quasifields belonging to such a plane Pσ will be obtained in 2.11.

In 3.7 we shall give a necessary and sufficient condition for two functions
to define isomorphic planes. Finally, we determine the automorphism groups
in 3.8 by computing the reduced stabilizer SG0 of each plane Pσ. With the
exception of the octonion plane, the automorphism groups of the planes
under consideration have dimension at most 35.
1.1. Notation. Let Spin(3) denote the group of quaternions of length 1.

For ~x, ~y ∈ H2, we put 〈~x, ~y〉 := x1y1 + x2y2. For the orthogonal com-
plement of a subspace X with respect to this scalar product we shall write
X⊥.

If A is an element of SL2 H, then A∗ denotes the inverse of the adjoint
map of A with respect to 〈·, ·〉, i.e., A∗ := (At)−1. We emphasize that we
have

〈~x ·A∗, ~y ·A〉 = 〈~x, ~y〉 for all ~x, ~y ∈ H2, A ∈ SL2 H.(1)

Let SH+
2 H be the set of positive definite Hermitian (2 × 2)-matrices over

H with determinant 1. Notice that SH+
2 H coincides with the set of all

(A∗)−1A = A
t
A, A ∈ SL2 H. (Recall the polar decomposition of unimodular

matrices.)
Finally, diag(x1, . . . , xn) denotes a diagonal matrix with the given entries.

2. The classification.

2.1. The general situation. We consider a 16-dimensional locally com-
pact affine translation plane (P,L) which is represented in the usual2 way:
The point space P is a 16-dimensional real vector space, the line pencil L0

through the origin consists of 8-dimensional vector subspaces of P , and the
other lines are the affine cosets of the elements of L0. Moreover, the spread
L0 is a compact subset of the Grassmannian manifold of all 8-dimensional
vector subspaces of P . In fact, L0 is homeomorphic to the 8-sphere.

The group G of all automorphisms (i.e., continuous collineations) is a
semidirect product G = G0 n T of the translation group T (which coincides
with the group of all vector translations of P ) and the stabilizer G0 of the
origin. The latter group is a closed subgroup of GL(P ) and, hence, is a Lie
group.

2Basic facts concerning 16-dimensional locally compact translation planes are collected
in Chapter 8 of [11]; results used without a reference can be found there.
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2.2. The group action of SL2 H on (P, L). Throughout this paper we
suppose that SL2 H acts on the translation plane (P,L) as a group of collinea-
tions, i.e., we have a Lie homomorphism Φ : SL2 H → G with discrete kernel.
Since G is an almost direct product of G0 and the abelian translation group,
we may assume that the image

Λ = Φ(SL2 H)

is contained in G0. In fact, Φ is a representation of SL2 H on P .
According to [7, 6.8], Φ is a direct product of the obvious representation

of SL2 H on H2 and the contragredient representation on H2. Therefore, P
and the left quaternion vector space H4 can be identified in such a way that
the representation Φ of SL2 H on P = H4 is given by right multiplication
with the matrices

Φ(A) =
(

A∗ 0
0 A

)
for A ∈ SL2 H.

We emphasize that the Λ-invariant subspaces H2 × {~0} and {~0} × H2 are
not elements of L0, since the noncompact almost simple group Λ does not
fix any affine line, cf. [7, Theorem B].

2.3. The weight sphere. We apply the general theory of noncompact al-
most simple subgroups of G0 (for which [7] contains the details) to our
particular case: Being the image of diag(−1, 1) ∈ sl2H under the derivative
of Φ, the real diagonal matrix d := diag(1,−1,−1, 1) is an element of the
Lie algebra LΛ.

Since d has precisely two eigenvalues, [7, 5.3] implies that both eigenspaces
of d are elements of the spread L0. Collecting all the eigenspaces of all real
diagonalizable elements of LΛ yields the so-called weight sphere S ⊆ L0 of
Λ, see [7] for details. The main result [7, Theorem B] concerning the weight
sphere asserts that Λ acts transitively on it. Therefore, S is the Λ-orbit of
the eigenspace E := H · (1, 0)×H · (0, 1) of d with respect to 1.

Lemma 2.4.
(a) The weight sphere S of Λ consists precisely of the subspaces X ×X⊥,

where X is a 1-dimensional H-linear subspace of H2.
(b) A vector (~x, ~y) ∈ H2 × H2 is contained in some element of S if and

only if ~x is perpendicular to ~y.

Proof. (a) Let G1H2 be the set of 1-dimensional H-linear subspaces of H2.
We have to show that the sets S and S ′ := {X ×X⊥ |X ∈ G1H2} coincide.
For this, let X ∈ G1H2 and A ∈ SL2 H. Derive (XA∗)⊥ = X⊥A from
Equation (1) in 1.1. This shows that

(X ×X⊥)Φ(A) = XA∗ ×X⊥A = XA∗ × (XA∗)⊥,
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whence S ′ is Λ-invariant. In fact, S ′ is a Λ-orbit, because SL2 H acts tran-
sitively on G1H2. We already know that the weight sphere S is a Λ-orbit,
too. Since E = H · (1, 0)×H · (0, 1) is an element of S ∩S ′, we conclude that
S = S ′. Part (b) is an easy consequence of (a). �

2.5. Stabilizers. Let O be an orbit of Λ in L0 different from S. From [8,
6.2.b] we infer that the stabilizer of an element of O is a compact group.
Thus, there exists a line L ∈ O such that ΛL is contained in the particular
maximal compact subgroup ∆ := Φ(U2H) of Λ.

Being a subset of the 8-sphere L0, the orbit O has dimension at most 8.
Applying Halder’s dimension formula yields

dim ΛL = dim Λ− dim LΛ ≥ 15− 8 = 7.

This implies that ΛL equals ∆, because U2H does not contain proper sub-
groups of dimension at least 7: The rank of a subgroup Σ of U2H is at most
2. Moreover, Σ is not isomorphic to the group SU3 C which does not have a
representation of the quaternion vector space H2, cf. [11, 95.10]. Checking
all compact groups of rank at most 2 yields the assertion.

2.6. ∆-invariant subspaces and their orbits. Note that a matrix B ∈
SL2 H is an element of U2H if and only if B∗ = B, whence we obtain

Φ(B) =
(

B 0
0 B

)
for all B ∈ U2H.

Thus, the restriction of Φ to U2H is a direct sum of two copies of the
irreducible representation of U2H on H2. By [2, p. 43, Prop. 6], precisely the
following proper R-linear subspaces of P are invariant under ∆ = Φ(U2H):

Uh := {(~x, h~x) | ~x ∈ H2} for h ∈ H and U∞ := {~0} ×H2.

We compute the image of Uh, h ∈ H, under Φ(A), A ∈ SL2 H:

U
Φ(A)
h = {(~xA∗, h~xA) | ~x ∈ H2} = {(~y, h~yA

t
A) | ~y ∈ H2}.

Recall that A
t
A is an element of SH+

2 H and that every element of SH+
2 H

has this form. Therefore, the Λ-orbit UΛ
h consists precisely of the subspaces

{(~x, h~xS) | ~x ∈ H2} where S ∈ SH+
2 H.

Lemma 2.7.

(a) A nonzero vector (~x, ~y) ∈ H2 × H2 is contained in an element of the
Λ-orbit UΛ

h if and only if 〈~x, ~y〉 = rh holds for some r ∈ Rpos.
(b) For every h ∈ H× the set S ∪ UΛ

h is a partial spread.
(c) If h and l are distinct nonzero quaternions, then UΛ

h ∪ UΛ
l is a partial

spread if and only if h/|h| 6= l/|l|.
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Proof. (a) Let A ∈ SL2 H. Then every nonzero vector belonging to the
element {(~xA∗, h~xA) | ~x ∈ H2} of UΛ

h has the desired property, because
〈~xA∗, h~xA〉 = 〈~x, h~x〉 = ‖~x‖2 · h. Conversely, let (~x, ~y) be an element of
H2×H2 such that 〈~x, ~y〉 = rh holds for some r ∈ Rpos. Without loss of gen-
erality we may assume ~x = (1, 0) (otherwise, replace (~x, ~y) by (~xB∗, ~yB),
where B ∈ SL2 H satisfies ~xB∗ = (1, 0)). Then 〈~x, ~y〉 = rh implies that
~y = (rh, l) holds for some l ∈ H. Put

A :=
( √

r−1 −
√

r−1h−1l
0

√
r

)
and observe that Φ(A) maps (~x, ~y) = (1, 0, rh, l) to the element (

√
r, 0,

√
rh,

0) of Uh. This proves the claim.

(b) It is easy to see that the weight sphere S is a partial spread. If Uh

and U
Φ(A)
h , A ∈ SL2 H, have some nonzero vector (~x, ~y) in common, then

~y = h~x = h~xA
t
A implies that 1 is an eigenvalue of the positive definite

Hermitian (2× 2)-matrix A
t
A. Since detA

t
A = 1, we derive that A∗ = A is

an element of U2H, whence Uh and U
Φ(A)
h coincide. Consequently, UΛ

h is a
partial spread. Moreover, the sets of nonzero vectors covered by S and UΛ

h ,
respectively, are disjoint, cf. (a) and 2.4(b). This proves the assertion.

(c) If h/|h| 6= l/|l|, then (a) shows that the sets of nonzero vectors covered
by the partial spreads UΛ

h and UΛ
l , respectively, are disjoint. Thus, UΛ

h ∪UΛ
l

is a partial spread, too. For the converse direction we suppose that h/|h| =
l/|l|. Then UΛ

h and UΛ
l are partial spreads covering the same set of vectors,

thanks to (a), hence their union fails to be a partial spread unless UΛ
h = UΛ

l .
The latter condition implies that Ul equals U

Φ(A)
h for some A ∈ SL2 H, and

consequently l~x = h~xA
t
A holds for all ~x ∈ H2. This implies that every

vector is an eigenvector of A
t
A with respect to the eigenvalue h−1l. Since

A is unimodular, we derive that l = h. �

Classification Theorem 2.8. Let σ : Spin(3) → Rpos be a continuous
function. Then the set

Lσ
0 := S ∪

{
Uλ

σ(p)p

∣∣ p ∈ Spin(3), λ ∈ Λ
}

is a Λ-invariant compact spread on P = H2 × H2 and, hence, defines a
16-dimensional locally compact translation plane Pσ whose automorphism
group contains the group Λ ∼= SL2 H. (Recall the definition of Λ, S and Uh

in 2.2, 2.4 and 2.6, respectively.)
Conversely, if P is a 16-dimensional locally compact translation plane

admitting the group SL2 H as a group of collineations, then P is isomorphic
to Pσ for some continuous function σ : Spin(3) → Rpos.
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Proof. (1) The set Lσ
0 is a partial spread, thanks to 2.7(b) and 2.7(c). Let

(~x, ~y) be an element of P with 〈~x, ~y〉 = h. If h vanishes, then (~x, ~y) is covered
by S, cf. 2.4. For h 6= 0 put l = σ(h/|h|) · h/|h| and use 2.7(a) to infer that
(~x, ~y) is contained in an element of UΛ

l . Thus, Lσ
0 covers P and we have

shown that Lσ
0 is a spread.

(2) If we can prove that L0 is closed in the Grassmannian manifold of all
8-dimensional subspaces of P , then L0 is a compact spread and, hence, Pσ

is a locally compact translation plane. Therefore, we consider a sequence
(Li)i, Li ∈ L0, which is convergent to some 8-dimensional vector subspace
L ≤ P .

If Li is an element of the compact weight sphere S for infinitely many i,
then also L is an element of S. Thus, we may assume that Li ∈ Lσ

0 \S holds
for all i. By the definition of Lσ

0 , we have that Li = Uλi
hi

, where λi ∈ Λ and
where hi = σ(pi)pi for some pi ∈ Spin(3).

For r ∈ Rpos we put ρ(r) := Φ(diag(r, r−1)) = diag(r−1, r, r, r−1). By the
KAK-decomposition [6, 7.39] of SL2 H, there are γi, δi ∈ ∆, ri ∈ Rpos such
that λi = γiρ(ri)δi. Note that ∆ and Spin(3) are compact and that σ is
continuous. By passing to a subsequence we may achieve the following:

(a) pi is convergent to p ∈ Spin(3), whence σ(pi)pi is convergent to h :=
σ(p)p,

(b) δi is convergent to δ ∈ ∆,
(c) ri is convergent to r ∈ Rpos ∪ {0,∞}, and
(d) U

ρ(ri)
hi

is convergent to some 8-dimensional vector subspace K of P .

We claim that K is an element of Lσ
0 — then L = lim

i→∞
Uλi

hi
= lim

i→∞
(Uρ(ri)

hi
)δi =

Kδ is an element of Lσ
0 as well and we are done. If r 6∈ {0,∞}, then it is

easy to see that K = U
ρ(r)
h . If r = 0, then we have that

K = lim
i→∞

U
ρ(ri)
hi

= lim
i→∞

{(r−1
i x, riy, rihix, r−1

i hiy) |x, y ∈ H}

= lim
i→∞

{(u, r2
i v, r2

i hiu, hiv) |u, v ∈ H}

= {(u, 0, 0, hv) |u, v ∈ H}

= (H · (1, 0))× (H · (1, 0))⊥,

whence K is an element of S. The case r = ∞ can be treated analogously.
(3) Let P be a 16-dimensional locally compact translation plane admitting

the group SL2 H as a group of automorphisms. By 2.2 we can identify P
and H4 such that the defining spread L0 of P is Λ-invariant. Every element
of L0 is either an element of the weight sphere S or is contained in an orbit
UΛ

h for some h ∈ H×, thanks to 2.3 and 2.5. Combine 2.7(a) and 2.7(c)
to infer the following: For every p ∈ Spin(3) there exists precisely one
r ∈ Rpos such that UΛ

rp is a subset of L0. Putting σ(p) := r we obtain a
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function σ : Spin(3) → Rpos and observe L0 = Lσ
0 . It remains to show

the continuity of σ. For this, consider a sequence (pi)i in Spin(3) which
converges to p. In order to check limi→∞ σ(pi) = σ(p) we prove that σ(p) is
the only accumulation point of (σ(pi))i in the interval [0,∞]: Let r be such
an accumulation point. It is easy to see that (Uσ(pi)pi

) is convergent to Urp

in the Grassmannian topology. Since L0 is compact, we infer that Urp is an
element of L0 and, hence, that r = σ(p). �

Remark 2.9. The projective closures of the planes specified in 2.8 yield all
16-dimensional compact projective translation planes admitting the group
SL2 H as a group of collineations: According to [11, 64.4.c], such a plane ei-
ther is classical, or the translation axis is invariant under all automorphisms,
whence the group SL2 H acts on the affine part as well.

Remark 2.10. The classification of 4-dimensional translation planes ad-
mitting the group SL2 R as a group of collineations is due to D. Betten, see
[11, 73.13 and 73.19] for the results. Note that there is an example with an
irreducible SL2 R-action. The 8-dimensional translation planes admitting
an SL2 C-action were completely determined by H. Hähl, see [3].

2.11. Coordinatizing quasifields of Pσ. We consider a function σ:Spin(3)
→ Rpos. Our aim is to introduce coordinates3 for the affine translation plane
Pσ with respect to the triangle o = (0, 0, 0, 0), w = (1, 0, 0, 0), s = (0, 1, 0, 0).
We claim that the resulting quasifield Qσ is obtained as follows: For h ∈ H,
we put

ζ(h) :=
{

0 if h = 0,
σ(−h/|h|)−2h if h 6= 0.

Then the quasifield in question is Qσ = H2 with its natural addition, while
the multiplication is given by

(h, l) ◦σ (x, y) := (xh− ζ(l)y, lx + yh) for (h, l), (x, y) ∈ H2.

The line G(h,l) ∈ L0 with slope (h, l) ∈ H2 is given by

G(h,l) = {(x, xh− ζ(l)y,−lx− yh, y) |x, y ∈ H2};

notice that o ∨ (w + s) = G(1,0) = {(x, y,−x, y) |x, y ∈ H}. Moreover, the
vertical axis equals

G∞ = o ∨ s = {0} ×H×H× {0}.
We have to show that Lσ

0 = {Gz | z ∈ H2 ∪ {∞}}. To this end it suffices to
prove that:

(1) S = {G(h,0) |h ∈ H} ∪ {G∞}, and
(2) UΛ

−σ(−p)p = {G(h,rp) | r ∈ Rpos, h ∈ H} for all p ∈ Spin(3).

3For details on how to coordinatize translation planes by quasifields we refer to [1].
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Property (1) can be easily derived from the following equations:

G∞ = (H · (1, 0))× (H · (1, 0))⊥

G(h,0) = {(x, xh,−yh, y) |x, y ∈ H} = (H · (1, h))× (H · (1, h))⊥,

recall the description of the elements of S in 2.3. We turn to (2): Directly
from the definition of U−σ(p)p we see that

G(0,σ(−p)p) = {(x,−σ(−p)−1py,−σ(−p)px, y) |x, y ∈ H2} = U−σ(−p)p.

Consider an element λ in Λ. By the Iwasawa decomposition [6, 6.46] of
SL2 H, there are elements B ∈ U2H, s ∈ Rpos, and h ∈ H such that

Φ−1(λ) = B · diag(s, s−1) ·
(

1 0
−h 1

)
.

A short computation shows that Uλ
−σ(p)p = Gλ

(0,σ(−p)p) = G(h,s2σ(−p)p), and
Property (2) follows easily. This finishes the proof.

Corollary 2.12. We consider the constant map σ : Spin(3) → Rpos; p 7→ 1.
Then Pσ is isomorphic to the affine plane over the octonions.

Proof. The multiplication of the quasifield of Pσ determined in 2.11 is (h, l)◦
(x, y) = (xh− ly, lx + yh). Indeed, this is the multiplication of the division
algebra O. �

3. Isomorphisms and automorphisms.

3.1. General remarks. Let P be a 16-dimensional locally compact trans-
lation plane whose group G contains a subgroup Λ which is locally isomor-
phic to SL2 H. Following the previous section, we identify P and H4 such
that Λ is the group specified in 2.2.

Moreover, let T be the group of vector translations of P and let Y be
the group of homotheties of P with a positive real scalar. Putting SG0 :=
Ge

0 ∩ SL(P ), we infer that Ge = (Y × SG0) n T . (The exponent e refers
to the connected component of a Lie group.) The group SG0 is called the
“reduced stabilizer” of P, see [11, 81.0] for details. In particular, we have
that

dim G = dim SG0 + dim Y + dim T = dim SG0 + 17.

Proposition 3.2. Retain the notation above. If Λ is not normal in the
reduced stabilizer SG0, then P is isomorphic to the affine plane over the
octonions. In every other case, SG0 is an almost direct product SG0 = Λ ·Ψ
of Λ and a compact connected subgroup Ψ of the centralizer of Λ in GL(P ).

Proof. Observe that SG0 is a noncompact group which fixes no affine lines
of P, since its subgroup Λ has this property. According to [8, 1.1], SG0 is
an almost direct product of a almost simple Lie group S of real rank 1 and
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a compact group Ψ. From [7, Theorem B] we conclude that P is isomorphic
to the octonion plane, or that S = Λ is a normal subgroup of SG0. In the
latter case, Ψ indeed is a subgroup of the centralizer Ξ of Λ. �

Remark 3.3. The reduced stabilizer of the octonion plane is isomorphic to
the almost simple Lie group Spin10(R, 1). Thus, the group of affine auto-
morphisms of the octonion plane has dimension 45 + 17 = 62.

3.4. The normalizer of Λ. We shall determine the normalizer Γ of Λ in
GL(P ). To this end we consider the automorphism group A of the Lie
algebra LΛ ∼= sl2H. Notice that the adjoint representation Ad is a Lie
homomorphism from Γ to A whose kernel coincides with the centralizer Ξ
of Λ in GL(P ). Observe that the map

ι : H2 ×H2 → H2 ×H2; (~x, ~y) 7→ (~y, ~x)

is an element of Γ and that Ad ι equals the automorphism X 7→ −X
t of

sl2H. From [9, §4(c)] we infer that A = Ad(Λ · 〈ι〉). (The group of inner
automorphism has index 2 in A and Ad ι is an outer automorphism.) Indeed,
we have that

Γ = 〈ι〉 · Λ · Ξ.(2)

The subrepresentations of Φ on H2 × {~0} and on {~0} ×H2 are inequivalent,
irreducible quaternion representations. Thus, the centralizer Ξ of Λ consists
precisely of the following maps:

ξa,b : H2 ×H2 → H2 ×H2; (~x, ~y) 7→ (a · ~x, b · ~y) with a, b ∈ H×.

Proposition 3.5. Let σ, τ : Spin(3) → Rpos be continuous maps and let
a, b ∈ Spin(3), r, s ∈ Rpos. Then the following holds:

(a) The map ξra,sb : (~x, ~y) 7→ (ra~x, sb~y) is an isomorphism from Pσ onto
Pτ if and only if τ(h) = r−1sσ(b−1ha) holds for every h ∈ Spin(3).

(b) The map ιξra,sb : (~x, ~y) 7→ (sb~y, ra~x) is an isomorphism from Pσ onto
Pτ if and only if τ(h) = r−1s[σ(a−1h−1b)]−1 holds for all h ∈ Spin(3).

Proof. Let f be an element of 〈ι〉 · Ξ. Observe that f leaves the weight
sphere S invariant. Moreover, notice that f centralizes the maximal compact
subgroup ∆ of Λ. This implies that f is an isomorphism from Pσ onto Pτ

if and only if f maps every ∆-invariant line Uσ(h)h, h ∈ Spin(3), of Lσ
0 to a

∆-invariant line Uτ(l)l of Lτ
0 . A short computation shows:

{(~x, σ(h)h~x) | ~x ∈ H2}ξra,sb = {(~y, r−1sσ(h)bha−1~y) | ~y ∈ H2}

{(~x, σ(h)h~x) | ~x ∈ H2}ιξra,sb = {(~y, r−1sσ(h)−1bh−1a−1~y) | ~y ∈ H2}.

From these equations we infer easily the assertions of the proposition. �



334 HARALD LÖWE

Proposition 3.6. We consider a continuous function σ : Spin(3) → Rpos.
Let G0 the stabilizer of the connected component of the automorphism group
of Pσ. Then the following statements are equivalent:

(1) Pσ is isomorphic to the affine plane over the octonions.
(2) σ is a constant map.
(3) G0 contains the group {ξa,1 | a ∈ Spin(3)}.
(4) G0 contains the group {ξ1,b | b ∈ Spin(3)}.

Proof. Use 3.5(a) to derive (2 ⇔ 3 ⇔ 4).
(1 ⇒ 3): If Pσ is isomorphic to the affine plane over the octonions,

then G0 ∩ SL(P ) is isomorphic to Spin10(R, 1). Moreover, the centralizer of
Λ ∼= SL2 H in Spin10(R, 1) is locally isomorphic to SU2 C · SU2 C. (Up to
conjugation, the Lie algebra so10(R, 1) contains only one subalgebra which
is isomorphic to so6(R, 1) ∼= sl2H, see [7, 6.9].) Therefore, the maximal
compact subgroup {ξa,b | a, b ∈ Spin(3)} of the centralizer of Λ in GL(P )
consists of automorphisms of Pσ.

(2 ⇒ 1): Since the automorphism group of the octonion plane P contains
a subgroup isomorphic to SL2 H (see above), we infer that P is isomorphic
to Pσ for some σ by the Classification Theorem (2.8). By “1 ⇒ 2”, σ is a
constant map, i.e., σ ≡ r holds for some r ∈ Rpos. If τ ≡ s, s ∈ Rpos, is an
arbitrary constant map, then ξ1,r/s is an isomorphism between Pτ and Pσ,
whence Pτ is isomorphic to the octonion plane. �

Theorem 3.7. Let σ, τ : Spin(3) → Rpos be continuous functions. Then Pσ

and Pτ are isomorphic if and only if there exists a, b ∈ Spin(3) and r ∈ Rpos

such that one of the following two properties is satisfied:

τ(h) = rσ(ahb) for all h ∈ Spin(3) or

τ(h) = r[σ(ahb)]−1 for all h ∈ Spin(3).

Proof. If one of the two properties above holds, then use 3.5 to obtain an
isomorphism between Pσ and Pτ .

Conversely, suppose that Pσ and Pτ are isomorphic. Then there exists
an R-linear map f : H4 → H4 which maps Lσ

0 onto Lτ
0 .

If σ ≡ t, t ∈ Rpos, is a constant map, then Pσ and, hence, Pτ are
isomorphic to the octonion plane (3.6). This implies that τ ≡ t′, t′ ∈ Rpos

is a constant map (3.6). Thus, τ(h) = t′/t · σ(h) holds for all h ∈ Spin(3).
Finally, suppose that neither σ nor τ is a constant map. Then the reduced

stabilizers of Pσ is an almost direct product of Λ and some compact group,
see 3.2. Since this assertion holds for Pτ as well, f is an element of the
normalizer of Λ. Modifying f with elements of Λ, we may achieve that f is
an element of 〈ι〉 · Ξ, and the desired property follows from 3.5. �
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Theorem 3.8. Let P be a 16-dimensional translation plane with automor-
phism group G and reduced stabilizer SG0. If G contains a subgroup locally
isomorphic to SL2 H, then only the following (mutually exclusive) possibili-
ties can occur:

(1) SG0 is isomorphic to Spin10(R, 1) and P is isomorphic to the octonion
plane.

(2) P is isomorphic to Pσ, where σ : Spin(3) → Rpos is a continuous
function which is not constant and depends only on the real part of its
argument. The reduced stabilizer of Pσ is the almost direct product of
Λ ∼= SL2 H and the group

Ψ = {(~x, ~y) 7→ (a~x, a~y) | a ∈ Spin(3)} ∼= SU2 C.

In particular, the dimension of G equals 35.
(3) P is isomorphic to Pσ, where σ is derived from a continuous, not

constant function ρ : [0; 1] → Rpos, as follows:

σ : Spin(3) = {u + jv |u, v ∈ C, |u|2 + |v|2 = 1} → Rpos; u + jv 7→ ρ(|u|).
In this case, the reduced stabilizer of Pσ is the almost direct product
of Λ ∼= SL2 H and the group

Ψ = {(~x, ~y) 7→ (a~x, b~y) | a, b ∈ Spin(3) ∩ C} ∼= SO2 R× SO2 R.

In particular, the dimension of G equals 34.
(4) The reduced stabilizer of Pσ an almost direct product of Λ and an at

most 1-dimensional compact group, and dim G ∈ {32, 33}.

Proof. By the Classification Theorem (2.8), there exists a continuous func-
tion σ : Spin(3) → Rpos such that P is isomorphic to Pσ.

We suppose that Pσ is not isomorphic to the octonion plane. Then σ
is not constant (3.6) and the reduced stabilizer of Pσ is an almost direct
product of Λ and a connected compact group Ψ, cf. 3.2. Indeed, Ψ is a
subgroup of the centralizer Ξ of Λ in GL(P ) and, hence, Ψ is contained in
the maximal compact subgroup Ξ′ = {ξa,b | a, b ∈ Spin(3)} of Ξ. By 3.5(a),
we infer that

Ψ = {ξa,b | a, b ∈ Spin(3), σ(b−1ha) = σ(h) for all h ∈ Spin(3)}.(3)

We emphasize that we are allowed to replace Ψ by ξ−1
a,bΨξa,b for arbitrary

a, b ∈ Spin(3): This corresponds to the replacement of Pσ by the isomorphic
plane Pτ , τ(h) = σ(b−1ha), see 3.7. Checking the connected subgroups of
Ξ′ ∼= SU2 C× SU2 C yields the following fact: Up to conjugation, there are
precisely the following possibilities for Ψ:

(i) Ψ has dimension 0 or 1.
(ii) Ψ = {ξa,a | a ∈ Spin(3)}.
(iii) Ψ = {ξa,b | a, b ∈ Spin(3) ∩ C}.
(iv) Ψ contains the group {ξa,1|a∈Spin(3)} or the group {ξ1,b|b∈Spin(3)}.
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Since Pσ is not isomorphic to the octonion plane, case (iv) can not occur,
see 3.6. Using Equation (3), it is not hard to see that Ψ equals {ξa,a | a ∈
Spin(3)} if and only if σ(h) depends only on the real part of h.

If σ is one of the functions specified in Part (3) of the theorem, then we
derive that Ψ = {ξa,b | a, b ∈ Spin(3) ∩ C} from Equation (3). Conversely,
suppose that ξa,b is an automorphism of Pσ for every a, b ∈ Spin(3). Let
u + jv be an arbitrary element of Spin(3) with u, v ∈ C, |u|2 + |v|2 = 1.
If u = |u|eir and v = |v|eis are the polar decompositions, then we put
a = e−i(r+s)/2 and b = ei(r−s)/2. Then ξa,b is an automorphism of Pσ and
we infer from 3.5(a) that

σ(u + jv) = σ(e−i(r−s)/2(|u|eir + j|v|eis)e−i(r+s)/2) = σ(|u|+ j|v|)
= σ(|u|+ j

√
1− |u|2),

whence σ depends only on |u|, as asserted in Part (3). This finishes the
proof. �

Corollary 3.9. Let P be a 16-dimensional locally compact translation plane
admitting SL2 H as a group of collineations. If the dimension of the automor-
phism group of P strictly exceeds 35, then P is isomorphic to the octonion
plane. �
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