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We prove that an operator space is completely isometric to
a ternary ring of operators if and only if the open unit balls
of all of its matrix spaces are bounded symmetric domains.
From this we obtain an operator space characterization of
C*-algebras.

1. Introduction.

In the category of operator spaces, that is, subspaces of the bounded linear
operators B(H) on a complex Hilbert space H together with the induced
matricial operator norm structure, objects are equivalent if they are com-
pletely isometric, i.e., if there is a linear isomorphism between the spaces
which preserves this matricial norm structure. Since operator algebras, that
is, subalgebras of B(H), are motivating examples for much of operator space
theory, it is natural to ask if one can characterize which operator spaces are
operator algebras. One satisfying answer was given by Blecher, Ruan and
Sinclair in [10], where it was shown that among operator spaces A with a
(unital but not necessarily associative) Banach algebra product, those which
are completely isometric to operator algebras are precisely the ones whose
multiplication is completely contractive with respect to the Haagerup norm
on A® A. (For a completely bounded version of this result, see [7].)

A natural object to characterize in this context are the so called ternary
rings of operators (TRO’s). These are subspaces of B(H) which are closed
under the ternary product xy*z. This class includes C*-algebras. TRO’s,
like C*-algebras, carry a natural operator space structure. In fact, every
TRO is (completely) isometric to a corner pA(1 — p) of a C*-algebra A.
TRO’s are important because, as shown by Ruan [35], the injectives in the
category of operator spaces are TRO’s (corners of injective C*-algebras)
and not, in general, operator algebras. (For the dual version of this result
see [15].) Injective envelopes of operator systems and of operator spaces
([23] and [35]) have proven to be important tools, see for example [9]. The
characterization of TRO’s among operator spaces is the subject of this paper.
(See Theorem 5.3.)

Closely related to TRO’s are the so called JC*-triples, norm closed sub-
spaces of B(H) which are closed under the triple product (zy*z + zy*z)/2.
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These generalize the class of TRO’s and have the property, as shown by
Harris in [25], that isometries coincide with algebraic isomorphisms. It is
not hard to see this implies that the algebraic isomorphisms in the class of
TRO’s are complete isometries, since for each TRO A, M,,(A) is a JC*-triple.
(For the converse of this, see [24, Proposition 2.1].) As a consequence, if
an operator space X is completely isometric to a TRO, then the induced
ternary product on X is unique, i.e., independent of the TRO.

Building on the pioneering work of Arveson ([3] and [4]) on noncommu-
tative analogs of the Choquet and Shilov boundaries, Hamana (see [24])
proved that every operator space A has a unique enveloping TRO 7 (A)
which is an invariant of complete isometry and has the property that for
any TRO B generated by a realization of A, there exists a homomorphism
of B onto T(A). The space 7 (A) is also called the Hilbert C*-envelope of
A. The work in [8] suggests that the Hilbert C*-envelope is an appropriate
noncommutative generalization to operator spaces of the classical theory of
Shilov boundary of function spaces.

It is also true that a commutative TRO (zy*z = zy*z) is an associative
JC*-triple and hence by [19, Theorem 2], is isometric (actually completely
isometric) to a complex Chom-space, that is, the space of weak*-continuous
functions on the set of extreme points of the unit ball of the dual of a Banach
space which are homogeneous with respect to the natural action of the circle
group, see [19]. Hence, if one views operator spaces as noncommutative
Banach spaces, and C*-algebras as noncommutative C(2)’s, then TRO’s
and JC*-triples can be viewed as noncommutative Clom,-Spaces.

As noted above, injective operator spaces, i.e., those which are the range
of a completely contractive projection on some B(H), are completely iso-
metrically TRO’s; the so called mized injective operator spaces, those which
are the range of a contrative projection on some B(H), are isometrically
JC*-triples. The operator space classification of mixed injectives was begun
by the authors in [32] and [33] and is ongoing.

Relevant to this paper is another property shared by all JC*-triples (and
hence all TRO’s). For any Banach space X, we denote by Xj its open unit
ball: {z € X : ||z|| < 1}. The open unit ball of every JC*-triple is a bounded
symmetric domain. This is equivalent to saying that it has a transitive
group of biholomorphic automorphisms. It was shown by Koecher in finite
dimensions (see [31]) and Kaup [28] in the general case that this is a defining
property for the slightly larger class of JB*-triples. The only illustrative
basic examples of JB*-triples which are not JC*-triples are the space H3(QO)
of 3 x 3 Hermitian matrices over the octonians and a certain subtriple of
Hs3(O). These are called exceptional triples, and they cannot be represented
as a JC*-triple. This holomorphic characterization has been useful as it
gives an elegant proof, due to Kaup [29], that the range of a contractive
projection on a JB*-triple is isometric to another JB*-triple. The same
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statement holds for JC*-triples, as proven earlier by Friedman and Russo
n [21]. Youngson proved in [38] that the range of a completely contractive
projection on a C*-algebra is completely isometric to a TRO. These results,
as well as those of [2] and [17], are rooted in the fundamental result of
Choi-Effros [12] for completely positive projections on C*-algebras and the
classical result ([30] and [18, Theorem 5]) that the range of a contractive
projection on C(€) is isometric to a C,-space, hence a Copy-space.

Motivated by this characterization for JB*-triples, we will give a holomor-
phic characterization of TRO’s up to complete isometry. We will prove in
Theorem 5.3 that an operator space A is completely isometric to a TRO if
and only if the open unit balls M, (A)y are bounded symmetric domains for
all n > 2. As a consequence, we obtain in Theorem 5.7 a holomorphic oper-
ator space characterization of C*-algebras as well. It should be mentioned
that Upmeier (for the category of Banach spaces) in [37] and El Amin-
Campoy-Palacios (for the category of Banach algebras) in [1], gave different
but still holomorphic characterizations of C*-algebras up to isometry. We
note in passing that injective operator spaces satisfy the hypothesis of Theo-
rem 5.3, so we obtain that they are (completely isometrically) TRO’s based
on deep results about JB*-triples rather than the deep result of Choi-Effros.
(See Corollaries 5.5 and 5.6.)

We now describe the organization of this paper. Section 2 contains the
necessary background and some preliminary results on contractive projec-
tions. In Section 3, three auxiliary ternary products are introduced and
are shown to yield the original JB*-triple product upon symmetrization.
Section 4 is devoted to proving that these three ternary products all coin-
cide. Section 5 contains the statement and proof of the main result and its
consequences.

2. Preliminaries.

An operator space will be defined as a normed space A together with a
linearly isometric representation as a subspace of some B(H). This gives A
a family of operator norms || - ||, on M, (A) C B(H™). As proved in [34], an
operator space can also be defined abstractly as a normed space A having
a norm on M,(A) (n > 2) satisfying certain properties. Each such family
of norms is regarded as a “quantization” of the underlying Banach space.
These properties give rise to an isometric representation of the operator
space as a subspace of B(H) where the natural amplification maps preserve
the matricial norm structure. This is analagous to (and generalizes) the way
an abstract Banach space B can be isometrically embedded as a subspace of
C(£2). The resulting operator space structure in this case is called MIN(B)
and is seen as a commutative quantization of B.
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Two operator spaces A and B are n-isometric if there exists an isometry
¢ from A onto B such that the amplification mapping ¢, : M,,(4) — M, (B)
defined by ¢([aij]) = [p(as;)] is an isometry. A and B are completely
isometric if there exists a mapping ¢ from A onto B which is an n-isometry
for all n. For other basic results about operator spaces, see [16].

The following definition is a Hilbert space-free generalization of the TRO’s
mentioned in the introduction:

Definition 2.1 (Zettl [39]). A C*-ternary ring is a Banach space A with
ternary product [z,y, z] : AXAx A — A which is linear in the outer variables,
conjugate linear in the middle variable, is associative:

[ablcde]] = [a[dcble] = [ab[cde]],
and satisfies ||[zyz]|| < [[z[[lyllll=]| and ||[z2z]]| = [l]].

A TRO is a C*-ternary ring under any of the products [zyz]y = Azy*z,
for any complex number A with [A| = 1.

A linear map ¢ between C*-ternary rings is a homomorphism if p([zyz])
= [p(z),o(y), p(z)] and an anti-homomorphism if p([zyz]) = —[¢(x),
e(y), o(2)].

The following is a Gelfand-Naimark representation theorem for C*-ternary
rings:

Theorem 2.2 ([39]). For any C*-ternary ring A, A = A1 ®A_;, where A;
and A_1 are sub-C*-ternary rings, A1 is isometrically isomorphic to a TRO
By and A_q is isometrically anti-isomorphic to a TRO B_1.

It follows that A_; = 0 if and only if A is ternary isomorphic to a TRO. In
Theorem 5.3, we shall show that under suitable assumptions on an operator
space A, it becomes a C*-ternary ring with A_; = 0 and the above ternary
isomorphism is a complete isometry from A with its original operator space
structure to a TRO with its natural operator space structure.

An immediate consequence of our proof of Theorem 5.3 is an answer to
a question posed by Zettl [39, p. 136]: For a C*-ternary ring A, A_; =0
if and only if A is a JB*-triple (see the next definition) under the triple
product

{abc} = %([abc] + [cbal).

The following definition generalizes the JC*-triples defined in the intro-
duction:

Definition 2.3 ([28]). A JB*-triple is a Banach space A with a product
D(xz,y)z = {x y z} which is linear in the outer variables, conjugate linear
in the middle variable, is commutative: {z y z} = {z y z}, satisfies an
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associativity condition:

(1) [D(x,y),D(a,b)] :D({‘T Yy a}ab) —D(CL, {b x y})
and has the topological properties that:

) 1D, )] = |||, .
(ii) D(z,z) is Hermitian (in the sense that [e*P@?)| = 1) and has
positive spectrum in the Banach algebra B(A).

We abbreviate D(z,x) to D(z).

As noted in the introduction, JC*-triples (and hence TRO’s and C*-
algebras) are examples of JB*-triples. Other examples include any Hilbert
space, and the spaces of symmetric and anti-symmetric elements of B(H )
under a transpose map defined by a conjugation.

If one ignores the norm and the topological properties in Definition 2.3,
the algebraic structure which results, called a Jordan triple system, or
Jordan pair, has a life of its own, [31]. Note that (1) can be written as

2)  Az,y,{abz}} —{a,b,{zyz}} = {{zya}, b, 2} — {a, {yab}, 2} .

For easy reference we record here two identities for Jordan triple systems
which can be derived from (1) ([31, JP8, JP16]).

(3) 2D(x,{yxz}) = D({ayz}, z) + D({zzz},y)

4)  {{aya},b,2} —{a, {yab}, 2} = {z, {bay} , 2} — {{abz} ,y, 2}

We will now list some facts about JB*-triples that are relevant to our pa-
per. A survey of the basic theory can be found in [36]. As proved by Kaup
[28], JB*-triples are in 1-1 isometric correspondence with Banach spaces
whose open unit ball is a bounded symmetric domain. The triple prod-
uct here arises from the Lie algebra of the group of biholomorphic auto-
morphisms. This Lie algebra is the space of complete vector fields on the
open unit ball and consists of certain polynomials of degree at most 2. The
quadratic term in each of these polynomials is determined by the constant
term. For a bounded symmetric domain, the constant terms which occur
exhaust A. Thus, linearizing the quadratic term for every element a € A
leads to a triple product on A.

It is this correspondence which motivates the study of the more gen-
eral JB*-triples. Indeed, the proofs of two important facts follow naturally
from the holomorphic point of view [29]. Firstly, the isometries between
JB*-triples are precisely the algebraic isomorphisms. From this follows the
important fact, used several times in this paper, that, unlike the case for
binary products, the triple product of a JB*-triple is unique. Secondly, the
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range of a contractive projection P on a JB*-triple Z is isometric to a JB*-
triple. More precisely, P(Z) is a JB*-triple under the norm and linear op-
erations it inherits from Z and the triple product {zyz}p 4 := P({zyz},),
for x,y,z € P(Z).

In the context of JC*-triples, these facts were proven by functional ana-
lytic methods in [25] and [21] respectively. These facts show that JB*-triples
are a natural category in which to study isometries and contractive projec-
tions. Recently, in [13] the authors with C.-H. Chu have shown that w*-
continuous contractive projections on dual JB*-triples (called JBW*-triples)
preserve the Jordan triple generalization of the Murray-von-Neumann type
decomposition established in [26] and [27]. Two other properties of contrac-
tive projections were used in that work and will be needed in the present
paper. They consist of two conditional expectation formulas for contractive
projections on JC*-triples ([20, Corollary 1]), namely

(5) P{Pz, Py, Pz} = P{Px, Py, 2} = P{Px,y, Pz};

and the fact that the range of a bicontractive projection on a JC*-triple
is a subtriple [20, Proposition 1]. Recall that a projection P is said to be
bicontractive if ||P|| <1 and ||I — P|| < 1.

Let A be a JB*-triple. For any a € A, there is a triple functional calculus,
that is, a triple isomorphism of the closed subtriple C'(a) generated by a onto
the commutative C*-algebra Cy(Sp D(a,a) U {0}) of continuous functions
vanishing at zero, with the triple product fgh. Any JBW*-triple (defined in
the previous paragraph) has the propertly that it is the norm closure of the
linear span of its tripotents, that is, elements e with e = {eee}. A unitary
tripotent is a tripotent v such that D(v,v) = Id. For a C*-algebra, tripotents
are the partial isometries and for unital C*-algebras, unitary tripotents are
precisely the unitaries. For tripotents v and v, algebraic orthogonality, i.e.,
D(u,v) = 0, coincides with Banach space othogonality: |[u +v| = 1. For a
and b in A, we will denote the property D(a,b) =0 by a L b.

As proved in [14], the second dual A** of a JB*-triple A is a JBW*-
triple containing A as a subtriple. Multiplication in a JBW*-triple is norm
continuous and, as proved in [5], separately w*-continuous.

We close this section of preliminaries with an elementary proposition
showing that certain concrete projections are contractive.

Proposition 2.4. Let A be an operator space in B(H).
(a) Define a projection P on Ms(A) by

p(l@ b _lla+b a+d
c dl|) 2 0 0o |
Then ||P|| < 1. Moreover, the restriction of P to { [8 8 } ta,be A}

1s bicontractive.
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) a1l a2 a1 0
(b) Let P11 : My(A) — Ms(A) be the map [ o1 g ] — { 0 0 ],

and similarly for Pia, Po1, Paa. Then Pj; is contractive and Piq + Po,
P11 + P12, and Pi1 + Pea are bicontractive. More generally, the P;j :
M, (A) — M, (A) are contractive and for any subset S C {1,2,...,n},
dies 21 Pij and 37506 > 71y Py are bicontractive.

(¢c) The projections P : Ma(A) — DMy(A) and Q : P(My(A)) —
P(M3(A)) defined by

p(l@ b _lla+d b+e
c d 9| b+c a—+d

a b ~_lla+b a+d
@y a T2l a+b a+b

are bicontractive.

and

Proof. We omit the proofs of (a) and (b). To prove (c), since for example
I-P=(I—-(2P—-1))/2and P = (I + (2P —1I))/2, it suffices to show that
2P — I and 2(Q) — I are contractive. But

eon([z D) -[4]- (2] (2200 4]

and

3. Additivity of the ternary products.

Throughout this section, A C B(H) will be an operator space such that the
open unit ball M3(A)o is a bounded symmetric domain. Let {, -}/, 4
denote the associated JB*-triple product on M3(A). Note that although
M>5(A) inherits the norm and linear structure of My(B(H)) = B(H® H), its
triple product {- - -} Ma(4) 1 general differs from the concrete triple product
(XY*Z+ZY*X)/2 of B(H® H). In fact, the results of this section would
become trivial if these two triple products were the same.

By properties of contractive projections and the uniqueness of the triple
product, A, being linearly isometric to P;j(M2(A)) becomes a JB*-triple
whose triple product {zyz}, is given, for example, by

[{xyOz}A 8}:&({[5 8“3 8HS 8]}M2<A>>’
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and similarly using the other P;;. Usually we shall justuse the notation {- - -}
for either of the triple products {zyz} , and {,, -}MQ(A). Lemma 3.6 shows
that the projection P;; could be removed in this definition.

We assume A is as above and proceed to define (in Definition 3.7) three
auxiliary ternary products, denoted [, -, ], (+,-,-), and (-, -,-) and show their
relation to {-,-,-}. We begin with a sequence of lemmas which establish
some properties of the terms in the following identity, where a, b, c € A:

o Al s Lol s =l ollo ol o)y

a 0170 ][0 ¢]
+{_0 0]loo]|o 0_}
[0 all0 b0 ¢]
+{_0 010 o0]]o0 0_}
[0 a ][O0 b][c 0]
+{_00 000 0_}'

It will be shown in Lemma 3.2 that the left side of (6) has the form

Ty
z o w |’
where (z +y)/2 = {abc}. In Lemmas 3.4-3.6, each term on the right side of

(6) will be analyzed.
Remark 3.1. The space

with the triple product

(7) faiic} - = { 2{%bc} 2{%bc} ]

and the norm of M>s(A), is a JB*-triple.

Note that by Proposition 2.4(a), A is a subtriple of My(A), but we do not
know a priori that its triple product is given by (7).
Proof. The proposed triple product, which we denote by {ZL’ZE}, is obvi-

ously linear and symmetric in @ and ¢, and conjugate linear in b. Since, for
example,

{55{53’5}} _ [ 2{ab gcde}} 2{ab ({)cde}} ] ,

the main identity (2) is satisfied.
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15 6] {aie)

(@312 and hence [[D@)| = @] |

Since PG = (2P, [P = V2|2 P@y[| = V2|ly| = |7,
so D(7) is Hermitian.

Finally, for A < 0, the inverse of A — D(Z) is given by

~ A—2D(z) 'y (A—2D(z))"!
yH[( O())y( O())y]'

Hence, Spy 3 (D(%)) C [0,00). O

= \/2|la|| one obtains || {@aa} | = [al?,

From ‘ <

Lemma 3.2. Fora,b,c € A, there exist x,y,z,w € A such that

a a 0 b c c Ty
00 00 00 2 ow |7
and (x +y)/2 = {abc}.
Proof. Consider the projection P defined in Proposition 2.4(a). By (5),

gikmiadiinil)
Qs L)

By Remark 3.1 and the uniqueness of the triple product in a JB*-triple,

eIl )
ool

[ {agc} {agc} ] [ (z+y)/2 (x+y)/2 ] '

o o

0
0
then

- 0 0
O

It will be shown below in the proof of Lemma 3.8 that z = y = {abc} and
that each z = w = 0.

Lemma 3.3. For each a,b € A,

oo lelo e e n] [0 0]



348 MATTHEW NEAL AND BERNARD RUSSO

Proof. Suppose first that a = > \ju; where A; > 0 and the wu; are tripotents
in A, and similarly for b = ) pjv;. Because the image of a bicontractive

projection is a subtriple ([20, Proposition 1), U; := { 161 8 ] and Vj :=
0
0

Vjll = 1. Hence D(U;, V;) = 0 in (the abstract triple product of) M>(A) and
so for all z,y, z,w € A,
1E)

(DI
s[5 8][8 8 ][ 2o

For the general case, note that, by [16, 3.2.1], there is an operator space
structure on the dual of any operator space A such that the canonical in-
clusion of A into A** is a complete isometry. Moreover, by [6, Theorem 2.5
the norm structure on M, (A**) coincides with that obtained from the iden-
tification M, (A**) = M, (A)**. Hence, for all n, M, (A**) is a JBW*-triple
containing M, (A) as subtriple. Since each element of A can be approxi-
mated in norm by finite linear combinations of tripotents in A**, the first
statement in the lemma follows from the norm continuity of the triple prod-
uct.

Since interchanging rows is an isometry, hence an isomorphism, the second
statement follows. O

1? ] are tripotents, and since they are orthogonal in B(H @ H), ||U; -
j

Lemma 3.4. Let a,b,c € A. Then
a 0 0 b c 0
0 0 0 0 0 0
a 0J[0 0][c O

® o o]l o]l o]f=0

Proof. To prove the first statement, let X denote

ool ollo o]y
m=m ({500 0]l00]})-

Similarly, (P11 + P1)(X) = (Pa1 + Pa2)(X) =0, so that X = [ 8 "8 } .

By (5),

o0
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Let X' = ] We claim that for any Y € My(A), {XX'Y} = 0.
a
0

0
0 b c 0
Indeed, with A = ,C = , we have A 1 X',
C 1 X' and by (4 [ [ ] [ ]
{XX'Y} = {{ABC}X Y}
={C{BAX'} Y} +{A{X'CB}Y} - {{CX'A} BY} =0.

Thus D(X, X') = 0, which, by [22, Lemma 1.3(a)], implies that X and X’
are orthogonal in the Banach space sense: || X + X'|| = max (|| X, [|X]]).

Since || X + X'|| = H[ 0w } H V/2||z||, it follows that = 0. The second

0 0 0 0

100 ;100
assertion is proved similarly, using X = [ r 0 ], X' = [ 0 } O

By interchanging rows and columns, it follows that the following triple
products all vanish (the last three by orthogonality):

o ol ello b sl n] o o]y
o gl sl ol sl o]l 2 ]h

0
0

SO

0
c

o o
e O
o O
o O
o O

o (e sl sl L5 )00
oS e ol alb=A[s a1ls o1Ts o]} =o

and

o 0l[0o b]J0 0] _ 0
10 a [0 0]]0 c]f) T
Lemma 3.5. Fora,b,c € A, there exists z € A such that
a 0 0 b 0 ¢ |12 0
00 00 00 10 0|
0 0 b 0 c
Proof. Let X denote{ 0 ] [ 0 0 ] [ 0 0 ]} By (5), (Pr2+Pe2)(X)
=0 and (P2 + P»)(X) =0.

—
| © e
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Lemma 3.6. Fora,b,c€ A,

o sJloallo slp=10 7]

Proof. Since P11 + P12 and Pjo + Py are bicontractive, the intersection of
their ranges is a subtriple. Since A is a JB*-triple under the product induced
by P2, and triple products are unique, the result follows. O

As noted in the proof of Lemma 3.3, interchanging rows or columns is an
isometry, hence an isomorphism. Therefore we also have, for example,

o olloolloali-[% o
and so forth.

In Proposition 2.4(b) we have defined projections Pj; : My (A) — M, (A)
as follows: If X = [z] € My (A), then P;;(X) is the element of M, (A) with
xi; in the (4, j) entry and zeros elsewhere. In what follows, we shall use the
maps p;; : Mp(A) — A defined by p;;(X) = x;; for X = [z11] € M, (A).

Definition 3.7. Define a ternary product [a, b, ¢| or [abc] on A by

wod =2 ({3 8]0 0[5 8]):

Similarly, define two more ternary products (abc) and (abc) as follows:

w  wo-m ({505 0] 0]})

and

o wa—m ({[00][0 0110 811

We treat first the ternary product [a, b, ¢]. Note that, by Lemma 3.5,
1| [a,b,c] O] 0 a 0 b c 0
AR (LI w2
and that by interchanging suitable rows and columns,
[0 0[O0 0][0 O]
[CL, b7 C] - 2p21 <{ 0 }
= 2p12 <{
~ 2 ({ }

o O

QO O
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Lemma 3.8. Fora,b,c€ A,
[a,b,c] + [¢,b,a] = 2{abc},
and hence
lla, a, a]|| = |la]*.

Proof. Given a,b,c € A, it follows from Lemma 3.2, Lemmas 3.4-3.6, Defi-
nition 3.7 and (6) that there are elements z,y,z,w € A such that z +y =
2{abc} and

[a: y}_[() 0}_{_[[@1}0}/2 O]_i_[o {abc}]_i_[[cba]/Q 0].

z w 0 0 0 0 0 0 0 0
Hence [abc]/2 + [cba]/2 = z = y = {abc} (and z = w = 0). O

We shall see later in Proposition 4.5 that in fact [abc] = (abc) = (abc).
First we shall show the analog of Lemma 3.8 for each of the ternary products
(abc) and (abc). We note that, as above,

o [arz o] tTa o]0 o ][0 8])
R IR

Moreover, by interchanging rows and/or columns,

= 2p1o

0o 0o][O0 b 0 ¢ |
(“bc):2p22<{_0 a]l00]]00 >
_ [0 a]lO O]]O O
- PR\l oo]lob]|o ¢
_ 0 01[b 0][ec O
- P |aeo]loo0]]0o0
and
(16) (abc) = 2pao <{

o

oo oo o<
O T OO OO

SO o O OO0
OO o2 Q O

|
- ({ D)

Proposition 3.9. If A is an operator space such that My(A)g is a bounded
symmetric domain (and consequently Ma(A) and A are JB*-triples), then
(abc) + (cba) = 2 {abc} 4, and (abc) + (cba) = 2{abc} ,.

oo OO
NN Y—— —— —— —— ——
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Proof. The proof for (-,-,-) is similar to the proof for [-,-, ], using instead
the identity

sl lvs]lesli=aeallia]le o)y
AL o2 8]y
(M)
)

and the projection

rleal)=ali]

To prove the statement for (-, -, ) consider (cf. Remark 3.1) the space

[z e,

which is a subtriple of Mjy(A) since it is the range of a product QP of

the bicontractive projections @, P of Proposition 2.4(c). It follows as in
the proof of Remark 3.1 that Ais a JB*-triple under the triple product
{- -} defined by {abc} = 4({abc}). To see this, let D'(z)a = {77a}’
and note that [|Z| = 2|jz||, D'(Z)a = 4(D(~:U)a)~, ZtD/(I)y = (e¥tD(@)q)

and that (A — D(Z))"'y = ((A — D(z))"'y). By the uniqueness of the
triple product on My(A), {abc} — {abc}. Hence, by expanding {Zjz} =

{[:E ZL‘] [y y] [z Z]}jnto computable terms,
T x vy z z

4{zyz}
- (777}
= ({zyz} + (2y2)/2 + (2y2) /2 + [wy2]/2 + [2y2]/2 + (wy=) /2 + (2y) /2)
= (3{ayz} + (wyz)/2 + (zy2)/2).
This proves the statement for (-, -, -). O

4. Equality of the ternary products.

In this section, we continue to assume that A C B(H) is an operator space
such that the open unit ball Ms(A)y is a bounded symmetric domain. We
shall prove the equality of the three ternary products defined in Section 3.
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Even though they agree, all three products are needed in the proof of the
crucial Proposition 5.1.

In the following we shall let a € My(A) denote [ N

0 _
0 a } and a € My(A)

a
0

P11 + P»9 are invariant under the continuous functional calculus in a JB*-
triple. In particular, for any A > 0,

aA:HA OA} and(a))‘:[ 0 GOA].

denote { 2 } By Lemmas 3.3 and 3.6, the ranges of Pio + P> and

a a

Here, a’ is defined by the triple functional calculus in the JB*-triple Mo (A)
and a” is defined by the triple functional calculus in the JB*-triple A.

Lemma 4.1. Let A\, u, v be positive numbers and let a € A. Then
aMtrty — {a’\a“a”} = {éka“ﬁl’} = {ékﬁ“a"}

and
attrty = {akaﬂa”} = {a/\é“a”} = {éka“a”} .

Proof. a*"#t = {a*ala”} is immediate from the functional calculus. The
proofs of the other statements are all proved in the same way, for example,

{a*aﬂa”} = {

T OO
o 8
>

+

+

—+

|
|
{[
{2
{
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which further expands, using (8)-(11) into

0 a|[a* 0 0 0
0 0 0 0||a” O
+-Oa>‘_-00__00

0 0 [0 a*||a” O

N [0 0][a* O0]]0 @]

e 0] 0 0][0 O]

N 0 0][0 0 ][0 a”]

L a* 00 a* ][0 O
10 0 n (a*ata”)/2 0
“ 1 0 (a¥ata?)/2 0 0

0 0 <a”a“a>‘>/2 0 Apiv

+{O <a’\a“a”>/2]+[ 0 0

Lemma 4.2. D(a,a) = D(a,a).

Proof. We shall use (3) with z = {xxy}, which states that

(17) D({wya} {zry}) = 2D(x, {yx {zazy}}) — Dz {zzy} x},y).

We have, by (17) and Lemma 4.1,

D(a,) = D ({at%%,a1/%,a1/s}  fal/s,at/s, atis})
—2p (a3, {at/s,a1/%, a5, a5, 10} )
_D ({51/3 {51/3 51/3,a1/3} 751/3} ,a1/3)
50 () - b ({8
a

—9D ( 1/3 —5/3) ( 5/3 1/3)
=2D(a,a) — D(a,a),

which proves the lemma.

Lemma 4.3. D(a,a) = D(a,a).
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[S38

Proof. By Lemma 4.1 and two applications of (1),
D(a,a) =D ({a1/4,§1/4,§1/2} ,5)
— D@2, {a aV/* a'/")) + [D(aV/%,a/Y), D(a"/?, a)]
— D@2,a%?) + [D(a, a4, D(a'/2, a)]
(by Lemma 4.2 since D(a'/? a) = D(a%*,a%*))
= D(a 12, 3/2) +D ({a1/451/4a1/2} ,a) _D (al/Q, {aa1/4a1/4})
= D(a'/?,a%?) + D(a,a) — D(a'/?,3%/?).
Hence D(a,a) — D(a,a) = D(a'/?,a%?) — D(al/?,a%?).

It remains to show that D(a,a®) — D(a,a®) = 0 for every a € A. Now by
(3) and Lemma 4.1,

D(a,a®) = D(a,{a,aa})
({aaa},a)/2+ D(a* a)/2
= D(a%a)/2+ D(a% a)/2
(a,a%) (by interchanging a and a).

This proves the lemma. O

By linearization from the preceding two lemmas we obtain:

Lemma 4.4. D(a,b) = D(a,b); D(a,b) = D(a,b).

Proof. From D(a+b,a+b) = D(a+b,a+b) follows D(b,a) + D(a,b) =
D(a,b)+D(b,a). Now replace a by ia and add to obtain D(a,b) = D(a,b).
The second statement follows similarly from D(a+b,a+b) = D(a+b,a+
b). O

Proposition 4.5. If A is an operator space such that My(A)g is a bounded
symmetric domain, then [abc] = (abc) = (abc).

Proof. By expanding as in the second part of the proof of Lemma 4.3,
z 0 a 0 b 0 z 0
vem 5] = 4[5 2[00 o)
_ a 0 b 0 xz 0
- 00 00 0 0

[ ]
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and

so that [zba] = (xba).

Similarly,
e =08 210 8] O]}
= D(a,b) [ 98 8 ]
_ D(ab) [‘8 8]
SRR
- [ (abg)/2 [xbgw } ’
so that (zba) = [zba). O

5. Main result.

Proposition 5.1. Let X be an operator space such that My (X)o is a bound-
ed symmetric domain. Then (X,[---],|-||) ¢s a C*-ternary ring in the sense
of Zettl [39] (see Definition 2.3) and its JB*-triple product (see the beginning
of Section 3) satisfies {abc} = ([abe] + [cba))/2.

Proof. 1t was already shown in Lemma 3.8 that {abc} = ([abc]+ [cba])/2 and
that ||[aaa]|| = ||la||® and it is clear that ||[abc]|| < ||al|||b]/||c||. It remains to

show associativity. To prove this we will use Lemma 3.3 and Proposition 4.5.
For a,b,c,d,e € X, let

A:[g g],B:[B 3}’02[8 8]792[2 8]’“{2 8]'
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13812 8]h) ean
ol solp[ae]-[e o))

=4pnn({ED{CBA}}) (by commutativity of the triple product)
= 4pn({CB{EDA}}) + 4pu({{EDC} BA})

hIcE

—4pn({C{BED} A})  (by (2))
({12412 1[5 ST(2 81 5
o ([2 ][5 4][ 8]} we
= [ab(cde)] = [ab|cde]]

To complete the proof of associativity, consider

[aldcble]

_ (a(dcb)e)

o[8[ 21 o

s ERIRERiEndikxdiabnal)
(o (16))

= tpu((A{DCB)} E)

= 4pu({{ABC} DY) + 491 (BB {ADCY)) — 4puu({C{BAD} B})
(o ()

— 4p1,({{ABCY DE}) (since A L D)

=t ol [o o ][o o]yl ol 20 ]))

=2 ({50 0] 10 0] |0 0]}) = tortaer 0w a3

— [[abc]de].
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Lemma 5.2. Let A be an operator space such that Ms(A)g is a bounded
symmetric domain, so that by Proposition 5.1, A is a C*-ternary ring. Sup-
pose that the C*-ternary ring A is isomorphic to a TRO, that is, A_1 =0
in Theorem 2.2. Form the ternary product [- - -]Mz(A) induced by the ternary
product on A as if it was ordinary matriz multiplication, that is, if X =
[zi5], Y = [yril, Z = [2pg] € M2(A), then [XY Z]p,(a) is the matriz whose

(i,4)-entry is an[:ﬁipyquqj]. Then

Proof. It suffices to prove that {XXX},, 4y = [XXX]pp4). In the first

place,

[zriz11211] + [Z12z12211] | [Tuiznizie] + [T12z12212]

+x11x1221] + [X12%22%01] | Hx11221222] + [T12222222]

(XX X]ns00)=

[$21$11$11] + [$22$129U11] [£B219€119012] + [162233129612]

+lro1za1w21] + [T22w2221] | +[T21T21722] + [T22T22T22]

On the other hand, by using Lemmas 3.3, 3.4, 3.6 and 3.8, and Proposi-
tion 3.9,

> APu(X)Pua(X) Ppg(X)}

k,l,p,q

{zniznizn} + [z2z12211]/2 | [r11z11212]/2

+x11221221]/2 +x11221222] /2

[xo1211211]/2 + [x22212211]/2 0
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> AP12(X)Pu(X) Pp(X)}

k,l,p,q

[T12222221]/2 | {z12212212} + [211211212]/2

+z12x12211]/2 +[x 1222222 /2

0 [To1211212]/2 + [X22212212] /2

> AP (X)Pua(X) Ppg(X)}

k,l,p,q

[T11221221]/2 + [x12722721]/2 0

{zo1221221 } + [T21211211]/2 | [T21211212]/2

+[x22x9201]/2 +[x21221 722 /2

and

> APoa(X) Pua(X) Ppg(X)}

k,l,p,q

0 [X112721T22] /2 + [T12722222] /2

[zoow12211]/2 | {w22w22x22} + [T21221222]/2

+[x22w22w21]/2 [z2ox12212]/2

Since {XXX}MQ(A) = Zi,j Zkl,pq{ (X)Pkl(X)qu(X)} and {J,‘J,‘],‘} =
[xzz], the lemma follows. O

We now state and prove the main result of this paper.

Theorem 5.3. Let AC B(H) be an operator space and suppose that M, (A)g
is a bounded symmetric domain for some n > 2. Then A is n-isometric to a
ternary ring of operators (TRO). If M, (A)o is a bounded symmetric domain
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for all n > 2, then A is ternary isomorphic and completely isometric to a
TRO.

Proof. The second statement follows from the first one. Suppose n = 2.
From Theorem 2.2 and Proposition 5.1, we know that A = A; ® A_; where
Aj is ternary isomorphic to a TRO B and A_; is anti-isomorphic to a TRO
C. Let ¢ : A_1 — C be an anti-isomorphism. Since C' is a JB*-triple under
the product {z y z} = (1/2)(zy*z + zy*z) and ¢ is an isometry, hence a
triple isomorphism, it follows that

* *

p(x)p(x) p(z) = plrret = plear] = —p(z)p(z) ¢(r)
so that p(z)p(x)*p(z) = 0 and x = 0. Thus A_; = 0 and A is ternary
isomorphic to a TRO B. Let ¢ : A — B be a surjective ternary isomorphism.
Then by Lemma 5.2, the amplification 1) is a triple isomorphism of the JB*-
triple Ms(A) onto the JB*-triple Ms(B), with the triple product

implying that 1, is a triple isomorphism, hence an isometry. Thus, A is 2-
isometric to B, proving the theorem for n = 2. The general case for M, (A)
is now not difficult to obtain. We require only one short lemma.

Lemma 5.4. Let A be an operator space such that for some n > 3, M,(A)
has a JB*-triple structure. Then for X, Y, Z € M, (A), the following products
all vanish:

o {Pj(X) Py(Y) sz( )} (for distinct i, k, 1)

e {Py(X) Pu(Y) Pu(2)} (for distinct j. k1)

o {Pj(X) Py(Y) Py(Z)} (fori # k, j # 1 and either p & {i,k} or
q & {4,1}).

Proof. Two applications of the fact that the range of a bicontractive projec-
tion on a JB*-triple is a subtriple yield that {P;;(X) P;(Y) P;;(Z)} lies in
(Pij + Pyj + Pj)M,(A). However, by a conditional expectation property,

(Pij + Pej){Pij(X) Py (Y) B;(2)} = (Bij + Pij){Pij(X) Pi;(Y) 0} =0.

A similar calculation shows (Py;+ P;;){Pi;(X) Py;(Y) P;(Z)} = 0, proving
the first statement. A similar agrument proves the second statement. The
proof of the last statement is the same as the proof of Lemma 3.3. For
n = 3, one needs to prove, for example, that

a 0 O
D 0 00,00
0 00 0 0

ococo
I
o
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Returning to the proof of Theorem 5.3, if M,(A) is a JB*-triple, then
M>5(A), which is isometric to the range of a contractive projection on M, (A),
is also a JB*-triple. Hence, by the n = 2 case, A is a C*-ternary ring
which is ternary isomorphic and isometric under a map ¢ to a TRO B and
M>(A) is triple isomorphic and isometric to My(B) under the amplification
¢9. Every triple product {XY Z} in M,,(A) is the sum of products of the
form {P;;(X) Pu(Y) Ppe(Z)}. By Lemma 5.4, every such product of matrix
elements in M, (A) is either zero or takes place in the intersection of two rows
with two columns. The subspace of M,,(A) defined by one such intersection is
a subtriple of M,,(A) since it is the range of the product of two bicontractive
projections. It is isometric, via
Py(X)  Pu(Y)

Prj(Z)  Pua(W)

hence triple isomorphic, to M3(A). Hence, by the proof of the n = 2 case,
all triple products in M, (A) are the natural ones obtained from the ternary
structure on A as in Lemma 5.2. It follows that M, (A) is triple isomorphic
to M, (B) via the amplification map ¢, which is thus an isometry. O

Pij(X) + Py(Y) + Prj(Z) + Pua(W) —

As application, we offer two corollaries.

Corollary 5.5. Let A C B(H,K) be a TRO and let P be a completely
contractive projection on A. Then the range of P is completely isometric to
another TRO.

Proof. Since A is a TRO, M, (A) is a JB*-triple. Therefore M, (P(A)) =
P,(M,(A))is a JB*-triple, and its unit ball is a bounded symmetric domain.
U

Another way to obtain this corollary is to note that every TRO is a corner
of a C*-algebra and hence the range of a completely contractive projection on
that algebra. By composing these two projections, the corollary is reduced
to [38].

Our second corollary is a variant of the fundamental Choi-Effros result.

Corollary 5.6. Let P be a unital 2-positive projection on a unital C*-
algebra A. Then P(A) is 2-isometric to a C*-algebra. If P is completely
positive and unital, then P(A) is completely isometric to a C*-algebra.

In order to state our second theorem, we recall that a complex Banach
space A is linearly isometric to a unital JB*-algebra if and only if its open
unit ball Ay is a bounded symmetric domain of tube type [11]. In [37], a
necessary and sufficient condition, involving the Lie algebra of all complete
holomorphic vector fields on Ag, is given for such A to be obtained from
a C*-algebra with the anticommutator product. Our next theorem gives a
holomorphic characterization of C*-algebras up to complete isometry.
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Theorem 5.7. Let AC B(H) be an operator space and suppose that M, (A)g
is a bounded symmetric domain for some n > 2. If the induced bounded
symmetric domain structure on Ag is of tube type, then A is n-isometric to
a C*-algebra. If M, (A)o is a bounded symmetric domain for all n > 2 and
Ay is of tube type, then A is completely isometric to a C*-algebra.

Proof. By Theorem 5.3, we may assume that A is a TRO. Since A has
the structure of a unital JB*-algebra, there is a partial isometry u € A
such that au*u = wu*a = a for every a € A. Then A becomes a C*-
algebra with product a - b = au*b and involution a! = ua*u. Since ab*c =
a- b ¢, and ternary isomorphisms of TRO’s are complete isometries, the
result follows. U

Remark 5.8. One can construct operator spaces that are 2-isometric to a
C*-algebra A which are not completely isometric to A. Hence, if My(A)o is
a bounded symmetric domain it does not follow that M, (A)q is a bounded
symmetric domain for every n > 2. It would be interesting to see if this were
true under some further condition on A. The proof of Theorem 5.3 seems
to require a bounded symmetric domain structure on My(A)g, not simply
on M 2(A)o for example. It would be interesting to see what could be said
if it is assumed that M; ,(A)o were a bounded symmetric domain for every
n > 2.
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